Knowledge

Deposition (geology)

Source 📝

156:
location of deposition for finer sediments, whereas a grain's internal angle of friction determines the deposition of larger grains on a shore profile. The secondary principle to the creation of seaward sediment fining is known as the hypothesis of asymmetrical thresholds under waves; this describes the interaction between the oscillatory flow of waves and tides flowing over the wave ripple bedforms in an asymmetric pattern. "The relatively strong onshore stroke of the waveforms an eddy or vortex on the lee side of the ripple, provided the onshore flow persists, this eddy remains trapped in the lee of the ripple. When the flow reverses, the eddy is thrown upwards off the bottom and a small cloud of suspended sediment generated by the eddy is ejected into the water column above the ripple, the sediment cloud is then moved seaward by the offshore stroke of the wave." Where there is symmetry in ripple shape the vortex is neutralised, the eddy and its associated sediment cloud develops on both sides of the ripple. This creates a cloudy water column which travels under the tidal influence as the wave orbital motion is in equilibrium.
466:. The formation of this harbour has occurred due to active erosional processes on an extinct shield volcano, whereby the sea has flooded the caldera, creating an inlet 16 km in length, with an average width of 2 km and a depth of −13 m relative to mean sea level at the 9 km point down the transect of the central axis. The predominant storm wave energy has unlimited fetch for the outer harbour from a southerly direction, with a calmer environment within the inner harbour, though localised harbour breezes create surface currents and chop influencing the marine sedimentation processes. Deposits of loess from subsequent glacial periods have in filled volcanic fissures over millennia, resulting in volcanic basalt and loess as the main sediment types available for deposition in Akaroa Harbour 42: 143:
size may move across the profile to a position where it is in equilibrium with the wave and flows acting on that sediment grain". This sorting mechanism combines the influence of the down-slope gravitational force of the profile and forces due to flow asymmetry; the position where there is zero net transport is known as the null point and was first proposed by Cornaglia in 1889. Figure 1 illustrates this relationship between sediment grain size and the depth of the marine environment.
147: 1407: 470: 386:
needs to be discovered, which is based on the type of fluid through which the sediment particle is flowing, laminar flow, turbulent flow or a hybrid of both. When the fluid becomes more viscous due to smaller grain sizes or larger settling velocities, the prediction is less straightforward and it is
415:
occurs where individual particles create an electrical bond adhering each other together to form flocs. "The face of a clay platelet has a slight negative charge where the edge has a slight positive charge when two platelets come into close proximity with each other the face of one particle and the
490:
Other studies have shown this process of the winnowing of sediment grain size from the effect of hydrodynamic forcing; Wang, Collins and Zhu (1988) qualitatively correlated increasing intensity of fluid forcing with increasing grain size. "This correlation was demonstrated at the low energy clayey
150:
Figure 1. Illustrating the sediment size distribution over a shoreline profile, where finer sediments are transported away from high energy environments and settle out of suspension, or deposit in calmer environments. Coarse sediments are maintained in the upper shoreline profile and are sorted by
536:
structures. This is because sediment grain size analysis throughout a profile allows inference into the erosion or accretion rates possible if shore dynamics are modified. Planners and managers should also be aware that the coastal environment is dynamic and contextual science should be evaluated
524:
or unstable equilibrium, and many fields and laboratory observations have failed to replicate the state of a null point at each grain size throughout the profile. The interaction of variables and processes over time within the environmental context causes issues; "a large number of variables, the
142:
is deposited throughout a shore profile according to its grain size. This is due to the influence of hydraulic energy, resulting in a seaward-fining of sediment particle size, or where fluid forcing equals gravity for each grain size. The concept can also be explained as "sediment of a particular
486:
analysis of subtidal sediments, that sediment textures were related to three main factors: depth, distance from shoreline, and distance along the central axis of the harbour. This resulted in the fining of sediment textures with increasing depth and towards the central axis of the harbour, or if
179:
Large-grain sediments transported by either bedload or suspended load will come to rest when there is insufficient bed shear stress and fluid turbulence to keep the sediment moving; with the suspended load this can be some distance as the particles need to fall through the water column. This is
155:
The first principle underlying the null point theory is due to the gravitational force; finer sediments remain in the water column for longer durations allowing transportation outside the surf zone to deposit under calmer conditions. The gravitational effect or settling velocity determines the
506:
Kirby R. (2002) takes this concept further explaining that the fines are suspended and reworked aerially offshore leaving behind lag deposits of the main bivalve and gastropod shells separated out from the finer substrate beneath, waves and currents then heap these deposits to form
323: 416:
edge of the other are electrostatically attracted." Flocs then have a higher combined mass which leads to quicker deposition through a higher fall velocity, and deposition in a more shoreward direction than they would have as the individual fine grains of clay or silt.
