Knowledge

Nanocomposite

Source 📝

625:
matrix at low concentrations (~0.2 weight %) cause significant improvements in the compressive and flexural mechanical properties of polymeric nanocomposites. Potentially, these nanocomposites may be used as a novel, mechanically strong, light weight composite as bone implants. The results suggest that mechanical reinforcement is dependent on the nanostructure morphology, defects, dispersion of nanomaterials in the polymer matrix, and the cross-linking density of the polymer. In general, two-dimensional nanostructures can reinforce the polymer better than one-dimensional nanostructures, and inorganic nanomaterials are better reinforcing agents than carbon based nanomaterials. In addition to mechanical properties, polymer nanocomposites based on carbon nanotubes or graphene have been used to enhance a wide range of properties, giving rise to functional materials for a wide range of high added value applications in fields such as energy conversion and storage, sensing and biomedical tissue engineering. For example, multi-walled carbon nanotubes based polymer nanocomposites have been used for the enhancement of the electrical conductivity.
578:, which is an emerging new material that is being developed to take advantage of the high tensile strength and electrical conductivity of carbon nanotube materials. Critical to the realization of CNT-MMC possessing optimal properties in these areas are the development of synthetic techniques that are (a) economically producible, (b) provide for a homogeneous dispersion of nanotubes in the metallic matrix, and (c) lead to strong interfacial adhesion between the metallic matrix and the carbon nanotubes. In addition to carbon nanotube metal matrix composites, boron nitride reinforced metal matrix composites and carbon nitride metal matrix composites are the new research areas on metal matrix nanocomposites. 665:
as a magnetic, electrical, or mechanical field. Specifically, magnetic nanocomposites are useful for use in these applications due to the nature of magnetic material's ability to respond both to electrical and magnetic stimuli. The penetration depth of a magnetic field is also high, leading to an increased area that the nanocomposite is affected by and therefore an increased response. In order to respond to a magnetic field, a matrix can be easily loaded with nanoparticles or nanorods The different morphologies for magnetic nanocomposite materials are vast, including matrix dispersed nanoparticles, core-shell nanoparticles, colloidal crystals, macroscale spheres, or Janus-type nanostructures.
582:
suggest that tungsten disulfide nanotubes reinforced PPF nanocomposites possess significantly higher mechanical properties and tungsten disulfide nanotubes are better reinforcing agents than carbon nanotubes. Increases in the mechanical properties can be attributed to a uniform dispersion of inorganic nanotubes in the polymer matrix (compared to carbon nanotubes that exist as micron sized aggregates) and increased crosslinking density of the polymer in the presence of tungsten disulfide nanotubes (increase in crosslinking density leads to an increase in the mechanical properties). These results suggest that inorganic
677:
great potential for improving the efficiency of power electronic devices by providing relatively high permeability and low losses. For example, As Iron oxide nano particles embedded in Ni matrix enables us to mitigate those losses at high frequency. The high resistive iron oxide nanoparticles helps to reduce the eddy current losses where as the Ni metal helps in attaining high permeability. DC magnetic properties such as Saturation magnetization lies between each of its constituent parts indicating that the physical properties of the materials can be altered by creating these nanocomposites.
617:). This strategy is particularly effective in yielding high performance composites, when uniform dispersion of the filler is achieved and the properties of the nanoscale filler are substantially different or better than those of the matrix. The uniformity of the dispersion is in all nanocomposites is counteracted by thermodynamically driven phase separation. Clustering of nanoscale fillers produces aggregates that serve as structural defects and result in failure. Layer-by-layer (LbL) assembly when nanometer scale layers of 656:
range of natural and synthetic polymers are used to design polymeric nanocomposites for biomedical applications including starch, cellulose, alginate, chitosan, collagen, gelatin, and fibrin, poly(vinyl alcohol) (PVA), poly(ethylene glycol) (PEG), poly(caprolactone) (PCL), poly(lactic-co-glycolic acid) (PLGA), and poly(glycerol sebacate) (PGS). A range of nanoparticles including ceramic, polymeric, metal oxide and carbon-based nanomaterials are incorporated within polymeric network to obtain desired property combinations.
