Knowledge

Hardy–Weinberg principle

Source 📝

3066: 596: 27: 2815: 4556: 1745: 84: 1511: 4173:, using the observed genotype frequencies obtained from the data and the expected genotype frequencies obtained using the HWP. For systems where there are large numbers of alleles, this may result in data with many empty possible genotypes and low genotype counts, because there are often not enough individuals present in the sample to adequately represent all genotype classes. If this is the case, then the 9286: 7252: 4886: 2810:{\displaystyle {\begin{aligned}&\left=\\&\qquad =f_{t}({\text{AA}})f_{t}({\text{AA}})\left+2f_{t}({\text{AA}})f_{t}({\text{Aa}})\left+2f_{t}({\text{AA}})f_{t}({\text{aa}})\left\\&\qquad \qquad +f_{t}({\text{Aa}})f_{t}({\text{Aa}})\left+2f_{t}({\text{Aa}})f_{t}({\text{aa}})\left+f_{t}({\text{aa}})f_{t}({\text{aa}})\left\\&\qquad =\left\\&\qquad =\left\end{aligned}}} 4279: 330:, where each organism produces male and female gametes at equal frequency, and has two alleles at each gene locus. We assume that the population is so large that it can be treated as infinite. Organisms reproduce by random union of gametes (the "gene pool" population model). A locus in this population has two alleles, A and a, that occur with initial frequencies 6182: 5118: 1171: 8273: 6841: 4653: 2926:. The HWP states the population will have the given genotypic frequencies (called Hardy–Weinberg proportions) after a single generation of random mating within the population. When the random mating assumption is violated, the population will not have Hardy–Weinberg proportions. A common cause of non-random mating is 5158:, the problem can be viewed as testing for the proper number of heterozygotes. In this way, the hypothesis of Hardy–Weinberg proportions is rejected if the number of heterozygotes is too large or too small. The conditional probabilities for the heterozygote, given the allele frequencies are given in Emigh (1980) as 8747: 4159: 4551:{\displaystyle {\begin{aligned}p&={2\times \mathrm {obs} ({\text{AA}})+\mathrm {obs} ({\text{Aa}}) \over 2\times (\mathrm {obs} ({\text{AA}})+\mathrm {obs} ({\text{Aa}})+\mathrm {obs} ({\text{aa}}))}\\\\&={2\times 1469+138 \over 2\times (1469+138+5)}\\\\&={3076 \over 3224}\\\\&=0.954\end{aligned}}} 8094:. It can be shown that the other two equilibrium conditions imply the same equation. Together, the solutions of the three equilibrium equations imply sufficiency of Hardy's condition for equilibrium. Since the condition always holds for the second generation, all succeeding generations have the same proportions. 6514:
To the Editor of Science: I am reluctant to intrude in a discussion concerning matters of which I have no expert knowledge, and I should have expected the very simple point which I wish to make to have been familiar to biologists. However, some remarks of Mr. Udny Yule, to which Mr. R. C. Punnett has
2959:
will have a very subtle effect on allele frequencies through the introduction of new allele into a population. Mutation rates are of the order 10 to 10, and the change in allele frequency will be, at most, the same order. Recurrent mutation will maintain alleles in the population, even if there is
5613:
Using this table, one must look up the significance level of the test based on the observed number of heterozygotes. For example, if one observed 20 heterozygotes, the significance level for the test is 0.007. As is typical for Fisher's exact test for small samples, the gradation of significance
6537:
Finally, suppose that the numbers are fairly large, so that mating may be regarded as random, that the sexes are evenly distributed among the three varieties, and that all are equally fertile. A little mathematics of the multiplication-table type is enough to show that in the next generation the
3044:
If a population is brought together with males and females with a different allele frequency in each subpopulation (males or females), the allele frequency of the male population in the next generation will follow that of the female population because each son receives its X chromosome from its
8398: 6001: 4900: 5958:
can be rejected then the population is close to Hardy Weinberg equilibrium with a high probability. The equivalence tests for the biallelic case are developed among others in Wellek (2004). The equivalence tests for the case of multiple alleles are proposed in Ostrovski (2020).