487:
classified into grain class sizes, "the plotted transect for the central axis goes from silty sands in the intertidal zone to sandy silts in the inner nearshore, to silts in the outer reaches of the bays to mud at depths of 6 m or more". See figure 2 for detail.
525:
complexity of the processes, and the difficulty in observation, all place serious obstacles in the way of systematisation, therefore in certain narrow fields the basic physical theory may be sound and reliable but the gaps are large"
511:
ridges throughout the tidal zone, which tend to be forced up the foreshore profile but also along the foreshore. Cheniers can be found at any level on the foreshore and predominantly characterise an erosion-dominated regime.
473:
Figure 2. Map of Akaroa Harbour showing a fining of sediments with increased bathymetry toward the central axis of the harbour. Taken from Hart et al. (2009) and the University of Canterbury under the contract of Environment
186: 503:(U.K.)." This research shows conclusive evidence for the null point theory existing on tidal flats with differing hydrodynamic energy levels and also on flats that are both erosional and accretional. 541:
drift and sediment deposition, the results should not be viewed in isolation and a substantial body of purely qualitative observational data should supplement any planning or management decision.
846: 537:
before the implementation of any shore profile modification. Thus theoretical studies, laboratory experiments, numerical and hydraulic modelling seek to answer questions pertaining to
528:
Geomorphologists, engineers, governments and planners should be aware of the processes and outcomes involved with the null point hypothesis when performing tasks such as
171:
and West Huang Sera, Mainland China, and in numerous other studies; Ippen and Eagleson (1955), Eagleson and Dean (1959, 1961) and Miller and Zeigler (1958, 1964).
1443: 985:
Wang, Y.; Collins, M.B.; Zhu, D. (1988). "A comparative study of open coast tidal flats: The Wash (U.K.), Bohai Bay and West Huang Sera (Mainland China)".
863: 642: 889:"Evidence of a significant wind-driven circulation in Akaroa Harbour. Part 1: Data obtained during the September-November, 1998 field survey" 180:
determined by the grain's downward acting weight force being matched by a combined buoyancy and fluid drag force and can be expressed by:
1392: 98:, creating a resistance to motion; this is known as the null-point hypothesis. Deposition can also refer to the buildup of sediment from 1068: 318:{\displaystyle {\frac {4}{3}}\pi R^{3}\rho _{s}g={\frac {4}{3}}\pi R^{3}\rho g+{\frac {1}{2}}\mathbb {C} _{d}\rho \pi R^{2}w_{s}^{2}\,} 1436: 1674: 94:
This occurs when the forces responsible for sediment transportation are no longer sufficient to overcome the forces of gravity and
2042: 49:
showing shores undergoing erosion (cliffed sections) in yellow, and shores characterized by marine deposition (barriers) in blue.
399:
The cohesion of sediment occurs with the small grain sizes associated with silts and clays, or particles smaller than 4ϕ on the
1016: 857: 814: 17: 1429: 737:
Horn, Diane P (1992). "A review and experimental assessment of equilibrium grain size and the ideal wave-graded profile".
520:
The null point theory has been controversial in its acceptance into mainstream coastal science as the theory operates in
438: 2668: 2199: 1101: 2663: 1061: 2224: 2689: 2365: 2315: 2209: 2643: 1869: 654: 2653: 2605: 2488: 1410: 1054: 80: 2638: 2355: 2320: 2162: 571: – Process by which colloidal particles come out of suspension to precipitate as floc or flake 407:
applies to the settling velocity of the individual grains, although due to seawater being a strong
31: 499:
coast (China) where the bottom material is silty, and the sandy flats of the high energy coast of
2648: 2340: 2105: 1224: 432: 127: 328:
Downward acting weight force = Upward-acting buoyancy force + Upward-acting fluid drag force
2694: 2590: 2448: 1999: 1884: 1154: 592: 802: 2428: 2275: 2237: 1686: 1625: 1336: 1331: 1004: 601: – Process by which particulates move towards the bottom of a liquid and form a sediment 550: 803:"Chapter Five—Sediments, boundary layers and transport: Coastal processes and geomorphology" 2658: 2380: 2204: 1964: 1821: 1565: 949: 900: 746: 688: 621: 8: 2554: 2549: 2350: 2194: 1816: 1669: 1590: 1497: 521: 27:
Geological process in which sediments, soil and rocks are added to a landform or landmass
953: 904: 750: 692: 2580: 2493: 2458: 2310: 1826: 1731: 1635: 1527: 1460: 1387: 1341: 852:(Report). Coastal Research Report 1. University of Canterbury and DTec Consulting Ltd. 712: 609: 533: 357: 35: 2300: 2559: 2398: 2390: 2330: 2290: 2179: 1994: 1756: 1746: 1532: 1382: 1219: 1012: 967: 918: 853: 820: 810: 762: 758: 716: 704: 604: 529: 111: 2473: 2375: 2280: 2029: 1879: 1874: 1851: 1791: 1620: 1492: 1149: 1077: 962: 957: 937: 908: 847:
Upper Akaroa Harbour Seabed Bathymetry and Soft Sediments: A Baseline Mapping Study
754: 696: 586: 103: 913: 888: 2478: 2438: 2433: 2037: 1924: 1919: 1703: 1640: 1610: 1575: 1570: 1537: 1502: 1473: 1377: 1164: 1126: 1111: 1032:
Russell, R.C.H. (1960). "Coast Erosion and Defence: Nine Questions and Answers".