543: 698: 262: 453:, especially for the most commonly used non-spherical, high aspect ratio fillers (e.g. nanometer-thin platelets, such as clays, or nanometer-diameter cylinders, such as carbon nanotubes). The orientation and arrangement of asymmetric nanoparticles, thermal property mismatch at the interface, interface density per unit volume of nanocomposite, and polydispersity of nanoparticles significantly affect the effective thermal conductivity of nanocomposites. 712: 274: 408:. The reinforcing material can be made up of particles (e.g. minerals), sheets (e.g. exfoliated clay stacks) or fibres (e.g. carbon nanotubes or electrospun fibres). The area of the interface between the matrix and reinforcement phase(s) is typically an order of magnitude greater than for conventional composite materials. The matrix material properties are significantly affected in the vicinity of the reinforcement. Ajayan 343:, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials. Size limits for these effects have been proposed: 47: 477:
character. This is not an easily obeyed constraint because the preparation of the ceramic component generally requires high process temperatures. The safest measure thus is to carefully choose immiscible metal and ceramic phases. A good example of such a combination is represented by the ceramic-metal composite of
672:
Magnetic nanocomposites can also be utilized in the medical field, with magnetic nanorods embedded in a polymer matrix can aid in more precise drug delivery and release. Finally, magnetic nanocomposites can be used in high frequency/high-temperature applications. For example, multi-layer structures
664:
Nanocomposites that can respond to an external stimulus are of increased interest due to the fact that, because of the large amount of interaction between the phase interfaces, the stimulus response can have a larger effect on the composite as a whole. The external stimulus can take many forms, such
676:
In applications such as power micro-inductors where high magnetic permeability is desired at high operating frequencies. The traditional micro-fabricated magnetic core materials see both decrease in permeability and high losses at high operating frequency. In this case, magnetic nano composites have
412:
note that with polymer nanocomposites, properties related to local chemistry, degree of thermoset cure, polymer chain mobility, polymer chain conformation, degree of polymer chain ordering or crystallinity can all vary significantly and continuously from the interface with the reinforcement into the
655:
A range of polymeric nanocomposites are used for biomedical applications such as tissue engineering, drug delivery, cellular therapies. Due to unique interactions between polymer and nanoparticles, a range of property combinations can be engineered to mimic native tissue structure and properties. A
581:
A recent study, comparing the mechanical properties (Young's modulus, compressive yield strength, flexural modulus and flexural yield strength) of single- and multi-walled reinforced polymeric (polypropylene fumarate—PPF) nanocomposites to tungsten disulfide nanotubes reinforced PPF nanocomposites
635:
Nanoscale dispersion of filler or controlled nanostructures in the composite can introduce new physical properties and novel behaviors that are absent in the unfilled matrices. This effectively changes the nature of the original matrix (such composite materials can be better described by the term
476:
of the mixture should be considered in designing ceramic-metal nanocomposites and measures have to be taken to avoid a chemical reaction between both components. The last point mainly is of importance for the metallic component that may easily react with the ceramic and thereby lose its metallic
624:
Nanoparticles such as graphene, carbon nanotubes, molybdenum disulfide and tungsten disulfide are being used as reinforcing agents to fabricate mechanically strong biodegradable polymeric nanocomposites for bone tissue engineering applications. The addition of these nanoparticles in the polymer
668:
Magnetic nanocomposites can be utilized in a vast number of applications, including catalytic, medical, and technical. For example, palladium is a common transition metal used in catalysis reactions. Magnetic nanoparticle-supported palladium complexes can be used in catalysis to increase the
392:
mechanism. From the mid-1950s nanoscale organo-clays have been used to control flow of polymer solutions (e.g. as paint viscosifiers) or the constitution of gels (e.g. as a thickening substance in cosmetics, keeping the preparations in homogeneous form). By the 1970s
685:
In the recent years nanocomposites have been designed to withstand high temperatures by the addition of Carbon Dots (CDs) in the polymer matrix. Such nanocomposites can be utilized in environments wherein high temperature resistance is a prime criterion.
573:
Metal matrix nanocomposites can also be defined as reinforced metal matrix composites. This type of composites can be classified as continuous and non-continuous reinforced materials. One of the more important nanocomposites is
469:. Ideally both components are finely dispersed in each other in order to elicit particular optical, electrical and magnetic properties as well as tribological, corrosion-resistance and other protective properties. 416:
This large amount of reinforcement surface area means that a relatively small amount of nanoscale reinforcement can have an observable effect on the macroscale properties of the composite. For example, adding
507:
technique and is associated with high deposition rates up to some μm/s and the growth of nanoparticles in the gas phase. Nanocomposite layers in the ceramics range of composition were prepared from
1972:
Han, Kyu; Swaminathan, Madhavan; Pulugurtha, Raj; Sharma, Himani; Tummala, Rao; Yang, Songnan; Nair, Vijay (2016). "Magneto-Dielectric Nanocomposite for Antenna Miniaturization and SAR Reduction".
611:
to a polymer matrix can enhance its performance, often dramatically, by simply capitalizing on the nature and properties of the nanoscale filler (these materials are better described by the term
1244:
Janeta, Mateusz; John, Łukasz; Ejfler, Jolanta; Szafert, Sławomir (2014-11-24). "High-Yield Synthesis of Amido-Functionalized Polyoctahedral Oligomeric Silsesquioxanes by Using Acyl Chlorides".
589:
Another kind of nanocomposite is the energetic nanocomposite, generally as a hybrid sol–gel with a silica base, which, when combined with metal oxides and nano-scale aluminum powder, can form
1511:
Zeidi, Mahdi; Kim, Chun IL; Park, Chul B. (2021). "The role of interface on the toughening and failure mechanisms of thermoplastic nanocomposites reinforced with nanofibrillated rubbers".
461:
Ceramic matrix composites (CMCs) consist of ceramic fibers embedded in a ceramic matrix. The matrix and fibers can consist of any ceramic material, including carbon and carbon fibers. The
495:
that are solid layers of a few nm to some tens of μm thickness deposited upon an underlying substrate and that play an important role in the functionalization of technical surfaces.
2070:
Rimal, Vishal; Shishodia, Shubham; Srivastava, P.K. (2020). "Novel synthesis of high-thermal stability carbon dots and nanocomposites from oleic acid as an organic substrate".