8014: 6729:
being homozygous dominant. Alleles are inherited independently from each parent. A dominant allele can be inherited from a homozygous dominant parent with probability 1, or from a heterozygous parent with probability 0.5. To represent this reasoning in an equation, let
1506:{\displaystyle {\begin{aligned}f_{1}({\text{A}})&=f_{1}({\text{AA}})+{\tfrac {1}{2}}f_{1}({\text{Aa}})=p^{2}+pq=p(p+q)=p=f_{0}({\text{A}})\\f_{1}({\text{a}})&=f_{1}({\text{aa}})+{\tfrac {1}{2}}f_{1}({\text{Aa}})=q^{2}+pq=q(p+q)=q=f_{0}({\text{a}})\end{aligned}}} 7625: 7247:{\displaystyle {\begin{aligned}p_{t}&=P(A_{t},A_{t})=P(A_{t})^{2}\\&=\left(P(A_{t}\mid AA_{t-1})P(AA_{t-1})+P(A_{t}\mid Aa_{t-1})P(Aa_{t-1})\right)^{2}\\&=\left((1)p_{t-1}+(0.5)2q_{t-1}\right)^{2}\\&=\left(p_{t-1}+q_{t-1}\right)^{2}\end{aligned}}} 4881:{\displaystyle {\begin{aligned}\mathrm {Exp} ({\text{AA}})&=p^{2}n=0.954^{2}\times 1612=1467.4\\\mathrm {Exp} ({\text{Aa}})&=2pqn=2\times 0.954\times 0.046\times 1612=141.2\\\mathrm {Exp} ({\text{aa}})&=q^{2}n=0.046^{2}\times 1612=3.4\end{aligned}}} 8122: 5340: 9087: 9305:) to represent the distribution of the three genotype frequencies in relation to each other. It differs from many other such plots in that the direction of one of the axes has been reversed. The curved line in the diagram is the Hardy–Weinberg 8537: 3920: 7257:
The same reasoning, applied to the other genotypes yields the two remaining recurrence relations. Equilibrium occurs when each proportion is constant between subsequent generations. More formally, a population is at equilibrium at generation
9240: 1697:
and constructs a Punnett square for each, so as to calculate its contribution to the next generation's genotypes. These contributions are weighted according to the probability of each diploid-diploid combination, which follows a
577: 461: 8107:
An example computation of the genotype distribution given by Hardy's original equations is instructive. The phenotype distribution from Table 3 above will be used to compute Hardy's initial genotype distribution. Note that the
4638: 989: 8281: 6177:{\displaystyle F={\frac {\operatorname {E} {(f({\text{Aa}}))}-\operatorname {O} (f({\text{Aa}}))}{\operatorname {E} (f({\text{Aa}}))}}=1-{\frac {\operatorname {O} (f({\text{Aa}}))}{\operatorname {E} (f({\text{Aa}}))}},} 8542: 8968:, this is about the frequency of homozygous individuals observed in Northern European populations. We can use the Hardy–Weinberg equations to estimate the carrier frequency, the frequency of heterozygous individuals, 5113:{\displaystyle {\begin{aligned}\chi ^{2}&=\sum {(O-E)^{2} \over E}\\&={(1469-1467.4)^{2} \over 1467.4}+{(138-141.2)^{2} \over 141.2}+{(5-3.4)^{2} \over 3.4}\\&=0.001+0.073+0.756\\&=0.83\end{aligned}}} 5755: 8834: 1107:
These frequencies define the Hardy–Weinberg equilibrium. It should be mentioned that the genotype frequencies after the first generation need not equal the genotype frequencies from the initial generation, e.g.
2963:
Migration genetically links two or more populations together. In general, allele frequencies will become more homogeneous among the populations. Some models for migration inherently include nonrandom mating
9442: 9007: 8286: 310:
allele would automatically tend to increase in frequency (a view possibly based on a misinterpreted question at a lecture). Today, tests for Hardy–Weinberg genotype frequencies are used primarily to test for
7802: 5839: 1089: 855: 5903: 9171: 8127: 3223: 8464: 6244: 2949:
eventually leads to the loss of all alleles except the favored one (unless one allele is dominant, in which case recessive alleles can survive at low frequencies), some forms of selection, such as
8092: 8915: 7807: 7794: 7459: 6846: 4905: 4658: 4572: 4284: 2938:
If a population violates one of the following four assumptions, the population may continue to have Hardy–Weinberg proportions each generation, but the allele frequencies will change over time.
