Knowledge

Halotolerance

Source đź“ť

779: 165:
Tolerance of high salt conditions can be obtained through several routes. High levels of salt entering the plant can trigger ionic imbalances which cause complications in respiration and photosynthesis, leading to reduced rates of growth, injury and death in severe cases. To be considered tolerant of
240:
from habitats with high concentration of salt are mostly halotolerant (i.e. they do not require salt for growth) and not halophilic. Halophilic fungi are a rare exception. Halotolerant fungi constitute a relatively large and constant part of hypersaline environment communities, such as those in the
187:
to protect such delicate areas. If high salt concentrations are seen within the vacuole, a high concentration gradient will be established between the vacuole and the cytoplasm, leading to high levels of energy investment to maintain this state. Therefore, the accumulation of compatible cytoplasmic
182:
To exist in such conditions, halophytes tend to be subject to the uptake of high levels of salt into their cells, and this is often required to maintain an osmotic potential lower than that of the soil to ensure water uptake. High salt concentrations within the cell can be damaging to sensitive
204:
show the buildup of cyclites and soluble sugars. The buildup of these compounds allow for the balancing of the osmotic effect while preventing the establishment of toxic concentrations of salt or requiring the maintenance of high concentration gradients.
133:
of salt-affected soils. In addition, many environmental stressors involve or induce osmotic changes, so knowledge gained about halotolerance can also be relevant to understanding tolerance to extremes in moisture or temperature.
174:
effects of the increased salt concentrations. Halophytic vascular plants can survive on soils with salt concentrations around 6%, or up to 20% in extreme cases. Tolerance of such conditions is reached through the use of
149:) or by applying treatments developed from an understanding of the mechanisms of halotolerance. In addition, naturally halotolerant plants or microorganisms could be developed into useful 141:
or where only saline water is available. Conventional agricultural species could be made more halotolerant by gene transfer from naturally halotolerant species (by conventional
176: 304: â€“ Crop tolerance to seawater is the ability of an agricultural crop to withstand the high salinity induced by irrigation with seawater. 287: 196:
species, quaternary ammonium bases such as Glycine Betaine and sugars have been shown to act in this role within halophytic members of
808: 565: 683: 798: 641: 480: 425: 364: 183:
organelles such as the chloroplast, so sequestration of salt is seen. Under this action, salt is stored within the
376:
Margesin, R.; Schinner, F. (2001). "Potential of halotolerant and halophilic microorganisms for biotechnology".
74:
are salt-tolerant higher plants. Halotolerant microorganisms are of considerable biotechnological interest.
492: 70:
of life) can grow under saline conditions, but do not require elevated concentrations of salt for growth.
154: 421:"Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization" 301: 137:
Goals of studying halotolerance include increasing the agricultural productivity of lands affected by
130: 803: 676: 778: 548:
Zajc, J.; Zalar, P.; Plemenitaš, A.; Gunde-Cimerman, N. (2012). "The Mycobiota of the Salterns".
319: 256: 336: 247: 213:
The extent of halotolerance varies widely amongst different species of bacteria. A number of
110: 589:
Gunde-Cimerman, N.; Ramos, J.; Plemenitaš, A. (2009). "Halotolerant and halophilic fungi".
142: 55: 8: 669: 146: 763: 633: 449: 420: 401: 647: 637: 606: 571: 561: 530: 525: 508: 476: 454: 393: 360: 324: 262: 218: 217:
are halotolerant; an example location of occurrence for such cyanobacteria is in the