621:
and a polymers are added one by one. LbL composites display performance parameters 10-1000 times better that the traditional nanocomposites made by extrusion or batch-mixing.
673:
can be fabricated for use in electronic applications. An electrodeposited Fe/Fe oxide multi-layered sample can be an example of this application of magnetic nanocomposites.
1937:
Markondeya Raj, P.; Sharma, Himani; Sitaraman, Srikrishna; Mishra, Dibyajat; Tummala, Rao (December 2017). "System Scaling With Nanostructured Power and RF Components".
1562:
Gatti, Teresa; Vicentini, Nicola; Mba, Miriam; Menna, Enzo (2016-02-01). "Organic Functionalized Carbon Nanostructures for Functional Polymer-Based Nanocomposites".
1413:
Lalwani, Gaurav; Henslee, Allan M.; Farshid, Behzad; Lin, Liangjun; Kasper, F. Kurtis; Yi-, Yi-Xian; Qin, Xian; Mikos, Antonios G.; Sitharaman, Balaji (2013).
952:
F. E. Kruis, H. Fissan and A. Peled (1998). "Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications – a review".
445:
and resistance to wear and damage. In general, the nano reinforcement is dispersed into the matrix during processing. The percentage by weight (called
380:
and bone. The use of nanoparticle-rich materials long predates the understanding of the physical and chemical nature of these materials. Jose-Yacaman
858:
Functional Polymer Composites with Nanoclays, Editors: Yuri Lvov, Baochun Guo, Rawil F Fakhrullin, Royal Society of Chemistry, Cambridge 2017,
465:
occupying most of the volume is often from the group of oxides, such as nitrides, borides, silicides, whereas the second component is often a
1462:
Lalwani, Gaurav; Henslee, A. M.; Farshid, B; Parmar, P; Lin, L; Qin, Y. X.; Kasper, F. K.; Mikos, A. G.; Sitharaman, B (September 2013).
503:
technique turned out as a rather effective technique for the preparation of nanocomposite layers. The process operates as a vacuum-based
1824:
Behrens, Silke (2011). "Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions".
83: 73: 632:, in which inorganic nanomaterials are grown within polymeric substrates using vapor-phase precursors that diffuse into the matrix. 575: 304: 2015:
Smith, Connor S.; Savliwala, Shehaab; Mills, Sara C.; Andrew, Jennifer S.; Rinaldi, Carlos; Arnold, David P. (1 January 2020).
78: 1654: 894: 847: 788:
Jose-Yacaman, M.; Rendon, L.; Arenas, J.; Serra Puche, M. C. (1996). "Maya Blue Paint: An Ancient Nanostructured Material".
1715:
Carrow, James K.; Gaharwar, Akhilesh K. (November 2014). "Bioinspired Polymeric Nanocomposites for Regenerative Medicine".
1337:
Rafiee, M.A.; et al. (December 3, 2009). "Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content".
1599:"Influence of Surface Modified MWCNTs on the Mechanical, Electrical and Thermal Properties of Polyimide Nanocomposites" 121: 629: 1374:"Preparation and characterization of polyamide 6 nanocomposites using MWCNTs based on bimetallic Co-Mo/MgO catalyst" 2156: 914: 195: 17: 2017:"Electro-infiltrated nickel/iron-oxide and permalloy/iron-oxide nanocomposites for integrated power inductors" 871: 324:(nm) or structures having nano-scale repeat distances between the different phases that make up the material. 1415:"Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering" 404:
due to the exceptionally high surface to volume ratio of the reinforcing phase and/or its exceptionally high
215: 63: 449:) of the nanoparticulates introduced can remain very low (on the order of 0.5% to 5%) due to the low filler 1744:"Developing hybrid carbon nanotube- and graphene-enhanced nanocomposite resins for the space launch system" 496: 155: 88: 2016: 1902:
Varga, L.K. (2007). "Soft magnetic nanocomposites for high-frequency and high-temperature applications".
320:
is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100
297: 979:
S. Zhang; D. Sun; Y. Fu; H. Du (2003). "Recent advances of superhard nanocomposite coatings: a review".
170: 68: 554: 488:, the mixtures of which were found immiscible over large areas in the Gibbs’ triangle of ' Cu-O-Ti. 248: 200: 397:
composites were the topic of textbooks, although the term "nanocomposites" was not in common use.
648:). Some examples of such new properties are fire resistance or flame retardancy, and accelerated 422: 190: 384:
investigated the origin of the depth of colour and the resistance to acids and bio-corrosion of
2151: 290: 1008:
Ternary Alloys. A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams
2126: 938: 602: 527: 500: 450: 442: 205: 1464:"Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering" 1108:"Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering" 1023:"Nanocomposite layers of ceramic oxides and metals prepared by reactive gas-flow sputtering" 2028: 1981: 1911: 1833: 1610: 1303: 926: 797: 523: 504: 426: 243: 165: 126: 106: 917:(2013). "A molecular dynamics study of effective thermal conductivity in nanocomposites". 859: 8: 210: 175: 116: 2032: 1985: 1915: 1837: 1614: 1307: 1187:
Energetic nanocomposites with sol-gel chemistry: synthesis, safety, and characterization
930: 801: 2087: 2052: 1997: 1954: 1884: 1771: 1692: 1667: 1631: 1598: 1544: 1488: 1463: 1439: 1414: 1395: 1132: 1107: 821: 401: 365: 145: 1041: 992: 965: 2130: 2091: 2056: 2044: 1849: 1806: 1775: 1763: 1697: 1650: 1579: 1548: 1536: 1528: 1493: 1444: 1354: 1319: 1269: 1261: 1213:"Environmental anomalies at the World Trade Center: evidence for energetic materials" 1137: 890: 843: 813: 717: 278: 185: 1888: 1399: 1390: 1373: 825: 2122: 2079: 2036: 2001: 1989: 1958: 1946: 1919: 1876: 1841: 1798: 1755: 1724: 1687: 1679: 1626: 1618: 1571: 1520: 1483: 1475: 1434: 1426: 1385: 1346: 1311: 1253: 1224: 1127: 1119: 1068: 1037: 988: 961: 934: 805: 763: 725: 649: 618: 608: 418: 358: 1090: 1867:
Zhu, Yinghuai (2010). "Magnetic Nanocomposites: A New Perspective in Catalysis".