845:
Hart, Deirdre E.; Todd, Derek J.; Nation, Thomas E.; McWilliams, Zara A. (2009).
574: 562: 428: 383: 2539: 2423: 2403: 2285: 2270: 2157: 2142: 2137: 2097: 2077: 1989: 1831: 1811: 1776: 1708: 1693: 1600: 1522: 1482: 1367: 1234: 1184: 1136: 1096: 1091: 700: 615: 424: 404: 99: 88: 65: 1421: 2683: 2620: 2615: 2600: 2585: 2534: 2529: 2295: 2260: 2214: 2174: 2169: 1929: 1801: 1761: 1507: 1487: 1372: 1254: 1214: 1159: 971: 922: 824: 766: 708: 556: 453: 440: 2610: 2360: 2345: 2335: 2184: 2115: 1984: 1949: 1864: 1806: 1681: 1580: 1542: 1517: 1305: 1116: 938:"Loess Deposits of the South Island, New Zealand, and Soils Formed on them" 568: 412: 146: 2519: 2443: 2147: 2110: 2057: 1781: 1766: 1741: 1615: 1321: 1272: 1239: 1229: 1121: 408: 2625: 2305: 2189: 2129: 2087: 1959: 1796: 1664: 1605: 1595: 1512: 1362: 1326: 1267: 1194: 1174: 388: 126:
begins with the deposition of organic material, mainly from plants, in
119: 84: 647:
Cape Naturalist, the Journal of the Cape Cod Museum of Natural History
469: 2595: 2544: 2514: 2483: 2413: 2325: 2082: 1969: 1954: 1894: 1841: 1836: 1736: 1659: 1649: 1547: 1199: 1189: 1144: 492: 403:
scale. If these fine particles remain dispersed in the water column,
168: 57: 41: 679:
Jolliffe, I. P. (1978). "Littoral and offshore sediment transport".
553: – Process of chemical precipitation bonding sedimentary grains 122:) to deposit further calcium carbonate. Similarly, the formation of 2265: 2232: 1909: 1751: 1718: 1295: 1169: 1046: 598: 580: 538: 515: 500: 164: 139: 115: 95: 73: 69: 46: 589: – Rock formed by the deposition and cementation of particles 2575: 2524: 2052: 2047: 2009: 1914: 1786: 1723: 1282: 1244: 1179: 1106: 508: 496: 483: 391:(also known as the frictional force, or drag force) of settling. 77: 2370: 2242: 2067: 2062: 2014: 2004: 1974: 1899: 1654: 1585: 1557: 1456: 1262: 1209: 1204: 160: 1005:"Distinguishing accretion from erosion-dominated muddy coasts" 987:
Proceedings of the International Symposium on the Coastal Zone
2468: 2453: 2408: 2152: 2125: 2072: 1939: 1934: 1904: 1889: 1698: 1468: 1452: 595: – Geologic structures formed during sediment deposition 479: 107: 887:
Heuff, Darlene N.; Spigel, Robert H.; Ross, Alex H. (2005).
809:(2nd ed.). London: Hodder Education. pp. 105–147. 618: – Equation for the velocity of a body in viscous fluid 159:
The Null-point hypothesis has been quantitatively proven in
91:
in the fluid, is deposited, building up layers of sediment.
2498: 2463: 2019: 1979: 1944: 1300: 1009:
Muddy Coasts of the World: Processes, Deposits and Function
123: 61: 478:
Hart et al. (2009) discovered through bathymetric survey,
2418: 1859: 1290: 801:
Masselink, Gerd; Hughes, Michael; Knight, Jasper (2011).
643:"Coastal Erosion on Cape Cod: Some Questions and Answers" 400: 338:
is the ratio of a circle's circumference to its diameter.
