Knowledge

Mutilated chessboard problem

Source 📝

203:
dominoes of the previous row. Thus, by induction, each of the seven pairs of consecutive rows houses an odd number of vertical dominoes, producing an odd total number. By the same reasoning, the total number of horizontal dominoes must also be odd. As the sum of two odd numbers, the total number of dominoes—vertical and horizontal—must be even. But to cover the mutilated chessboard, 31 dominoes are needed, an odd number. Another method counts the edges of each color around the boundary of the mutilated chessboard. Their numbers must be equal in any tileable region of the chessboard, because each domino has three edges of each color, and each internal edge between dominoes pairs off boundaries of opposite colors. However, the mutilated chessboard has more edges of one color than the other.
30: 22: 219: 207: 355: 362: 349: 271:
with a vertex for each available chessboard square and an edge for every pair of adjacent squares; the problem is to find a system of edges that touches each vertex exactly once. As in the coloring-based proof of the impossibility of the mutilated chessboard problem, the fact that this graph has more
190:
The puzzle is impossible to complete. A domino placed on the chessboard will always cover one white square and one black square. Therefore, any collection of dominoes placed on the board will cover equal numbers of squares of each color. But any two opposite squares have the same color: both black or
77:
meeting these conditions. One proof of its impossibility uses the fact that, with the corners removed, the chessboard has 32 squares of one color and 30 of the other, but each domino must cover equally many squares of each color. More generally, if any two squares are removed from the chessboard, the
385:
that can move only one square vertically or horizontally (not diagonally). Using similar reasoning to the mutilated chessboard problem's classic solution, this wazir's tour does not exist. For example, if the initial square is white, as each move alternates between black and white squares, the final
242:
formed by the chessboard squares. The removal of any two oppositely colored squares splits this cycle into two paths with an even number of squares each. Both of these paths are easy to partition into dominoes by following them. Gomory's theorem is specific to the removal of only one square of each
202:
starts with induction. In a given tiling of the board, if a row has an odd number of squares not covered by vertical dominoes from the previous row, then an odd number of vertical dominoes must extend into the next row. The first row trivially has an odd number of squares (namely, 7) not covered by
303:
and asking for a system that can automatically determine the unsolvability of this formulation. Most considerations of this problem provide solutions "in the conceptual sense" that do not apply to McCarthy's logic formulation of the problem. Despite the existence of general methods such as those
316:
systems that can manage the equivalences between different representations. Short proofs are possible using resolution with additional variables, or in stronger proof systems allowing the expression of avoidable tiling patterns that can prune the search space. Higher-level
390:, which asks for a tour in which the positions of certain squares match given clues. The impossibility of a corner-to-corner tour shows the impossibility of a Numbrix puzzle with the clues 1 in one corner and 64 in the opposite corner. 907:
Bilalić, Merim; Graf, Mario; Vaci, Nemanja; Danek, Amory H. (August 2019), "When the solution is on the doorstep: Better solving performance, but diminished aha! experience for chess experts on the mutilated checkerboard problem",
191:
both white. If they are removed, there will be fewer squares of that color and more of the other color, making the numbers of squares of each color unequal and the board impossible to cover. The same idea shows that no
1530: 1111: 243:
color. Removing larger numbers of squares, with equal numbers of each color, can result in a region that has no domino tiling, but for which coloring-based impossibility proofs do not work.
1589:
most treatments of the problem in the literature solve it in the conceptual sense, but do not actually provide proofs of the theorem in either of McCarthy's original formulations
214:
through the squares into one (left) or two (right) paths through an even number of squares, allowing the modified chessboard to be tiled by dominoes laid along the paths.
1987: 386:
square of any complete tour is black. However, the opposite corner square is white. This sort of tour of a chessboard also forms the basis of a type of puzzle called
210:
Gomory's theorem: Removing any two oppositely-colored squares of a chessboard leaves a region that can be tiled by dominoes. The two removed squares partition a
1556:
Theorem Proving with Analytic Tableaux and Related Methods, 5th International Workshop, TABLEAUX '96, Terrasini, Palermo, Italy, May 15–17, 1996, Proceedings
1492: 1943: 1459:, Department of Computer Science Report Series B, vol. B-2021-1, Helsinki: Department of Computer Science, University of Helsinki, pp. 52–53, 1332: 156: 381:
starting at a corner square of an ordinary chessboard can visit every square exactly once, and finish at the opposite corner square. The wazir is a
948: 2103: 1606: 581: 1723: 1468: 78:
rest can be tiled by dominoes if and only if the removed squares are of different colors. This problem has been used as a test case for
133:(1946), with a hint at the coloring-based solution to its impossibility. It was popularized in the 1950s through later discussions by 1905: 811:
Mathematical Knowledge Management, 4th International Conference, MKM 2005, Bremen, Germany, July 15-17, 2005, Revised Selected Papers
1698: 474:
Computing and Combinatorics, 16th Annual International Conference, COCOON 2010, Nha Trang, Vietnam, July 19–21, 2010, Proceedings
1650: 1016:
From Animals to Robots and Back: Reflections on Hard Problems in the Study of Cognition, A Collection in Honour of Aaron Sloman
1850: 1571: 1294: 1031: 826: 657: 571: 499: 1164: 782: 2183: 33:
Unsuccessful solution to the mutilated chessboard problem: as well as the two corners, two center squares remain uncovered.