1802: 1479: 1123: 809: 54: 2083: 2040: 1950: 1923: 1759: 1184: 1156: 1103: 1056: 703: 266: 180: 1993: 1666:
Gaharwar, Akhilesh K.; Peppas, Nicholas A.; Khademhosseini, Ali (March 2014).
1622: 1229: 1212: 2145: 2048: 1767: 1743: 1583: 1532: 1265: 1102:
Lalwani, G; Henslee, AM; Farshid, B; Parmar, P; Lin, L; Qin, YX; Kasper, FK;
586:, in general, may be better reinforcing agents compared to carbon nanotubes. 583: 473: 394: 224: 160: 111: 38: 2134: 1880: 1853: 1810: 1728: 1701: 1575: 1540: 1497: 1448: 1358: 1323: 1273: 1257: 1141: 910: 405: 389: 328: 136: 1022: 817: 768: 751: 369: 150: 542: 376:
Nanocomposites are found in nature, for example in the structure of the
1845: 1524: 1072: 434: 321: 1683: 1430: 1350: 697: 261: 1315: 1101: 492: 438: 385: 348: 340: 97: 1057:"Copper matrix nanocomposites based on carbon nanotubes or graphene" 2110: 1936: 951: 787: 730: 519: 238: 884: 711: 273: 1597:
Singh, BP; Singh, Deepankar; Mathur, R. B.; Dhami, T. L. (2008).
491:
The concept of ceramic-matrix nanocomposites was also applied to
462: 377: 332: 1005: 1789:
Behrens, Silke; Appel, Ingo (2016). "Magnetic nanocomposites".
1294:
Manias, Evangelos (2007). "Nanocomposites: Stiffer by design".
515: 485: 430: 1971: 1748:
The International Journal of Advanced Manufacturing Technology
1087:
Carbon nanotube reinforced metal matrix composites - A Review
466: 400:
In mechanical terms, nanocomposites differ from conventional
1665: 1211:
Ryan, Kevin R.; Gourley, James R.; Jones, Steven E. (2008).
2111:"Nanocomposites: Structure, Phase Behavior, and Properties" 1461: 1289: 1287: 1285: 1283: 1020: 508: 478: 46: 2014: 429:. Other kinds of nanoparticulates may result in enhanced 336: 2069: 1412: 1280: 978: 1243: 860:
https://pubs.rsc.org/en/content/ebook/978-1-78262-672-5
628:
An alternative route to synthesis of nanocomposites is
354:<20 nm for making a hard magnetic material soft 2115:
Annual Review of Chemical and Biomolecular Engineering
1561: 1668:"Nanocomposite hydrogels for biomedical applications" 1596: 1089:, International Materials Reviews, vol. 55, (2010), 693: 518:by the hollow cathode technique that showed a high 437:, heat resistance or mechanical properties such as 2108: 1649:" A. B. Morgan, C. A. Wilkie (eds.), Wiley, 2007; 840:Formation and Properties of Clay Polymer Complexes 327:In the broadest sense this definition can include 368:, mechanical strengthening or restricting matrix 2143: 1210: 1006:G. Effenberg, F. Aldinger & P. Rogl (2001). 680: 596: 456: 1091:http://web.eng.fiu.edu/agarwala/PDF/2010/12.pdf 885:P.M. Ajayan; L.S. Schadler; P.V. Braun (2003). 752:"What can be improved by nanometer composites?" 1974:IEEE Antennas and Wireless Propagation Letters 1714: 1159:Making nanostructured pyrotechnics in a Beaker 533: 1372:Hassani, A. J.; et al. (March 1, 2014). 1021:M. Birkholz; U. Albers & T. Jung (2004). 669:efficiency of the palladium in the reaction. 298: 1788: 1510: 776:Concise encyclopedia of composites materials 743: 2021:Journal of Magnetism and Magnetic Materials 1904:Journal of Magnetism and Magnetic Materials 1054: 1010:. Materials Science-International Services. 607:In the simplest case, appropriately adding 1639: 659: 305: 291: 1691: 1630: 1487: 1438: 1389: 1228: 1131: 1085:S. R. Bakshi, D. Lahiri, and A. Argawal, 909: 767: 749: 2127:10.1146/annurev-chembioeng-073009-100856 2109:Kumar, S. K.; Krishnamoorti, R. (2010). 1014: 999: 939:10.1016/j.ijheatmasstransfer.2013.02.023 27:Solid material with nano-scale structure 1823: 1371: 972: 945: 576:Carbon nanotube metal matrix composites 14: 2144: 1741: 1647:Flame Retardant Polymer Nanocomposites 1336: 1293: 1055:Janas, Dawid; Liszka, Barbara (2017). 