87: 661: 405: 629: 598: 553: 520: 444: 434: 385: 310: 222: 122: 67: 35: 602: 552:. Progress in Molecular and Subcellular Biology. Vol. 53. pp. 133–158. 138: 557: 723: 197: 23: 792: 768: 743: 693: 507:
GostinÄŤar, C.; Grube, M.; De Hoog, S.; Zalar, P.; Gunde-Cimerman, N. (2010).
330: 214: 266:. The latter can grow in media without salt, as well as in almost saturated 651: 610: 575: 534: 458: 397: 271: 91: 83: 439: 389: 753: 728: 295: 252: 150: 118: 114: 623: 758: 748: 708: 624:
Gostinčar, C.; Lenassi, M.; Gunde-Cimerman, N.; Plemenitaš, A. (2011).
201: 189: 167: 126: 95: 62:
are organisms that live in highly saline environments, and require the
47: 188:
osmotic solutes can be seen to prevent this situation from occurring.
737: 718: 109:
An understanding of halotolerance can be applicable to areas such as
71: 59: 713: 226: 193: 103: 63: 31: 27: 628:. Advances in Applied Microbiology. Vol. 77. pp. 71–96. 121:(of fish or algae), bioproduction of desirable compounds (such as 547: 242: 184: 171: 99: 66:
to survive, while halotolerant organisms (belonging to different
82:
Fields of scientific research relevant to halotolerance include
697: 43: 588: 237: 267: 39: 506: 51: 626:
Fungal Adaptation to Extremely High Salt Concentrations
315:
Pages displaying short descriptions of redirect targets
691: 34:. Halotolerant species tend to live in areas such as 306:
Pages displaying wikidata descriptions as a fallback
160: 509:"Extremotolerance in fungi: Evolution on the edge" 790: 375: 339: â€“ Controlling the problem of soil salinity 313: â€“ Controlling the problem of soil salinity 419:Gupta, Bhaskar; Huang, Bingru (3 April 2014). 677: 170:must show methods of balancing the toxic and 378:Extremophiles: Life Under Extreme Conditions 270:solutions. To emphasize this unusually wide 684: 670: 418: 245:. Well studied examples include the yeast 208: 179:and compatible cytoplasm osmotic solutes. 524: 471:Dieter Häussinger and Helmut Sies (2007) 448: 438: 412: 298: â€“ Use of salty water for irrigation 192:such as proline accumulate in halophytic 496:, The Megalithic Portal, ed. A. Burnham 232: 129:) using seawater to support growth, or 791: 665: 13: 634:10.1016/B978-0-12-387044-5.00003-0 327: â€“ Use of sodium by organisms 14: 820: 426:International Journal of Genomics 777: 526:10.1111/j.1574-6941.2009.00794.x 333: â€“ Salt content in the soil 161:Cellular functions in halophytes 77: 809:Microbial growth and nutrition 617: 582: 541: 500: 485: 465: 369: 350: 1: 475:, Academic Press, 579 pages 473:Osmosensing and Osmosignaling 343: 278:as "extremely halotolerant". 603:10.1016/j.mycres.2009.09.002 7: 558:10.1007/978-3-642-23342-5_7 358:Physiological Plant Ecology 281: 16:Adaptation to high salinity 10: 825: 799:Environmental microbiology 302:Crop tolerance to seawater 775: 704: 513:FEMS Microbiology Ecology 491:C. Michael Hogan (2008) 274:, some authors describe 550:Biology of Marine Fungi 320:Salt tolerance of crops 257:Aureobasidium pullulans 209:Bacterial halotolerance 166:saline conditions, the 356:Walter Larcher (2001) 30:to conditions of high 390:10.1007/s007920100184 337:Soil salinity control 291:responses to salinity 248:Debaryomyces hansenii 111:arid-zone agriculture 591:Mycological Research 289:Arabidopsis thaliana 233:Fungal halotolerance 440:10.1155/2014/701596 147:genetic engineering 764:Supraorbital gland 50:, and inland salt 786: 785: 597:(11): 1231–1241. 