1750: 1176: 7454: 8268:{\displaystyle {\begin{aligned}{\text{sum}}&={\mathrm {obs} ({\text{AA}})+2\times \mathrm {obs} ({\text{Aa}})+\mathrm {obs} ({\text{aa}})}={1469+2\times 138+5}\\&=1750\end{aligned}}} 7448:
By solving these equations necessary and sufficient conditions for equilibrium to occur can be determined. Again, consider the frequency of homozygous dominant animals. Equilibrium implies
6522:
Suppose that Aa is a pair of Mendelian characters, A being dominant, and that in any given generation the number of pure dominants (AA), heterozygotes (Aa), and pure recessives (aa) are as
9158: 8962: 6390: 6296: 5164: 2851:
organisms, either the allele or genotype proportions are initially unequal in either sex, it can be shown that constant proportions are obtained after one generation of random mating. If
3473: 3315: 9272: 9119: 7443: 7389: 7335: 8526: 3912: 3390: 6442: 9002: 7751: 7710: 7669: 5427: 6833: 6795: 5929: 9845:
Wellek, Stefan (September 2004). "Tests for establishing compatibility of an observed genotype distribution with Hardy–Weinberg equilibrium in the case of a biallelic locus".
6757: 8742:{\displaystyle {\begin{aligned}q&={0.15771 \over 2}=0.07886\\\\p_{1}&=(p+q)^{2}=0.84325\\2q_{1}&=2(p+q)(q+r)=0.15007\\r_{1}&=(q+r)^{2}=0.00668.\end{aligned}}} 8994: 5655: 4154:{\displaystyle (p_{1}+\cdots +p_{n})^{c}=\sum _{k_{1},\ldots ,k_{n}\ \in \mathbb {N} :k_{1}+\cdots +k_{n}=c}{c \choose k_{1},\ldots ,k_{n}}p_{1}^{k_{1}}\cdots p_{n}^{k_{n}}} 7278: 6727: 3724: 3578: 3532: 6602:
The interesting question is: in what circumstances will this distribution be the same as that in the generation before? It is easy to see that the condition for this is
1153:. This follows since the genotype frequencies of the next generation depend only on the allele frequencies of the current generation which, as calculated by equations ( 138:
and genotype frequencies in a population will remain constant from generation to generation in the absence of other evolutionary influences. These influences include
3763: 3678: 10405:
Pearson, K. (1903). "Mathematical contributions to the theory of evolution. XI. On the influence of natural selection on the variability and correlation of organs".
1523:
that reproduce by random mating of individuals, it is necessary to calculate the genotype frequencies from the nine possible matings between each parental genotype (
5956: 3796: 3639: 1692: 9166: 8920:
which are the expected values. The reader may demonstrate that subsequent use of the second-generation values for a third generation will yield identical results.
2919:
Violations of the Hardy–Weinberg assumptions can cause deviations from expectation. How this affects the population depends on the assumptions that are violated.
6455:
were rediscovered in 1900. However, it remained somewhat controversial for several years as it was not then known how it could cause continuous characteristics.
6326: 770:
Summing the elements of the Punnett square or the binomial expansion, we obtain the expected genotype proportions among the offspring after a single generation:
5985: 5775: 5675: 3849: 3829: 5633:
The equivalence tests are developed in order to establish sufficiently good agreement of the observed genotype frequencies and Hardy Weinberg equilibrium. Let
1535:) in either sex, weighted by the expected genotype contributions of each such mating. Equivalently, one considers the six unique diploid-diploid combinations: 3803:
Whether the organism is a 'true' tetraploid or an amphidiploid will determine how long it will take for the population to reach Hardy–Weinberg equilibrium.
484: 368: 10700: 4567: 6675:
in 1903 also derived the ratios for the special case of equal allele frequencies, and it is sometimes (but rarely) called the Hardy–Weinberg–Castle Law.
8393:{\displaystyle {\begin{aligned}p&={1469 \over 1750}=0.83943\\2q&={2\times 138 \over 1750}=0.15771\\r&={5 \over 1750}=0.00286\end{aligned}}} 878: 10407: 9640:
Hosking, Louise; Lumsden, Sheena; Lewis, Karen; Yeo, Astrid; McCarthy, Linda; Bansal, Aruna; Riley, John; Purvis, Ian; Xu, Chun-Fang (May 2004).