1901: 1564:European Journal of Organic Chemistry 878: 1717:Macromolecular Chemistry and Physics 887:Nanocomposite science and technology 832: 781: 537: 1866: 874:. Coventive Composites. 2020-09-09. 24: 2102: 1106:; Sitharaman, B (September 2013). 872:"What are Polymer Nanocomposites?" 25: 2168: 756:J. Jpn. Soc. Powder Powder Metall 630:sequential infiltration synthesis 1791:Current Opinion in Biotechnology 1742:Thomas, Daniel J. (2020-09-01). 1672:Biotechnology and Bioengineering 1182: 1154: 710: 696: 541: 272: 260: 45: 2063: 2008: 1965: 1930: 1895: 1860: 1817: 1782: 1735: 1708: 1659: 1590: 1555: 1504: 1455: 1406: 1391:10.3144/expresspolymlett.2014.2 1365: 1330: 1237: 1204: 1176: 1148: 1095: 1079: 1048: 33:Part of a series of articles on 903: 864: 852: 364:<100 nm for achieving 13: 1: 1246:Chemistry: A European Journal 1042:10.1016/S0257-8972(03)00865-X 993:10.1016/S0257-8972(02)00903-9 966:10.1016/S0021-8502(97)10032-5 736: 681:Heat resistant nanocomposites 614:nanofilled polymer composites 597:Polymer-matrix nanocomposites 457:Ceramic-matrix nanocomposites 1803:10.1016/j.copbio.2016.02.005 1480:10.1016/j.actbio.2013.05.018 1124:10.1016/j.actbio.2013.05.018 810:10.1126/science.273.5272.223 778:, Elsevier Science Ltd, 1994 7: 689: 534:Metal-matrix nanocomposites 388:paint, attributing it to a 10: 2173: 2084:10.1007/s13204-019-01178-z 2041:10.1016/j.jmmm.2019.165718 1951:10.1109/JPROC.2017.2748520 1924:10.1016/j.jmmm.2007.03.180 1760:10.1007/s00170-020-06038-7 1603:Nanoscale Research Letters 919:Int. J. Heat Mass Transfer 600: 1994:10.1109/LAWP.2015.2430284 1623:10.1007/s11671-008-9179-4 1230:10.1007/s10669-008-9182-4 524:coefficients of friction 249:Nanocrystalline material 225:Nanostructured materials 1939:Proceedings of the IEEE 1378:Express Polymer Letters 660:Magnetic nanocomposites 528:resistance to corrosion 1881:10.1002/cctc.200900314 1729:10.1002/macp.201400427 1576:10.1002/ejoc.201501411 1258:10.1002/chem.201404153 1189:, LLNL UCRL-JC-146739" 842:", Elsevier, NY 1979; 639:genuine nanocomposites 2157:Solid-state chemistry 750:Kamigaito, O (1991). 603:Polymer nanocomposite 451:percolation threshold 435:dielectric properties 279:Technology portal 74:Mechanical properties 1217:The Environmentalist 769:10.2497/jjspm.38.315 427:thermal conductivity 413:bulk of the matrix. 244:Nanoporous materials 107:Buckminsterfullerene 2072:Applied Nanoscience 2033:2020JMMM..49365718S 1986:2016IAWPL..15...72H 1945:(12): 2330 - 2346. 1916:2007JMMM..316..442V 1838:2011Nanos...3..877B 1615:2008NRL.....3..444S 1519:(47): 20248–20280. 1308:2007NatMa...6....9M 1252:(48): 15966–15974. 1030:Surf. Coat. Technol 981:Surf. Coat. Technol 931:2013IJHMT..61..577T 802:1996Sci...273..223J 520:mechanical hardness 497:Gas flow sputtering 402:composite materials 357:<50 nm for 146:Carbon quantum dots 1846:10.1039/C0NR00634C 1525:10.1039/D1NR07363J 1468:Acta Biomaterialia 1112:Acta Biomaterialia 1073:10.1039/C7QM00316A 1061:Mater. Chem. Front 553:. You can help by 431:optical properties 366:superparamagnetism 347:<5 nm for 267:Science portal 79:Optical properties 1684:10.1002/bit.25160 1655:978-0-471-73426-0 1431:10.1021/bm301995s 1419:Biomacromolecules 1351:10.1021/nn9010472 1345:(12): 3884–3890. 896:978-3-527-30359-5 848:978-0-444-41706-0 718:Technology portal 571: 570: 315: 314: 127:Carbon allotropes 16:(Redirected from 2164: 2138: 2096: 2095: 2067: 2061: 2060: 2012: 2006: 2005: 1969: 1963: 1962: 1934: 1928: 1927: 1899: 1893: 1892: 1864: 1858: 1857: 1821: 1815: 1814: 1786: 1780: 1779: 1754:(7): 2249–2255. 