1014:
Kerber, Manfred (2014), "A proof and some representations", in Wyatt, Jeremy L.; Petters, Dean D.; Hogg, David C. (eds.),
226:
If two squares of opposite colors are removed, then the remaining board can always be tiled with dominoes; this result is
434: 2025:
Bivens, Irl C.; Holshouser, Arthur L.; Klein, Benjamin G. (October 2008), "Wazir circuits on an obstructed chessboard",
728:(March 1957), "Some old and new versions of ticktacktoe, plus the answers to last month's puzzles", Mathematical Games, 2157: 1152: 772: 292: 167: 195:
can exist whenever any two squares of the same color (not just the opposite corners) are removed from the chessboard.
2108: 1748: 1360: 603: 1991: 222:
A region of the chessboard that has no domino tiling, but for which coloring-based impossibility proofs do not work
1577: 1189: 277: 1608:
42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14–17 October 2001, Las Vegas, Nevada, USA
1497: 1236: 847: 1929: 118:
in 1937. Domino tilings also have a long history of practical use in pavement design and the arrangement of
1835:
NASA Formal Methods – 11th International Symposium, NFM 2019, Houston, TX, USA, May 7–9, 2019, Proceedings
1628: 1313: 881:
Akin, Ömer; Akin, Cem (January 1998), "On the process of creativity in puzzles, inventions, and designs",
2188: 910: 1829:; Kiesl, Benjamin; Biere, Armin (2019), "Clausal proofs of mutilated chessboards", in Badger, Julia M.; 1455:, in Balyo, Tomáš; Froleyks, Nils; Heule, Marijn; Iser, Markus; Järvisalo, Matti; Suda, Martin (eds.), 322: 285: 273: 2099: 429: 175: 115: 87: 408:
cuboids. The proof uses a similar chessboard-coloring argument to the mutilated chessboard problem.
313: 281: 1648:
Alekhnovich, Michael (2004), "Mutilated chessboard problem is exponentially hard for resolution",
2173: 1048: 1018:, Cognitive Systems Monographs, vol. 22, Springer International Publishing, pp. 65–73, 309: 2178: 1966: 393: 1046:
Tanswell, Fenner (2015), "A problem with the dependence of informal proofs on formal proofs",
578: 61:) has two diagonally opposite corners removed, leaving 62 squares. Is it possible to place 31 2071: 1934:, Technical Report, vol. TR96-09, University of Alberta Department of Computer Science, 1830: 1690: 1449: 308:
to solve McCarthy's logical formulation of the problem, highlighting the need for methods in
107: 2137: 2027: 2012: 1901: 1805: 1769: 1719: 1673: 1518: 1423: 1389: 1328: 1257: 1107: 1069: 985: 957: 632: 509: 400:
into a larger cuboid. For instance, it is impossible, according to this theorem, to fill a
1874: 1286: 8: 2069:
Hanson, Mary Grace; Nash, David A. (Spring 2018), "Minimal and maximal Numbrix puzzles",
730: 698: 174:
as a test case for creative insight, Black's original motivation for the problem. In the
163: 151: 79: 961: 2125: 2080: 2052: 2044: 1856: 1809: 1686: 1620: 1522: 1427: 1377: 1261: 1206: 997: 973: 864: 747: 743: 715: 711: 620: 513: 477: 321:
are capable of handling the coloring-based impossibility proof directly; these include
305: 272:
vertices of one color than the other implies that it fails the necessary conditions of
264: 179: 29: 1664: 894: 2056: 1846: 1761: 1567: 1290: 1265: 1083: 1027: 989: 929: 860: 822: 653: 598: 567: 495: 464:; Schurch, Mark; Woodcock, Jennifer (2010), "Auspicious tatami mat arrangements", in 382: 300: 235: 211: 171: 134: 70: 2153: 1860: 1624: 1001: 868: 806: 2117: 2040: 2036: 2000: 1935: 1889: 1838: 1813: 1793: 1784: 1757: 1707: 1659: 1612: 1559: 1526: 1506: 1460: 1431: 1411: 1369: 1355: 1245: 1198: 1095: 1057: 1019: 965: 919: 890: 856: 842: 814: 739: 707: 616: 612: 559: 558:, Automated Reasoning Series, vol. 1, Springer Netherlands, pp. 267–282, 517: 487: 443: 1837:, Lecture Notes in Computer Science, vol. 11460, Springer, pp. 204–210, 1554:, in Miglioli, Pierangelo; Moscato, Ugo; Mundici, Daniele; Ornaghi, Mario (eds.), 776: 21: 2133: 2008: 1897: 1842: 1801: 1765: 1715: 1669: 1514: 1419: 1385: 1324: 1253: 1156: 1134: 1103: 1065: 981: 628: 585: 563: 554:
Robinson, J. A. (1991), "Formal and Informal Proofs", in Boyer, Robert S. (ed.),
505: 491: 476:, Lecture Notes in Computer Science, vol. 6196, Springer, pp. 288–297, 425: 318: 296: 268: 256: 231: 199: 111: 1023: 312:
that can automatically change to a more suitable problem representation and for
1711: 1249: 813:, Lecture Notes in Computer Science, vol. 3863, Springer, pp. 81–95, 725: 693: 276:, so no matching exists. The problem can also be solved by formulating it as a 146: 1558:, Lecture Notes in Computer Science, vol. 1071, Springer, pp. 1–15, 1510: 1415: 1099: 2167: 2004: 1893: 1616: 1061: 378: 192: 99: 74: 42: 1563: 432:(1937), "An attempt to extend the statistical theory of perfect solutions", 234:, whose proof was published in 1973. Gomory's theorem can be proven using a 1826: 1445: 993: 969: 933: 696:(February 1957), "An assortment of maddening puzzles", Mathematical Games, 672: 645: 469: 461: 326: 260: 142: 138: 106:, also known as "dimer models", a general class of problems whose study in 58: 1493:"Relaxations of the satisfiability problem using semidefinite programming" 218: 1931:
The Mutilated Checkerboard Problem in the Lightweight Set Theory of Mizar
447: 2048: 1782:
Krishnamurthy, Balakrishnan (1985), "Short proofs for tricky formulas",
1464: 977: 751: 719: 2129: 1797: 1402:
Urquhart, Alasdair (2003), "Resolution proofs of matching principles",
1381: 1210: 924: 818: 624: 465: 239: 198:
Several other proofs of impossibility have also been found. A proof by
83: 54: 1939: 1551: 1457:
Proceedings of SAT Competition 2021: Solver and Benchmark Descriptions
1746:
Korf, Richard E. (1980), "Toward a model of representation changes",
1231: 1214:. Mendelsohn credits the original publication of Gomory's theorem to 533: 252: 206: 126: 103: 46: 2121: 1373: 1202: 1084:"Revisiting the mutilated chessboard or the many roles of a picture" 577:; see especially Section 13.1, "The mutilated chess board problem", 125:
The mutilated chessboard problem itself was proposed by philosopher
2085: 946:
MacKenzie, Donald (2005), "Computing and the cultures of proving",
62: 482: 538:
Critical Thinking: An Introduction To Logic And Scientific Method
387: 1875:"A simple formalization and proof for the mutilated chess board" 1602: 1491:
de Klerk, Etienne; Van Maaren, Hans; Warners, Joost P. (2000),
397: 119: 1234:(2021), "Conway's influence on the study of random tilings", 459: 330: 255:, such as the mutilated chessboard problem, can be solved in 1963:
Subramanian, Sakthi (1996), "An interactive solution to the
1691:"Resolution lower bounds for perfect matching principles" 1490: 1283:
Across the Board: The Mathematics of Chessboard Problems
295:
proposed the mutilated chessboard as a hard problem for
1161:
AISB Workshop on Artificial Intelligence and Creativity
1443: 304:
based on graph matching, it is exponentially hard for
2024: 1969: 1141:, Mathematical Association of America, pp. 65–67 1081: 1075: 556:
Automated Reasoning: Essays in Honor of Woody Bledsoe