567:978-3-642-23341-8 325:Sodium in biology 263:Hortaea werneckii 219:Makgadikgadi Pans 123:phycobiliproteins 88:molecular biology 36:hypersaline lakes 816: 781: 686: 679: 672: 663: 662: 656: 655: 621: 615: 614: 586: 580: 579: 545: 539: 538: 528: 504: 498: 489: 483: 469: 463: 462: 452: 442: 416: 410: 409: 373: 367: 354: 316: 311:Salinity control 307: 223:hypersaline lake 824: 823: 819: 818: 817: 815: 814: 813: 804:Geomicrobiology 789: 788: 787: 782: 773: 700: 690: 660: 659: 644: 622: 618: 587: 583: 568: 546: 542: 505: 501: 490: 486: 470: 466: 417: 413: 374: 370: 355: 351: 346: 314: 305: 284: 235: 211: 200:and members of 177:stress proteins 163: 139:soil salination 80: 17: 12: 11: 5: 822: 812: 811: 806: 801: 784: 783: 776: 774: 772: 771: 766: 761: 756: 751: 746: 741: 731: 726: 724:Osmoregulation 721: 716: 711: 705: 702: 701: 689: 688: 681: 674: 666: 658: 657: 642: 616: 581: 566: 540: 499: 484: 464: 411: 368: 348: 347: 345: 342: 341: 340: 334: 328: 322: 317: 308: 299: 293: 283: 280: 243:solar salterns 234: 231: 210: 207: 198:Chenopodiaceae 162: 159: 79: 76: 15: 9: 6: 4: 3: 2: 821: 810: 807: 805: 802: 800: 797: 796: 794: 780: 770: 769:Renal medulla 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 744:Osmoconformer 742: 739: 735: 734:Halotolerance 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 709:Hypertonicity 707: 706: 703: 699: 695: 694:water balance 687: 682: 680: 675: 673: 668: 667: 664: 653: 649: 645: 643:9780123870445 639: 635: 631: 627: 620: 612: 608: 604: 600: 596: 592: 585: 577: 573: 569: 563: 559: 555: 551: 544: 536: 532: 527: 522: 518: 514: 510: 503: 497: 495: 488: 482: 481:0-12-373921-7 478: 474: 468: 460: 456: 451: 446: 441: 436: 432: 428: 427: 422: 415: 407: 403: 399: 395: 391: 387: 383: 379: 372: 366: 365:3-540-43516-6 362: 359: 353: 349: 338: 335: 332: 331:Soil salinity 329: 326: 323: 321: 318: 312: 309: 303: 300: 297: 294: 292: 290: 286: 285: 279: 277: 276:H. werneckii 273: 269: 265: 264: 259: 258: 254: 250: 249: 244: 239: 230: 228: 224: 220: 216: 215:cyanobacteria 206: 203: 199: 195: 191: 186: 180: 178: 173: 169: 158: 156: 152: 148: 144: 140: 135: 132: 128: 124: 120: 116: 112: 107: 105: 101: 97: 93: 89: 85: 75: 73: 69: 65: 61: 57: 53: 49: 45: 41: 40:coastal dunes 37: 33: 29: 25: 21: 20:Halotolerance 733: 719:Hypotonicity 625: 619: 594: 590: 584: 549: 543: 516: 512: 502: 494:Makgadikgadi 493: 487: 472: 467: 430: 424: 414: 384:(2): 73–83. 381: 377: 371: 357: 352: 288: 275: 272:adaptability 261: 255: 253:black yeasts 246: 236: 212: 181: 164: 155:fermentation 151:agricultural 136: 108: 92:cell biology 84:biochemistry 81: 78:Applications 48:salt marshes 19: 18: 754:Stenohaline 729:Homeostasis 714:Isotonicity 519:(1): 2–11. 296:Biosalinity 190:Amino acids 157:organisms. 131:remediation 127:carotenoids 119:aquaculture 115:xeriscaping 793:Categories 759:Salt gland 749:Euryhaline 433:: 701596. 344:References 221:, a large 202:Asteraceae 168:protoplast 96:physiology 72:Halophytes 60:Halophiles 26:of living 24:adaptation 738:Halophile 692:Salt and 153:crops or 42:, saline 28:organisms 652:22050822 611:19747974 576:22222830 535:19878320 459:24804192 406:22371046 398:11354458 282:See also 227:Botswana 194:Brassica 143:breeding 104:genetics 64:salinity 32:salinity 698:animals 450:3996477 185:vacuole 172:osmotic 100:ecology 68:domains 56:springs 44:deserts 22:is the 650:  640:  609:  574:  564:  533:  479:  457:  447:  404:  396:  363:  102:, and 402:S2CID 238:Fungi 648:PMID 638:ISBN 607:PMID 572:PMID 562:ISBN 531:PMID 477:ISBN 455:PMID 431:2014 394:PMID 361:ISBN 268:NaCl 260:and 251:and 54:and 52:seas 696:in 630:doi 599:doi 595:113 554:doi 521:doi 445:PMC 435:doi 386:doi 225:in 145:or 125:or 795:: 646:. 636:. 605:. 593:. 570:. 560:. 529:. 517:71 515:. 511:. 453:. 443:. 429:. 423:. 400:. 392:. 380:. 229:. 117:, 113:, 106:. 98:, 94:, 90:, 86:, 58:. 46:, 38:, 740:) 736:( 685:e 678:t 671:v 654:. 632:: 613:. 601:: 578:. 556:: 537:. 523:: 461:. 437:: 408:. 388:: 382:5

Index

adaptation
organisms
salinity
hypersaline lakes
coastal dunes
deserts
salt marshes
seas
springs
Halophiles
salinity
domains
Halophytes
biochemistry
molecular biology
cell biology
physiology
ecology
genetics
arid-zone agriculture
xeriscaping
aquaculture
phycobiliproteins
carotenoids
remediation
soil salination
breeding
genetic engineering
agricultural
fermentation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