1739: 1733: 1732: 1712: 1706: 1705: 1695: 1663: 1657: 1643: 1637: 1636: 1634: 1594: 1588: 1587: 1570:(6): 1071–1090. 1559: 1553: 1552: 1508: 1502: 1501: 1491: 1474:(9): 8365–8373. 1459: 1453: 1452: 1442: 1410: 1404: 1403: 1393: 1369: 1363: 1362: 1334: 1328: 1327: 1316:10.1038/nmat1812 1296:Nature Materials 1291: 1278: 1277: 1241: 1235: 1234: 1232: 1208: 1202: 1201: 1199: 1198: 1193: 1180: 1174: 1173: 1171: 1170: 1165: 1152: 1146: 1145: 1135: 1099: 1093: 1083: 1077: 1076: 1052: 1046: 1045: 1036:(2–3): 279–285. 1027: 1018: 1012: 1011: 1003: 997: 996: 987:(2–3): 113–119. 976: 970: 969: 960:(5–6): 511–535. 949: 943: 942: 907: 901: 900: 882: 876: 875: 868: 862: 856: 850: 836: 830: 829: 785: 779: 773: 771: 747: 726:Hybrid materials 720: 715: 714: 706: 701: 700: 650:biodegradability 619:nanoparticulates 609:nanoparticulates 566: 563: 545: 538: 419:carbon nanotubes 359:refractive index 307: 300: 293: 277: 276: 265: 264: 216:Titanium dioxide 55:Carbon nanotubes 49: 30: 29: 21: 2172: 2171: 2167: 2166: 2165: 2163: 2162: 2161: 2142: 2141: 2105: 2103:Further reading 2100: 2099: 2068: 2064: 2013: 2009: 1970: 1966: 1935: 1931: 1900: 1896: 1865: 1861: 1822: 1818: 1787: 1783: 1740: 1736: 1713: 1709: 1664: 1660: 1644: 1640: 1609:(11): 444–453. 1595: 1591: 1560: 1556: 1509: 1505: 1460: 1456: 1411: 1407: 1370: 1366: 1335: 1331: 1292: 1281: 1242: 1238: 1209: 1205: 1196: 1194: 1191: 1181: 1177: 1168: 1166: 1163: 1153: 1149: 1100: 1096: 1084: 1080: 1053: 1049: 1025: 1019: 1015: 1004: 1000: 977: 973: 950: 946: 908: 904: 897: 883: 879: 870: 869: 865: 857: 853: 837: 833: 796:(5272): 223–5. 786: 782: 748: 744: 739: 716: 709: 702: 695: 692: 683: 662: 605: 599: 567: 561: 558: 551:needs expansion 536: 512: 482: 459: 311: 271: 259: 156:Aluminium oxide 28: 23: 22: 15: 12: 11: 5: 2170: 2160: 2159: 2154: 2140: 2139: 2104: 2101: 2098: 2097: 2078:(2): 455–464. 2062: 2007: 1964: 1929: 1910:(2): 442–447. 1894: 1875:(4): 365–374. 1859: 1832:(3): 877–892. 1816: 1781: 1734: 1723:(3): 248–264. 1707: 1678:(3): 441–453. 1658: 1638: 1589: 1554: 1503: 1454: 1425:(3): 900–909. 1405: 1384:(3): 177–186. 1364: 1329: 1279: 1236: 1203: 1175: 1147: 1118:(9): 8365–73. 1094: 1078: 1047: 1013: 998: 971: 954:J. Aerosol Sci 944: 902: 895: 877: 863: 851: 838:B.K.G. Theng " 831: 780: 741: 740: 738: 735: 734: 733: 728: 722: 721: 707: 704:Science portal 691: 688: 682: 679: 661: 658: 601:Main article: 598: 595: 569: 568: 548: 546: 535: 532: 510: 501:hollow cathode 480: 458: 455: 374: 373: 362: 355: 352: 313: 312: 310: 309: 302: 295: 287: 284: 283: 282: 281: 269: 254: 253: 252: 251: 246: 241: 236: 228: 227: 221: 220: 219: 218: 213: 208: 203: 198: 193: 188: 183: 178: 173: 168: 163: 158: 153: 148: 140: 139: 132: 131: 130: 129: 124: 119: 114: 109: 101: 100: 94: 93: 92: 91: 86: 81: 76: 71: 66: 58: 57: 51: 50: 42: 41: 35: 34: 26: 18:Nanocomposites 9: 6: 4: 3: 2: 2169: 2158: 2155: 2153: 2152:Nanomaterials 2150: 2149: 2147: 2136: 2132: 2128: 2124: 2120: 2116: 2112: 2107: 2106: 2093: 2089: 2085: 2081: 2077: 2073: 2066: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2022: 2018: 2011: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1968: 1960: 1956: 1952: 1948: 1944: 1940: 1933: 1925: 1921: 1917: 1913: 1909: 1905: 1898: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1820: 1812: 1808: 1804: 1800: 1796: 1792: 1785: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1738: 1730: 1726: 1722: 1718: 1711: 1703: 1699: 1694: 1689: 1685: 1681: 1677: 1673: 1669: 1662: 1656: 1652: 1648: 1642: 1633: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1593: 