246: 906: 807:"A tough nut for mathematical knowledge management" 178:, it has been examined in studies of the nature of 98:The mutilated chessboard problem is an instance of 1981: 1187:Mendelsohn, N. S. (2004), "Tiling with dominoes", 1082:Starikova, Irina; Van Bendegem, Jean Paul (2021), 1552:"On sets, types, fixed points, and checkerboards" 1404:Annals of Mathematics and Artificial Intelligence 354: 2165: 800: 798: 424: 418: 342: 65:of size 2×1 so as to cover all of these squares? 1825: 949:Philosophical Transactions of the Royal Society 162:The use of the mutilated chessboard problem in 1543: 396:concerns the impossibility of packing certain 1781: 1775: 1594: 1549: 1182: 1180: 1129: 1127: 795: 259:, either by converting them into problems in 1600: 1484: 834: 804: 767: 765: 2062: 1962: 1956: 1647: 1641: 1611:, IEEE Computer Society, pp. 220–229, 1550:Andrews, Peter B.; Bishop, Matthew (1996), 840: 759:(Dover Publications, 1994), pages 2 and 39. 267:. In the latter formulation, one obtains a 16:On domino tiling after removing two corners 2068: 1603:"'Planar' tautologies hard for resolution" 1276: 1274: 1215: 1186: 1177: 1145: 1133: 1124: 644: 638: 601:(1954), "Checker boards and polyominoes", 549: 547: 2098: 2084: 1663: 1601:Dantchev, Stefan S.; Riis, Søren (2001), 1307: 1305: 945: 939: 923: 874: 762: 688: 686: 481: 2092: 1927: 1866: 1685: 1679: 1401: 1395: 1354: 1348: 1226: 1224: 1151: 1045: 1039: 880: 805:Kerber, Manfred; Pollet, Martin (2005), 771: 553: 217: 205: 28: 20: 1872: 1819: 1699:Journal of Computer and System Sciences 1450:"Bipartite perfect matching benchmarks" 1314:"The mutilated chess board (revisited)" 1285:, Princeton University Press, pp.  1280: 1271: 724: 692: 677:Théorie des graphes et ses applications 648:; Stern, Marvin (1958), "Domino game", 544: 528: 526: 361: 2166: 1311: 1302: 1013: 1007: 757:My Best Mathematical and Logic Puzzles 683: 597: 2018: 1921: 1444:Codel, Cayden R.; Reeves, Joseph E.; 1230: 1221: 845:(July 1990), "In search of insight", 671: 591: 532: 453: 345: 170:in 1964. It has also been studied in 166:stems from a proposal for its use by 1745: 1739: 1437: 900: 665: 523: 435:Transactions of the Faraday Society 336: 13: 2158:The Wolfram Demonstrations Project 1358:(1990), "Conway's tiling groups", 781:, Stanford AI Memo, vol. 16, 744:10.1038/scientificamerican0357-160 712:10.1038/scientificamerican0257-152 540:, Prentice Hall, pp. 157, 433 247:Application to automated reasoning 14: 2200: 2147: 2109:The American Mathematical Monthly 1989:mutilated checkerboard problem", 1361:The American Mathematical Monthly 1321:Recreational Mathematics Magazine 604:The American Mathematical Monthly 1992:Journal of Logic and Computation 1157:"Creative Solutions to Problems" 778:A tough nut for proof procedures 652:, Viking Press, pp. 87–90, 360: 353: 347: 1946:from the original on 2022-07-18 1911:from the original on 2022-08-08 1729:from the original on 2022-08-08 1631:from the original on 2022-09-14 1580:from the original on 2022-07-18 1533:from the original on 2021-06-20 1474:from the original on 2022-07-18 1338:from the original on 2022-08-08 1190:The College Mathematics Journal 1167:from the original on 2018-10-23 1114:from the original on 2022-07-19 785:from the original on 2021-05-16 679:(in French), Dunod, p. 176 278:constraint satisfaction problem 2041:10.1080/0025570X.2008.11953562 1498:Journal of Automated Reasoning 1237:The Mathematical Intelligencer 809:, in Kohlhase, Michael (ed.), 617:10.1080/00029890.1954.11988548 1: 1873:Paulson, Lawrence C. (2001), 1665:10.1016/S0304-3975(03)00395-5 895:10.1016/s0926-5805(97)00057-5 411: 