844: 382:
In order to calculate the drag coefficient, the grain's
174: 419: 118:, the deposition of which induced chemical processes ( 893:
New Zealand Journal of Marine and Freshwater Research
800: 189: 807:
Introduction to Coastal Processes and Geomorphology
559: – Sedimentary rock strata at differing angles 394: 317: 2681: 516:Applications for coastal planning and management 1451: 1007:. In Healy, T.; Wang, Y.; Healy, J.-A. (eds.). 989:. Beijing: China Ocean Press. pp. 120–134. 886: 577: – Sediment moved by the longshore current 87:surface material, which, at the loss of enough 984: 880: 1437: 1062: 942:New Zealand Journal of Geology and Geophysics 378:is the particle's settling velocity (in m/s). 344:is the radius of the spherical object (in m), 796: 1393:List of rivers that have reversed direction 794: 792: 790: 788: 786: 784: 782: 780: 778: 776: 1444: 1430: 1069: 1055: 929: 674: 672: 961: 912: 495:(China), the moderate environment of the 314: 273: 773: 678: 532:, issuing building consents or building 468: 350:is the mass density of the fluid (kg/m), 145: 133: 40: 30:For broader coverage of this topic, see 2043:International scale of river difficulty 1031: 1025: 998: 996: 935: 669: 138:The null-point hypothesis explains how 14: 2682: 840: 838: 836: 834: 732: 730: 728: 726: 640: 1425: 1050: 1002: 110:is made up partly of the microscopic 1076: 993: 736: 175:Deposition of non-cohesive sediments 978: 862:. ECan Report 09/44. Archived from 831: 723: 583: – Alluvial geological deposit 420:The occurrence of null point theory 151:the wave-generated hydraulic regime 56:is the geological process in which 24: 565: – Material of glacial origin 25: 2706: 1406: 1405: 395:Deposition of cohesive sediments 2200:Flooded grasslands and savannas 1102:Drainage system (geomorphology) 1112:Strahler number (stream order) 963:10.1080/00288306.1964.10428132 681:Progress in Physical Geography 634: 13: 1: 914:10.1080/00288330.2005.9517378 628: 2366:Universal Soil Loss Equation 2316:Hydrological transport model 2210:Storm Water Management Model 1011:. Elsevier. pp. 61–81. 759:10.1016/0025-3227(92)90170-M 369:is the drag coefficient, and 7: 624: – Geological deposits 544: 10: 2711: 1870:Antecedent drainage stream 701:10.1177/030913337800200204 641:Oldale, Robert N. (1999). 387:applicable to incorporate 358:gravitational acceleration 100:organically derived matter 29: 2634: 2606:River valley civilization 2568: 2507: 2489:Riparian-zone restoration 2389: 2251: 2223: 2124: 2096: 2028: 1850: 1717: 1634: 1556: 1467: 1401: 1350: 1314: 1281: 1253: 1135: 1084: 1034:Hydraulics Research Paper 2669:Countries without rivers 2644:Rivers by discharge rate 2356:Runoff model (reservoir) 2321:Infiltration (hydrology) 76:. Wind, ice, water, and 32:Depositional environment 2341:River Continuum Concept 2106:Agricultural wastewater 1225:River channel migration 936:Raeside, J. D. (1964). 653:: 70–76. Archived from 433:Canterbury, New Zealand 2664:River name etymologies 2591:Hydraulic civilization 2449:Floodplain restoration 2225:Point source pollution 2000:Sedimentary structures 1155:Bar (river morphology) 593:Sedimentary structures 475: 319: 163:Harbour, New Zealand, 152: 50: 2276:Discharge (hydrology) 2238:Industrial wastewater 1719:Sedimentary processes 1337:Erosion and tectonics 1332:Degradation (geology) 551:Cementation (geology) 472: 320: 149: 134:Null-point hypothesis 44: 18:Deposition (sediment) 2690:Deposition (geology) 2381:Volumetric flow rate 1965:Riffle-pool sequence 1358:Deposition (geology) 1085:Large-scale features 622:Superficial deposits 187: 114:skeletons of marine 2555:Whitewater kayaking 2550:Whitewater canoeing 2351:Runoff curve number 2195:Flood pulse concept 954:1964NZJGG...7..811R 905:2005NZJMF..39.1097H 751:1992MGeol.108..161H 693:1978PrPG....2..264J 522:dynamic equilibrium 450: /  313: 2581:Aquatic toxicology 2494:Stream restoration 2459:Infiltration basin 2311:Hydrological model 1827:Sediment transport 1650:Estavelle/Inversac 1528:Subterranean river 1388:Sediment transport 1342:River rejuvenation 1315:Regional processes 1003:Kirby, R. (2002). 