1585: 1581: 1577: 1573: 1569: 1565: 1558: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1507: 1499: 1495: 1490: 1485: 1481: 1477: 1473: 1469: 1465: 1458: 1450: 1446: 1441: 1436: 1432: 1428: 1424: 1420: 1416: 1409: 1401: 1397: 1392: 1387: 1383: 1379: 1375: 1368: 1360: 1356: 1352: 1348: 1344: 1340: 1333: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1290: 1288: 1286: 1284: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1240: 1231: 1226: 1222: 1218: 1214: 1207: 1190: 1188: 1179: 1162: 1160: 1151: 1143: 1139: 1134: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1098: 1092: 1088: 1082: 1074: 1070: 1066: 1062: 1058: 1051: 1043: 1039: 1035: 1031: 1024: 1017: 1009: 1002: 994: 990: 986: 982: 975: 967: 963: 959: 955: 948: 940: 936: 932: 928: 924: 920: 916: 912: 911:Tian, Zhiting 906: 898: 892: 888: 881: 873: 867: 861: 855: 849: 845: 841: 835: 827: 823: 819: 815: 811: 807: 803: 799: 795: 791: 784: 777: 774:in Kelly, A, 770: 765: 762:(3): 315–21. 761: 757: 753: 746: 742: 732: 729: 727: 724: 723: 719: 713: 708: 705: 699: 694: 687: 678: 674: 670: 666: 657: 653: 651: 647: 646: 641: 640: 633: 631: 626: 622: 620: 616: 615: 610: 604: 594: 592: 591:superthermite 587: 585: 584:nanomaterials 579: 577: 565: 562:November 2008 556: 552: 549:This section 547: 544: 540: 539: 531: 529: 525: 521: 517: 513: 506: 502: 498: 494: 489: 487: 483: 475: 474:phase diagram 470: 468: 464: 454: 452: 448: 447:mass fraction 444: 440: 436: 432: 428: 424: 421:improves the 420: 414: 411: 407: 403: 398: 396: 391: 387: 383: 379: 378:abalone shell 371: 367: 363: 360: 356: 353: 350: 346: 345: 344: 342: 338: 334: 330: 325: 323: 319: 318:Nanocomposite 308: 303: 301: 296: 294: 289: 288: 286: 285: 280: 275: 270: 268: 263: 258: 257: 256: 255: 250: 247: 245: 242: 240: 237: 235: 234:Nanocomposite 232: 231: 230: 229: 226: 223: 222: 217: 214: 212: 209: 207: 204: 202: 199: 197: 196:Iron–platinum 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 147: 144: 143: 142: 141: 138: 137:nanoparticles 134: 133: 128: 125: 123: 122:Health impact 120: 118: 115: 113: 112:C70 fullerene 110: 108: 105: 104: 103: 102: 99: 96: 95: 90: 87: 85: 82: 80: 77: 75: 72: 70: 67: 65: 62: 61: 60: 59: 56: 53: 52: 48: 44: 43: 40: 39:Nanomaterials 37: 36: 32: 31: 19: 2118: 2114: 2075: 2071: 2065: 2024: 2020: 2010: 1977: 1973: 1967: 1942: 1938: 1932: 1907: 1903: 1897: 1872: 1868: 1862: 1829: 1825: 1819: 1794: 1790: 1784: 1751: 1747: 1737: 1720: 1716: 1710: 1675: 1671: 1661: 1646: 1641: 1606: 1602: 1592: 1567: 1563: 1557: 1516: 1512: 1506: 1471: 1467: 1457: 1422: 1418: 1408: 1381: 1377: 1367: 1342: 1338: 1332: 1299: 1295: 1249: 1245: 1239: 1220: 1216: 1206: 1195:. Retrieved 1186: 1178: 1167:. Retrieved 1158: 1150: 1115: 1111: 1097: 1086: 1081: 1064: 1060: 1050: 1033: 1029: 1016: 1007: 1001: 984: 980: 974: 957: 953: 947: 922: 918: 905: 886: 880: 866: 854: 839: 834: 793: 789: 783: 775: 759: 755: 745: 684: 675: 671: 667: 663: 654: 644: 643: 638: 637: 634: 627: 623: 613: 612: 606: 590: 588: 580: 572: 559: 555:adding to it 550: 490: 471: 460: 446: 415: 409: 406:aspect ratio 399: 390:nanoparticle 381: 375: 329:porous media 326: 317: 316: 233: 171:Cobalt oxide 151:Quantum dots 84:Applications 1869:ChemCatChem 1302:(1): 9–11. 925:: 577–582. 913:; Hu, Han; 593:materials. 526:and a high 472:The binary 370:dislocation 2146:Categories 2027:: 165718. 1197:2008-09-28 1183:Gash, AE. 1169:2008-09-28 1155:Gash, AE. 737:References 505:deposition 493:thin films 423:electrical 341:copolymers 322:nanometers 191:Iron oxide 98:Fullerenes 2121:: 37–58. 2092:203986488 2057:202137993 2049:0304-8853 1980:: 72–75. 