1843:10.1007/978-3-030-20652-9_13 1762:10.1016/0004-3702(80)90033-8 1651:Theoretical Computer Science 1448:; Bryant, Randal E. (2021), 1137:(1973), "Gomory's theorem", 861:10.1016/0010-0285(90)90008-r 564:10.1007/978-94-011-3488-0_13 492:10.1007/978-3-642-14031-0_32 377:A similar problem asks if a 39:mutilated chessboard problem 7: 2184:Mathematical chess problems 2104:"Filling boxes with bricks" 1024:10.1007/978-3-319-06614-1_5 299:systems, formulating it in 185: 10: 2205: 1712:10.1016/j.jcss.2004.01.004 1250:10.1007/s00283-021-10089-3 883:Automation in Construction 251:Domino tiling problems on 93: 1982:{\displaystyle n\times n} 1882:Logic Journal of the IGPL 1281:Watkins, John J. (2004), 1100:10.2143/LEA.255.0.3290192 176:philosophy of mathematics 141:and Marvin Stern (1958), 116:George Stanley Rushbrooke 88:philosophy of mathematics 1928:Rudnicki, Piotr (1996), 1617:10.1109/SFCS.2001.959896 314:knowledge representation 282:semidefinite programming 25:The mutilated chessboard 1749:Artificial Intelligence 1564:10.1007/3-540-61208-4_1 1511:10.1023/A:1006362203438 1416:10.1023/A:1021231610627 1049:Philosophia Mathematica 310:artificial intelligence 274:Hall's marriage theorem 53:Suppose a standard 8×8 2005:10.1093/logcom/6.4.573 1983: 1894:10.1093/jigpal/9.3.475 1831:Rozier, Kristin Yvonne 1687:Razborov, Alexander A. 1312:Wright, Colin (2014), 1062:10.1093/philmat/nkv008 970:10.1098/rsta.2005.1649 230:, after mathematician 223: 215: 67: 34: 26: 2072:Pi Mu Epsilon Journal 1984: 460:Erickson, Alejandro; 372:Wazir's tour problem 263:, or as instances of 221: 209: 110:dates to the work of 108:statistical mechanics 51: 32: 24: 2028:Mathematics Magazine 1967: 1356:Thurston, William P. 848:Cognitive Psychology 723:; for solution, see 448:10.1039/tf9373301272 2156:by Jay Warendorff, 1827:Heule, Marijn J. H. 1446:Heule, Marijn J. H. 1139:Mathematical Gems I 962:2005RSPTA.363.2335M 956:(1835): 2335–2350, 731:Scientific American 699:Scientific American 394:De Bruijn's theorem 164:automated reasoning 152:Scientific American 80:automated reasoning 49:in 1946 that asks: 2189:Unsolvable puzzles 1979: 1798:10.1007/BF00265682 1088:Logique et Analyse 925:10.1111/cogs.12771 841:Kaplan, Craig A.; 819:10.1007/11618027_6 584:2022-07-18 at the 265:bipartite matching 224: 216: 180:mathematical proof 157:Mathematical Games 35: 27: 1940:10.7939/R3QV3C738 1852:978-3-030-20651-2 1573:978-3-540-61208-7 1296:978-0-691-11503-0 1216:Honsberger (1973) 1033:978-3-319-06613-4 911:Cognitive Science 843:Simon, Herbert A. 828:978-3-540-31430-1 775:(July 17, 1964), 659:978-0-333-08637-7 573:978-94-010-5542-0 501:978-3-642-14030-3 430:Rushbrooke, G. S. 383:fairy chess piece 370: 369: 301:first-order logic 236:Hamiltonian cycle 212:Hamiltonian cycle 172:cognitive science 135:Solomon W. Golomb 131:Critical Thinking 71:impossible puzzle 2196: 2154:Gomory's Theorem 2141: 2140: 2100:de Bruijn, N. G. 2096: 2090: 2089: 2088: 2066: 2060: 2059: 2022: 2016: 2015: 1988: 1986: 1985: 1980: 1960: 1954: 1953: 1952: 1951: 1925: 1919: 1918: 1917: 1916: 1910: 1879: 1870: 1864: 1863: 1823: 1817: 1816: 1785:Acta Informatica 1779: 1773: 1772: 1743: 1737: 1736: 1735: 1734: 1728: 1695: 1683: 1677: 1676: 1667: 1658:(1–3): 513–525, 1645: 1639: 1638: 1637: 1636: 1598: 1592: 1591: 1586: 1585: 1547: 1541: 1540: 1539: 1538: 1488: 1482: 1481: 1480: 1479: 1473: 1454: 1441: 1435: 1434: 1399: 1393: 1392: 1352: 1346: 1345: 1344: 1343: 1337: 1318: 1309: 1300: 1299: 1278: 1269: 1268: 1228: 1219: 1213: 1184: 1175: 1174: 1173: 1172: 1149: 1143: 1142: 1131: 1122: 