612:- sediment sorting 476: 454:43.800°S 172.933°E 315: 299: 153: 104:chemical processes 51: 36:Sediment transport 2677: 2676: 2654:Whitewater rivers 2560:Whitewater slalom 2391:River engineering 2291:Groundwater model 2252:River measurement 2180:Flood forecasting 1995:Sedimentary basin 1852:Fluvial landforms 1757:Bed material load 1533:River bifurcation 1419: 1418: 1220:River bifurcation 1018:978-0-08-053707-8 859:978-1-86937-976-6 816:978-1-4441-2241-1 605:Shields parameter 530:beach nourishment 269: 237: 198: 112:calcium carbonate 16:(Redirected from 2702: 2639:Rivers by length 2474:River morphology 2376:Wetted perimeter 2281:Drainage density 1792:Headward erosion 1621:Perennial stream 1493:Blackwater river 1446: 1439: 1432: 1423: 1422: 1409: 1408: 1150:Avulsion (river) 1078:River morphology 1071: 1064: 1057: 1048: 1047: 1042: 1041: 1029: 1023: 1022: 1000: 991: 990: 982: 976: 975: 965: 933: 927: 926: 916: 899:(5): 1097–1109. 884: 878: 877: 875: 874: 868: 851: 842: 829: 828: 798: 771: 770: 734: 721: 720: 676: 667: 666: 664: 662: 638: 587:Sedimentary rock 465: 464: 462: 461: 460: 459:-43.800; 172.933 455: 451: 448: 447: 446: 443: 324: 322: 321: 316: 312: 307: 298: 297: 282: 281: 276: 270: 262: 251: 250: 238: 230: 222: 221: 212: 211: 199: 191: 21: 2710: 2709: 2705: 2704: 2703: 2701: 2700: 2699: 2680: 2679: 2678: 2673: 2649:Drainage basins 2630: 2564: 2503: 2479:Retention basin 2439:Erosion control 2434:Detention basin 2385: 2301:Hjulström curve 2253: 2247: 2219: 2163:Non-water flood 2120: 2092: 2038:Helicoidal flow 2024: 1925:Fluvial terrace 1920:Floating island 1846: 1721: 1713: 1704:Rhythmic spring 1638: 1630: 1611:Stream gradient 1552: 1538:River ecosystem 1503:Channel pattern 1471: 1463: 1450: 1420: 1415: 1397: 1378:Helicoidal flow 1346: 1310: 1277: 1249: 1165:Channel pattern 1137:Alluvial rivers 1131: 1127:River sinuosity 1080: 1075: 1045: 1030: 1026: 1019: 1001: 994: 983: 979: 934: 930: 885: 881: 872: 870: 866: 860: 849: 843: 832: 817: 799: 774: 735: 724: 677: 670: 660: 658: 639: 635: 631: 575:Longshore drift 563:Drift (geology) 547: 534:coastal defence 518: 491:tidal flats of 458: 456: 452: 449: 444: 441: 439: 437: 436: 429:Banks Peninsula 422: 411:bonding agent, 397: 384:Reynolds number 376: 367: 308: 303: 293: 289: 277: 272: 271: 261: 246: 242: 229: 217: 213: 207: 203: 190: 188: 185: 184: 177: 136: 106:. For example, 68:are added to a 39: 28: 23: 22: 15: 12: 11: 5: 2708: 2698: 2697: 2692: 2675: 2674: 2672: 2671: 2666: 2661: 2656: 2651: 2646: 2641: 2635: 2632: 2631: 2629: 2628: 2623: 2618: 2613: 2608: 2603: 2598: 2593: 2588: 2583: 2578: 2572: 2570: 2566: 2565: 2563: 2562: 2557: 2552: 2547: 2542: 2540:Stone skipping 2537: 2532: 2527: 2522: 2517: 2511: 2509: 2505: 2504: 2502: 2501: 2496: 2491: 2486: 2481: 2476: 2471: 2466: 2461: 2456: 2451: 2446: 2441: 2436: 2431: 2426: 2424:Drop structure 2421: 2416: 2411: 2406: 2404:Balancing lake 2401: 2395: 2393: 2387: 2386: 2384: 2383: 2378: 2373: 2368: 2363: 2358: 2353: 2348: 2343: 2338: 2333: 2331:Playfair's law 2328: 2323: 2318: 2313: 2308: 2303: 2298: 2293: 2288: 2286:Exner equation 2283: 2278: 2273: 2271:Bradshaw model 2268: 2263: 2257: 2255: 2249: 2248: 2246: 2245: 2240: 2235: 2229: 2227: 2221: 2220: 2218: 2217: 2212: 2207: 2202: 2197: 2192: 2187: 2182: 2177: 2172: 2167: 2166: 2165: 2160: 2158:Urban flooding 2150: 2145: 2143:Crevasse splay 2140: 2138:100-year flood 2134: 2132: 2122: 2121: 2119: 2118: 2113: 2108: 2102: 2100: 2098:Surface runoff 2094: 2093: 2091: 2090: 2085: 2080: 2078:Stream capture 2075: 2070: 2065: 2060: 