1826:Nanoscale 1797:: 89–96. 1776:225292702 1768:1433-3015 1584:1099-0690 1549:244288401 1533:2040-3372 1513:Nanoscale 1266:1521-3765 1223:: 56–63. 1104:Mikos, AG 1067:: 22–35. 915:Sun, Ying 889:. Wiley. 439:stiffness 386:Maya blue 349:catalytic 161:Cellulose 117:Chemistry 69:Chemistry 64:Synthesis 2135:22432572 1889:96894484 1854:21165500 1811:26938504 1702:24264728 1541:34851346 1498:23727293 1449:23405887 1400:97169049 1359:19957928 1339:ACS Nano 1324:17199118 1274:25302846 1142:23727293 826:34424830 731:Aquamelt 690:See also 522:, small 443:strength 393:polymer/ 372:movement 351:activity 333:colloids 239:Nanofoam 206:Platinum 89:Timeline 2029:Bibcode 2002:1335792 1982:Bibcode 1959:6587533 1912:Bibcode 1834:Bibcode 1693:3924876 1632:3244951 1611:Bibcode 1489:3732565 1440:3601907 1304:Bibcode 1133:3732565 927:Bibcode 818:8662502 798:Bibcode 790:Science 645:hybrids 499:by the 463:ceramic 361:changes 166:Ceramic 2133:  2090:  2055:  2047:  2000:  1957:  1887:  1852:  1809:  1774:  1766:  1700:  1690:  1653:  1629:  1582:  1547:  1539:  1531:  1496:  1486:  1447:  1437:  1398:  1357:  1322:  1272:  1264:  1140:  1130:  893:  846:  824:  816:  410:et al. 382:et al. 211:Silver 176:Copper 135:Other 2088:S2CID 2053:S2CID 1998:S2CID 1955:S2CID 1885:S2CID 1772:S2CID 1545:S2CID 1396:S2CID 1192:(PDF) 1164:(PDF) 1026:(PDF) 822:S2CID 467:metal 201:Lipid 2131:PMID 2045:ISSN 1850:PMID 1807:PMID 1764:ISSN 1698:PMID 1651:ISBN 1580:ISSN 1568:2016 1537:PMID 1529:ISSN 1494:PMID 1445:PMID 1355:PMID 1320:PMID 1270:PMID 1262:ISSN 1138:PMID 891:ISBN 844:ISBN 814:PMID 514:and 484:and 425:and 395:clay 339:and 337:gels 186:Iron 181:Gold 2123:doi 2080:doi 2037:doi 2025:493 1990:doi 1947:doi 1943:105 1920:doi 1908:316 1877:doi 1842:doi 1799:doi 1756:doi 1752:110 1725:doi 1721:216 1688:PMC 1680:doi 1676:111 1627:PMC 1619:doi 1572:doi 1521:doi 1484:PMC 1476:doi 1435:PMC 1427:doi 1386:doi 1347:doi 1312:doi 1254:doi 1225:doi 1128:PMC 1120:doi 1069:doi 1038:doi 1034:179 989:doi 985:167 962:doi 935:doi 806:doi 794:273 764:doi 642:or 557:. 509:TiO 479:TiO 2148:: 2129:. 2117:. 2113:. 2086:. 2076:10 2074:. 2051:. 2043:. 2035:. 2023:. 2019:. 1996:. 1988:. 1978:15 1976:. 1953:. 1941:. 1918:. 1906:. 1883:. 1871:. 1848:. 1840:. 1828:. 1805:. 1795:39 1793:. 1770:. 1762:. 1750:. 1746:. 1719:. 1696:. 1686:. 1674:. 1670:. 1625:. 1617:. 1605:. 1601:. 1578:. 1566:. 1543:. 1535:. 1527:. 1517:13 1515:. 1492:. 1482:. 1470:. 1466:. 1443:. 1433:. 1423:14 1421:. 1417:. 1394:. 1380:. 1376:. 1353:. 1341:. 1318:. 1310:. 1298:. 1282:^ 1268:. 1260:. 1250:20 1248:. 1221:29 1219:. 1215:. 1136:. 1126:. 1114:. 1110:. 1063:. 1059:. 1032:. 1028:. 983:. 958:29 956:. 933:. 923:61 921:. 820:. 812:. 804:. 792:. 760:38 758:. 754:. 652:. 530:. 516:Cu 486:Cu 441:, 433:, 335:, 331:, 2137:. 2125:: 2119:1 2094:. 2082:: 2059:. 2039:: 2031:: 2004:. 1992:: 1984:: 1961:. 1949:: 1926:. 1922:: 1914:: 1891:. 1879:: 1873:2 1856:. 1844:: 1836:: 1830:3 1813:. 1801:: 1778:. 1758:: 1731:. 1727:: 1704:. 1682:: 1645:" 1635:. 1621:: 1613:: 1607:3 1586:. 1574:: 1551:. 1523:: 1500:. 1478:: 1472:9 1451:. 1429:: 1402:. 1388:: 1382:8 1361:. 1349:: 1343:3 1326:. 1314:: 1306:: 1300:6 1276:. 1256:: 1233:. 1227:: 1200:. 1185:" 1172:. 1161:" 1157:" 1144:. 1122:: 1116:9 1075:. 1071:: 1065:2 1044:. 1040:: 995:. 991:: 968:. 964:: 941:. 937:: 929:: 899:. 828:. 808:: 800:: 772:. 766:: 564:) 560:( 511:2 481:2 306:e 299:t 292:v 20:)

Index

Nanocomposites
Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide
Iron–platinum
Lipid
Platinum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.