1121: 1120: 1119: 1094:(255): 289–312, 1079: 1073: 1072: 1043: 1037: 1036: 1011: 1005: 1004: 943: 937: 936: 927: 904: 898: 897: 889:(2–3): 123–138, 878: 872: 871: 838: 832: 831: 802: 793: 792: 791: 790: 769: 760: 754: 722: 690: 681: 680: 669: 663: 662: 642: 636: 635: 595: 589: 576: 551: 542: 541: 530: 521: 520: 485: 457: 451: 450: 422: 407: 403: 364: 363: 357: 356: 351: 350: 343: 337:Related problems 319:proof assistants 228:Gomory's theorem 2204: 2203: 2199: 2198: 2197: 2195: 2194: 2193: 2164: 2163: 2150: 2145: 2144: 2122:10.2307/2316785 2097: 2093: 2067: 2063: 2023: 2019: 1968: 1965: 1964: 1961: 1957: 1949: 1947: 1926: 1922: 1914: 1912: 1908: 1877: 1871: 1867: 1853: 1824: 1820: 1780: 1776: 1744: 1740: 1732: 1730: 1726: 1693: 1684: 1680: 1646: 1642: 1634: 1632: 1599: 1595: 1583: 1581: 1574: 1548: 1544: 1536: 1534: 1489: 1485: 1477: 1475: 1471: 1452: 1442: 1438: 1400: 1396: 1374:10.2307/2324578 1353: 1349: 1341: 1339: 1335: 1316: 1310: 1303: 1297: 1279: 1272: 1229: 1222: 1203:10.2307/4146865 1185: 1178: 1170: 1168: 1150: 1146: 1132: 1125: 1117: 1115: 1080: 1076: 1044: 1040: 1034: 1012: 1008: 944: 940: 905: 901: 879: 875: 839: 835: 829: 803: 796: 788: 786: 770: 763: 755:. Reprinted in 726:Gardner, Martin 694:Gardner, Martin 691: 684: 670: 666: 660: 643: 639: 611:(10): 675–682, 596: 592: 586:Wayback Machine 574: 552: 545: 531: 524: 502: 458: 454: 423: 419: 414: 405: 401: 375: 374: 373: 366: 365: 358: 348: 339: 297:automated proof 280:, and applying 269:bipartite graph 257:polynomial time 249: 232:Ralph E. Gomory 200:Shmuel Winograd 188: 112:Ralph H. Fowler 96: 17: 12: 11: 5: 2202: 2192: 2191: 2186: 2181: 2176: 2174:Tiling puzzles 2162: 2161: 2149: 2148:External links 2146: 2143: 2142: 2091: 2079:(8): 505–514, 2061: 2035:(4): 276–284, 2017: 1999:(4): 573–598, 1978: 1975: 1972: 1955: 1920: 1888:(3): 475–485, 1865: 1851: 1818: 1792:(3): 253–275, 1774: 1738: 1678: 1640: 1593: 1572: 1542: 1505:(1–2): 37–65, 1483: 1436: 1410:(3): 241–250, 1394: 1368:(8): 757–773, 1347: 1301: 1295: 1270: 1220: 1197:(2): 115–120, 1176: 1153:McCarthy, John 1144: 1135:Honsberger, R. 1123: 1074: 1056:(3): 295–310, 1052:, Series III, 1038: 1032: 1006: 938: 899: 873: 855:(3): 374–419, 833: 827: 794: 773:McCarthy, John 761: 738:(3): 160–168, 706:(2): 152–158, 682: 664: 658: 637: 590: 572: 543: 522: 500: 452: 416: 415: 413: 410: 371: 368: 367: 359: 352: 346: 341: 340: 338: 335: 248: 245: 187: 184: 147:Martin Gardner 95: 92: 73:: there is no 15: 9: 6: 4: 3: 2: 2201: 2190: 2187: 2185: 2182: 2180: 2179:Logic puzzles 2177: 2175: 2172: 2171: 2169: 2159: 2155: 2152: 2151: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2111: 2110: 2105: 2101: 2095: 2087: 2082: 2078: 2074: 2073: 2065: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2029: 2021: 2014: 2010: 2006: 2002: 1998: 1994: 1993: 1976: 1973: 1970: 1959: 1945: 1941: 1937: 1933: 1932: 1924: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1876: 1869: 1862: 1858: 1854: 1848: 1844: 1840: 1836: 1832: 1828: 1822: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1786: 1778: 1771: 1767: 1763: 1759: 1755: 1751: 1750: 1742: 1725: 1721: 1717: 1713: 1709: 1705: 1701: 1700: 1692: 1688: 1682: 1675: 1671: 1666: 1661: 1657: 1653: 1652: 1644: 1630: 1626: 1622: 1618: 1614: 1610: 1609: 1604: 1597: 1590: 1579: 1575: 1569: 1565: 1561: 1557: 1553: 1546: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1499: 1494: 1487: 1470: 1466: 1462: 1458: 1451: 1447: 1440: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1398: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1362: 