2055: 2050: 2045: 2040: 2034: 2032: 2026: 2025: 2023: 2022: 2017: 2012: 2007: 2002: 1997: 1992: 1990:Rock-cut basin 1987: 1982: 1977: 1972: 1967: 1962: 1957: 1952: 1947: 1942: 1937: 1932: 1927: 1922: 1917: 1912: 1907: 1902: 1897: 1892: 1887: 1882: 1877: 1872: 1867: 1862: 1856: 1854: 1848: 1847: 1845: 1844: 1839: 1834: 1832:Suspended load 1829: 1824: 1822:Secondary flow 1819: 1814: 1812:Retrogradation 1809: 1804: 1799: 1794: 1789: 1784: 1779: 1777:Dissolved load 1774: 1769: 1764: 1759: 1754: 1749: 1744: 1739: 1734: 1728: 1726: 1715: 1714: 1712: 1711: 1709:Spring horizon 1706: 1701: 1696: 1694:Mineral spring 1691: 1690: 1689: 1679: 1678: 1677: 1675:list in the US 1672: 1662: 1657: 1652: 1646: 1644: 1632: 1631: 1629: 1628: 1623: 1618: 1613: 1608: 1603: 1601:Stream channel 1598: 1593: 1588: 1583: 1578: 1573: 1568: 1562: 1560: 1554: 1553: 1551: 1550: 1545: 1540: 1535: 1530: 1525: 1523:Drainage basin 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1483:Alluvial river 1479: 1477: 1465: 1464: 1449: 1448: 1441: 1434: 1426: 1417: 1416: 1414: 1413: 1402: 1399: 1398: 1396: 1395: 1390: 1385: 1383:Playfair's law 1380: 1375: 1370: 1368:Exner equation 1365: 1360: 1354: 1352: 1348: 1347: 1345: 1344: 1339: 1334: 1329: 1324: 1318: 1316: 1312: 1311: 1309: 1308: 1306:Current ripple 1303: 1298: 1293: 1287: 1285: 1279: 1278: 1276: 1275: 1270: 1265: 1259: 1257: 1251: 1250: 1248: 1247: 1242: 1237: 1235:Slip-off slope 1232: 1227: 1222: 1217: 1212: 1207: 1202: 1197: 1192: 1187: 1185:Meander cutoff 1182: 1177: 1172: 1167: 1162: 1157: 1152: 1147: 1141: 1139: 1133: 1132: 1130: 1129: 1124: 1119: 1114: 1109: 1104: 1099: 1097:Drainage basin 1094: 1092:Alluvial plain 1088: 1086: 1082: 1081: 1074: 1073: 1066: 1059: 1051: 1044: 1043: 1024: 1017: 992: 977: 948:(4): 811–838. 928: 879: 858: 830: 815: 772: 745:(2): 161–174. 739:Marine Geology 722: 687:(2): 264–308. 668: 632: 630: 627: 626: 625: 619: 613: 607: 602: 596: 590: 584: 578: 572: 566: 560: 554: 546: 543: 517: 514: 427:is located on 425:Akaroa Harbour 421: 418: 396: 393: 380: 379: 374: 370: 365: 361: 351: 345: 339: 326: 325: 311: 306: 302: 296: 292: 288: 285: 280: 275: 268: 265: 260: 257: 254: 249: 245: 241: 236: 233: 228: 225: 220: 216: 210: 206: 202: 197: 194: 176: 173: 135: 132: 89:kinetic energy 26: 9: 6: 4: 3: 2: 2707: 2696: 2695:Sedimentology 2693: 2691: 2688: 2687: 2685: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2636: 2633: 2627: 2624: 2622: 2621:Surface water 2619: 2617: 2616:Sacred waters 2614: 2612: 2609: 2607: 2604: 2602: 2601:Riparian zone 2599: 2597: 2594: 2592: 2589: 2587: 2586:Body of water 2584: 2582: 2579: 2577: 2574: 2573: 2571: 2567: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2535:Riverboarding 2533: 2531: 2530:River surfing 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2512: 2510: 2506: 2500: 2497: 2495: 2492: 2490: 2487: 2485: 2482: 2480: 2477: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2435: 2432: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2396: 2394: 2392: 2388: 2382: 2379: 2377: 2374: 2372: 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2352: 2349: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2319: 2317: 2314: 2312: 2309: 2307: 2304: 2302: 2299: 2297: 2294: 2292: 2289: 2287: 2284: 2282: 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2262: 2259: 2258: 2256: 2254:and modelling 2250: 2244: 2241: 2239: 2236: 2234: 2231: 2230: 2228: 2226: 2222: 2216: 2215:Return period 2213: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2181: 2178: 2176: 2175:Flood control 2173: 2171: 2170:Flood barrier 2168: 2164: 2161: 2159: 2156: 2155: 2154: 2151: 2149: 2146: 2144: 2141: 2139: 2136: 2135: 2133: 2131: 2127: 2123: 2117: 2114: 2112: 2109: 2107: 2104: 2103: 2101: 2099: 2095: 2089: 2086: 2084: 2081: 2079: 2076: 2074: 2071: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2035: 