1357: 1351: 1334: 1330: 1326: 1322: 1315: 1308: 1306: 1298: 1292: 1288: 1284: 1277: 1275: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1238: 1233: 1227: 1225: 1217: 1212: 1208: 1204: 1200: 1196: 1192: 1191: 1183: 1181: 1166: 1162: 1158: 1154: 1148: 1140: 1136: 1130: 1128: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1078: 1071: 1067: 1063: 1059: 1055: 1051: 1050: 1042: 1035: 1029: 1025: 1021: 1017: 1010: 1003: 999: 995: 991: 987: 983: 979: 975: 971: 967: 963: 959: 955: 951: 950: 942: 935: 931: 926: 921: 918:(8): e12771, 917: 913: 912: 903: 896: 892: 888: 884: 877: 870: 866: 862: 858: 854: 850: 849: 844: 837: 830: 824: 820: 816: 812: 808: 801: 799: 784: 780: 779: 774: 768: 766: 758: 753: 749: 745: 741: 737: 733: 732: 727: 721: 717: 713: 709: 705: 701: 700: 695: 689: 687: 678: 674: 673:Berge, Claude 668: 661: 655: 651: 647: 646:Gamow, George 641: 634: 630: 626: 622: 618: 614: 610: 606: 605: 600: 599:Golomb, S. W. 594: 587: 583: 580: 575: 569: 565: 561: 557: 550: 548: 539: 535: 529: 527: 519: 515: 511: 507: 503: 497: 493: 489: 484: 479: 475: 471: 470:Sahni, Sartaj 467: 463: 462:Ruskey, Frank 456: 449: 445: 441: 437: 436: 431: 427: 426:Fowler, R. H. 421: 417: 409: 399: 395: 391: 389: 384: 380: 344: 334: 332: 328: 324: 320: 315: 311: 307: 302: 298: 294: 293:John McCarthy 289: 287: 283: 279: 275: 270: 266: 262: 258: 254: 244: 241: 237: 233: 229: 220: 213: 208: 204: 201: 196: 194: 193:domino tiling 183: 181: 177: 173: 169: 168:John McCarthy 165: 160: 158: 154: 153: 148: 144: 140: 136: 132: 128: 123: 121: 117: 113: 109: 105: 102:of grids and 101: 100:domino tiling 91: 89: 85: 81: 76: 75:domino tiling 72: 66: 64: 60: 56: 50: 48: 44: 43:tiling puzzle 40: 31: 23: 19: 2116:(1): 37–40, 2113: 2107: 2094: 2076: 2070: 2064: 2032: 2026: 2020: 1996: 1990: 1958: 1948:, retrieved 1930: 1923: 1913:, retrieved 1885: 1881: 1868: 1834: 1821: 1789: 1783: 1777: 1756:(1): 41–78, 1753: 1747: 1741: 1731:, retrieved 1703: 1697: 1681: 1655: 1649: 1643: 1633:, retrieved 1607: 1596: 1588: 1582:, retrieved 1555: 1545: 1535:, retrieved 1502: 1496: 1486: 1476:, retrieved 1465:10138/333647 1456: 1439: 1407: 1403: 1397: 1365: 1359: 1350: 1340:, retrieved 1320: 1282: 1244:(2): 40–46, 1241: 1235: 1194: 1188: 1169:, retrieved 1160: 1147: 1138: 1116:, retrieved 1091: 1087: 1077: 1053: 1047: 1041: 1015: 1009: 953: 947: 941: 915: 909: 902: 886: 882: 876: 852: 846: 836: 810: 787:, retrieved 777: 756: 735: 729: 703: 697: 676: 667: 649: 640: 608: 602: 593: 555: 537: 473: 455: 439: 433: 420: 392: 376: 327:Mizar system 290: 261:group theory 250: 227: 225: 197: 189: 161: 150: 145:(1958), and 143:Claude Berge 139:George Gamow 130: 129:in his book 124: 97: 68: 59:checkerboard 52: 38: 36: 18: 1706:(1): 3–27, 650:Puzzle-Math 579:pp. 271–274 466:Thai, My T. 253:polyominoes 104:polyominoes 2168:Categories 2086:1706.09389 1950:2022-07-18 1915:2022-07-18 1733:2022-07-19 1635:2022-07-18 1584:2022-07-18 1537:2022-07-19 1478:2022-07-18 1342:2022-07-18 1323:(1): 4–9, 1232:Propp, Jim 1171:2007-04-27 1118:2022-07-19 789:2022-07-18 534:Black, Max 412:References 306:resolution 286:relaxation 240:grid graph 159:" (1957). 122:flooring. 