2033: 2031: 2027: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1956: 1953: 1951: 1948: 1946: 1943: 1941: 1938: 1936: 1933: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1857: 1855: 1853: 1849: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1802:Palaeochannel 1800: 1798: 1795: 1793: 1790: 1788: 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1763: 1762:Granular flow 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1743: 1740: 1738: 1735: 1733: 1730: 1729: 1727: 1725: 1720: 1716: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1688: 1685: 1684: 1683: 1680: 1676: 1673: 1671: 1668: 1667: 1666: 1663: 1661: 1658: 1656: 1653: 1651: 1648: 1647: 1645: 1642: 1637: 1633: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1584: 1582: 1579: 1577: 1574: 1572: 1569: 1567: 1564: 1563: 1561: 1559: 1555: 1549: 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1508:Channel types 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1488:Braided river 1486: 1484: 1481: 1480: 1478: 1475: 1470: 1466: 1462: 1458: 1454: 1447: 1442: 1440: 1435: 1433: 1428: 1427: 1424: 1412: 1404: 1403: 1400: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1363:Water erosion 1361: 1359: 1356: 1355: 1353: 1349: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1323: 1320: 1319: 1317: 1313: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1288: 1286: 1284: 1280: 1274: 1271: 1269: 1266: 1264: 1261: 1260: 1258: 1256: 1255:Bedrock river 1252: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1215:Riparian zone 1213: 1211: 1208: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1160:Braided river 1158: 1156: 1153: 1151: 1148: 1146: 1143: 1142: 1140: 1138: 1134: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1093: 1090: 1089: 1087: 1083: 1079: 1072: 1067: 1065: 1060: 1058: 1053: 1052: 1049: 1039: 1035: 1028: 1020: 1014: 1010: 1006: 999: 997: 988: 981: 973: 969: 964: 959: 955: 951: 947: 943: 939: 932: 924: 920: 915: 910: 906: 902: 898: 894: 890: 883: 869:on 2016-02-01 865: 861: 855: 848: 841: 839: 837: 835: 826: 822: 818: 812: 808: 804: 797: 795: 793: 791: 789: 787: 785: 783: 781: 779: 777: 768: 764: 760: 756: 752: 748: 744: 740: 733: 731: 729: 727: 718: 714: 710: 706: 702: 698: 694: 690: 686: 682: 675: 673: 657:on 2016-03-15 656: 652: 648: 644: 637: 633: 623: 620: 617: 614: 611: 608: 606: 603: 600: 597: 594: 591: 588: 585: 582: 579: 576: 573: 570: 567: 564: 561: 558: 557:Cross-bedding 555: 552: 549: 548: 542: 540: 535: 531: 526: 523: 513: 510: 504: 502: 498: 494: 488: 485: 481: 471: 467: 463: 434: 430: 426: 417: 414: 410: 406: 402: 392: 390: 385: 377: 371: 368: 362: 359: 355: 352: 349: 346: 343: 340: 337: 334: 333: 332: 329: 309: 304: 300: 294: 290: 286: 283: 278: 266: 263: 258: 255: 252: 247: 243: 239: 234: 231: 226: 223: 218: 214: 208: 204: 200: 195: 192: 183: 182: 181: 172: 170: 166: 162: 157: 148: 144: 141: 131: 129: 125: 121: 117: 113: 109: 105: 101: 97: 92: 90: 86: 82: 79: 75: 71: 67: 63: 59: 55: 48: 43: 37: 33: 19: 2659:Flash floods 2611:River cruise 2508:River sports 2361:Stream gauge 2346:Rouse number 2336:Relief ratio 2185:Flood-meadow 2116:Urban runoff 2030:Fluvial flow 2015:River valley 1985:River island 1950:Meander scar 1865:Alluvial fan 1807:Progradation 1771: 1682:Karst spring 1626:Winterbourne 1581:Chalk stream 1543:River source 1518:Distributary 1357: 1117:River valley 1037: 1033: 1027: 1008: 986: 980: 945: 941: 931: 896: 892: 882: 871:. Retrieved 864:the original 806: 742: 738: 684: 680: 659:. Retrieved 655:the original 650: 646: 636: 569:Flocculation 527: 519: 505: 489: 477: 423: 413:flocculation 398: 381: 372: 363: 353: 347: 341: 335: 330: 327: 178: 158: 154: 137: 130:conditions. 93: 53: 52: 2520:Fly fishing 2444:Fish ladder 2429:Daylighting 2148:Flash flood 2111:First flush 2058:Plunge pool 1782:Downcutting 1767:Debris flow 1742:Aggradation 1616:Stream pool 1322:Aggradation 1273:Plunge pool 1240:Stream pool 1230:River mouth 1122:River delta 616:Stokes' law 474:Canterbury. 457: / 409:electrolyte 83:previously 2684:Categories 2626:Wild river 2306:Hydrograph 2296:Hack's law 2261:Baer's law 2205:Inundation 2190:Floodplain 2130:stormwater 2088:Whitewater 1960:Oxbow lake 1797:Knickpoint 1772:Deposition 1665:Hot spring 1606:Streamflow 1596:Stream bed 1513:Confluence 1373:Hack's law 1327:Base level 1268:Knickpoint 1195:Oxbow lake 1175:Floodplain 873:2016-05-31 661:15 October 629:References 405:Stokes law 389:Stokes Law 120:diagenesis 54:Deposition 2596:Limnology 2545:Triathlon 2515:Canyoning 2484:Revetment 2414:Check dam 2326:Main stem 2083:Waterfall 1970:Point bar 1955:Mouth bar 1895:Billabong 1842:Water gap 1837:Wash load 1817:Saltation 1737:Anabranch 1660:Holy well 1548:Tributary 1351:Mechanics 1200:Point bar 1190:Mouth bar 1145:Anabranch 972:0028-8306 923:0028-8330 825:795119869 767:0025-3227 717:128679961 709:0309-1333 493:Bohai Bay 287:π 284:ρ 253:ρ 240:π 215:ρ 201:π 169:Bohai Bay 128:anaerobic 85:weathered 81:transport 58:sediments 2399:Aqueduct 2266:Baseflow 2233:Effluent 1910:Cut bank 1875:Avulsion 1752:Bed load 1732:Abrasion 1411:Category 1296:Antidune 1283:Bedforms 1170:Cut bank 599:Settling 581:Overbank 545:See also 539:littoral 501:The Wash 445:172°56′E 167:, U.K., 165:The Wash 140:sediment 116:plankton 96:friction 74:landmass 70:landform 47:Cape Cod 2576:Aquifer 2569:Related 2525:Rafting 2053:Meander 2048:Log jam 2010:Thalweg 1915:Estuary 1787:Erosion 1724:erosion 1636:Springs 1591:Current 1558:Streams 1498:Channel 1461:springs 1457:streams 1245:Thalweg 1180:Meander 1107:Estuary 950:Bibcode 901:Bibcode 747:Bibcode 689:Bibcode 610:Sorting 509:chenier 497:Jiangsu 484:pipette 442:43°48′S 356:is the 331:where: 78:gravity 45:Map of 2371:WAFLEX 2243:Sewage 2126:Floods 2068:Riffle 2063:Rapids 2005:Strath 1975:Ravine 1900:Canyon 1655:Geyser 1586:Coulee 1571:Bourne 1566:Arroyo 1469:Rivers 1453:Rivers 1263:Canyon 1210:Rapids 1205:Riffle 1015:  970:  921:  856:  823:  813:  765:  715:  707:  360:(m/s), 348:ρ 336:π 161:Akaroa 2469:Levee 2454:Flume 2409:Canal 2153:Flood 2073:Shoal 1940:Gully 1935:Gulch 1905:Chine 1890:Bayou 1747:Armor 1699:Ponor 1474:lists 867:(PDF) 850:(PDF) 713:S2CID 480:sieve 108:chalk 66:rocks 2499:Weir 2464:Leat 2128:and 2020:Wadi 1980:Rill 1945:Glen 1930:Gill 1880:Bank 1722:and 1687:list 1670:list 1641:list 1576:Burn 1459:and 1301:Dune 1013:ISBN 968:ISSN 919:ISSN 854:ISBN 821:OCLC 811:ISBN 763:ISSN 705:ISSN 663:2016 482:and 124:coal 64:and 62:soil 34:and 2419:Dam 1885:Bar 1860:Ait 1291:Ait 958:doi 909:doi 755:doi 743:108 697:doi 401:phi 102:or 72:or 2686:: 1455:, 1036:. 995:^ 966:. 956:. 944:. 940:. 917:. 907:. 897:39 895:. 891:. 833:^ 819:. 805:. 775:^ 761:. 753:. 741:. 725:^ 711:. 703:. 695:. 683:. 671:^ 651:25 649:. 645:. 435:, 431:, 60:, 1643:) 1639:( 1476:) 1472:( 1445:e 1438:t 1431:v 1070:e 1063:t 1056:v 1040:. 1038:3 1021:. 974:. 960:: 952:: 946:7 925:. 911:: 903:: 876:. 827:. 769:. 757:: 749:: 719:. 699:: 691:: 685:2 665:. 375:s 373:w 366:d 364:C 354:g 342:R 310:2 305:s 301:w 295:2 291:R 279:d 274:C 267:2 264:1 259:+ 256:g 248:3 244:R 235:3 232:4 227:= 224:g 219:s 209:3 205:R 196:3 193:4 38:. 20:)

Index

Deposition (sediment)
Depositional environment
Sediment transport
Map of Cape Cod showing shores undergoing erosion (cliffed sections) and shores characterized by marine deposition (barriers).
Cape Cod
sediments
soil
rocks
landform
landmass
gravity
transport
weathered
kinetic energy
friction
organically derived matter
chemical processes
chalk
calcium carbonate
plankton
diagenesis
coal
anaerobic
sediment

Akaroa
The Wash
Bohai Bay
gravitational acceleration
Reynolds number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.