86:, and the 84:creativity 55:chessboard 2057:125950546 1974:× 1266:236397105 483:1103.3309 406:1 × 2 × 4 404:box with 402:6 × 6 × 6 291:In 1964, 127:Max Black 69:It is an 47:Max Black 45:posed by 2102:(1969), 2049:27643123 1944:archived 1906:archived 1861:92989148 1833:(eds.), 1724:archived 1689:(2004), 1629:archived 1625:18849777 1578:archived 1531:archived 1469:archived 1333:archived 1165:archived 1155:(1999), 1112:archived 1002:18225791 994:16188609 978:30039731 934:31446653 869:54334455 783:archived 752:24940785 720:24941903 675:(1958), 582:Archived 536:(1946), 472:(eds.), 442:: 1272, 323:Isabelle 186:Solution 155:column " 137:(1954), 63:dominoes 2138:0234841 2130:2316785 2013:1406233 1902:1828741 1814:2459540 1806:0806206 1770:0587851 1720:2070797 1674:2020358 1527:5727281 1519:1750258 1432:6753523 1424:1969128 1390:1072815 1382:2324578 1329:3323392 1258:4278473 1211:4146865 1108:4396339 1070:3404036 986:2197653 958:Bibcode 633:0067055 625:2307321 518:6603662 510:2720105 398:cuboids 388:Numbrix 238:of the 149:in his 94:History 2136:  2128:  2055:  2047:  2011:  1900:  1859:  1849:  1812:  1804:  1768:  1718:  1672:  1623:  1570:  1525:  1517:  1430:  1422:  1388:  1380:  1327:  1293:  1264:  1256:  1209:  1106:  1068:  1030:  1000:  992:  984:  976:  932:  867:  825:  750:  718:  656:  631:  623:  570:  516:  508:  498:  329:, and 325:, the 120:tatami 2126:JSTOR 2081:arXiv 2053:S2CID 2045:JSTOR 1909:(PDF) 1878:(PDF) 1857:S2CID 1810:S2CID 1727:(PDF) 1694:(PDF) 1621:S2CID 1523:S2CID 1472:(PDF) 1453:(PDF) 1428:S2CID 1378:JSTOR 1336:(PDF) 1317:(PDF) 1287:12–14 1262:S2CID 1207:JSTOR 998:S2CID 974:JSTOR 865:S2CID 748:JSTOR 716:JSTOR 621:JSTOR 514:S2CID 478:arXiv 379:wazir 331:Nqthm 284:to a 41:is a 1847:ISBN 1568:ISBN 1291:ISBN 1028:ISBN 990:PMID 930:PMID 823:ISBN 654:ISBN 568:ISBN 496:ISBN 114:and 57:(or 37:The 2118:doi 2037:doi 2001:doi 1936:doi 1890:doi 1839:doi 1794:doi 1758:doi 1708:doi 1660:doi 1656:310 1613:doi 1560:doi 1507:doi 1461:hdl 1412:doi 1370:doi 1246:doi 1199:doi 1096:doi 1058:doi 1020:doi 966:doi 954:363 920:doi 891:doi 857:doi 815:doi 740:doi 736:196 708:doi 704:196 613:doi 560:doi 488:doi 444:doi 2170:: 2134:MR 2132:, 2124:, 2114:76 2112:, 2106:, 2077:14 2075:, 2051:, 2043:, 2033:81 2031:, 2009:MR 2007:, 1995:, 1942:, 1904:, 1898:MR 1896:, 1884:, 1880:, 1855:, 1845:, 1808:, 1802:MR 1800:, 1790:22 1788:, 1766:MR 1764:, 1754:14 1752:, 1722:, 1716:MR 1714:, 1704:69 1702:, 1696:, 1670:MR 1668:, 1654:, 1627:, 1619:, 1605:, 1587:, 1576:, 1566:, 1529:, 1521:, 1515:MR 1513:, 1503:24 1501:, 1495:, 1467:, 1426:, 1420:MR 1418:, 1408:37 1406:, 1386:MR 1384:, 1376:, 1366:97 1364:, 1331:, 1325:MR 1319:, 1304:^ 1289:, 1273:^ 1260:, 1254:MR 1252:, 1242:43 1240:, 1223:^ 1205:, 1195:35 1193:, 1179:^ 1163:, 1159:, 1126:^ 1110:, 1104:MR 1102:, 1092:64 1090:, 1086:, 1066:MR 1064:, 1054:23 1026:, 996:, 988:, 982:MR 980:, 972:, 964:, 952:, 928:, 916:43 914:, 885:, 863:, 853:22 851:, 821:, 797:^ 764:^ 746:, 734:, 714:, 702:, 685:^ 629:MR 627:, 619:, 609:61 607:, 566:, 546:^ 525:^ 512:, 506:MR 504:, 494:, 486:, 468:; 440:33 438:, 428:; 333:. 288:. 182:. 90:. 82:, 2160:. 2120:: 2083:: 2039:: 2003:: 1997:6 1977:n 1971:n 1938:: 1892:: 1886:9 1841:: 1796:: 1760:: 1710:: 1662:: 1615:: 1562:: 1509:: 1463:: 1414:: 1372:: 1248:: 1218:. 1201:: 1098:: 1060:: 1022:: 968:: 960:: 922:: 893:: 887:7 859:: 817:: 742:: 710:: 615:: 588:. 562:: 490:: 480:: 446::

Index



tiling puzzle
Max Black
chessboard
checkerboard
dominoes
impossible puzzle
domino tiling
automated reasoning
creativity
philosophy of mathematics
domino tiling
polyominoes
statistical mechanics
Ralph H. Fowler
George Stanley Rushbrooke
tatami
Max Black
Solomon W. Golomb
George Gamow
Claude Berge
Martin Gardner
Scientific American
Mathematical Games
automated reasoning
John McCarthy
cognitive science
philosophy of mathematics
mathematical proof

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.