5657:
denote the family of the genotype distributions under the assumption of Hardy Weinberg equilibrium. The distance between a genotype distribution
360:
of the same generation according to the expected contribution from the homozygote and heterozygote genotypes, which are 1 and 1/2, respectively:
3487:
systems, that is, for organisms that have more than two copies of each chromosome. Consider again only two alleles. The diploid case is the
10657: 5680: 8758: 6331:
The inbreeding coefficient is unstable as the expected value approaches zero, and thus not useful for rare and very common alleles. For:
9365: 8009:{\displaystyle {\begin{aligned}0&=p_{t-1}(p_{t-1}+2q_{t-1}+q_{t-1}^{2}/p_{t-1}-1)\\&=q_{t-1}^{2}/p_{t-1}-r_{t-1}\end{aligned}}} 3069:
Punnett square for three-allele case (left) and four-allele case (right). White areas are homozygotes. Colored areas are heterozygotes.
6509:
in some contempt; his view of biologists' use of mathematics comes across in his 1908 paper where he describes this as "very simple":
632:, where the proportion of each genotype is equal to the product of the row and column allele frequencies from the current generation. 9297:
It is possible to represent the distribution of genotype frequencies for a bi-allelic locus within a population graphically using a
6302:
For two alleles, the chi-squared goodness of fit test for Hardy–Weinberg proportions is equivalent to the test for inbreeding, 
5780: 1012: 778: 5844: 9447: 3107: 10950: 10808: 2833:, and so, are constant in time. Similarly, the genotype frequencies depend only on the allele frequencies, and so, after time 8409: 10705: 6194: 10630: 8022: 8845: 7756: 7620:{\displaystyle {\begin{aligned}0&=p_{t}-p_{t-1}\\&=p_{t-1}^{2}+2p_{t-1}q_{t-1}+q_{t-1}^{2}-p_{t-1}\end{aligned}}} 2998:, mammalian males; avian females) have only one copy of the gene (and are termed hemizygous), while the homogametic sex ( 2885:
sex of the previous generation, until an equilibrium is reached at the weighted average of the two initial frequencies.
4218: 10650: 10175: 6700: 5335:{\displaystyle \operatorname {prob} ={\frac {\binom {n}{n_{11},n_{12},n_{22}}}{\binom {2n}{n_{1},n_{2}}}}2^{n_{12}},} 70: 48: 41: 5150:
can be applied to testing for Hardy–Weinberg proportions. Since the test is conditional on the allele frequencies,
10621: 9128: 8938: 6334: 6256: 10745: 5124: 3405: 3260: 356:, respectively. The allele frequencies at each generation are obtained by pooling together the alleles from each 9317:
and its effect on allele frequency on such graphs. The de Finetti diagram was developed and used extensively by
9248: 9095: 7394: 7340: 7286: 5443: = 0.34. The possible observed heterozygotes and their exact significance level is given in Table 4. 10750: 8475: 6459:(1902) argued against Mendelism because he thought that dominant alleles would increase in the population. The 3858: 3330: 9082:{\displaystyle {\begin{aligned}&q^{2}={\frac {1}{2500}}\\&q={\frac {1}{50}}\\&p=1-q\end{aligned}}} 10981: 10103:
Castle, W. E. (1903). "The laws of Galton and Mendel and some laws governing race improvement by selection".
4891: 4170: 6395: 5994:), is one minus the observed frequency of heterozygotes over that expected from Hardy–Weinberg equilibrium. 5127:(degrees of freedom for test for Hardy–Weinberg proportions are # genotypes − # alleles). The 5% 10971: 10643: 3030: 2982:
In real world genotype data, deviations from Hardy–Weinberg Equilibrium may be a sign of genotyping error.
9277:
This can be simplified to the carrier frequency being about twice the square root of the birth frequency.
7715: 7674: 7633: 5617:
However, a table like this has to be created for every experiment, since the tables are dependent on both
5376: 10976: 10725: 9487: 6800: 6762: 3851:-ploids, the genotype frequencies in the Hardy–Weinberg equilibrium are given by individual terms in the 9354: 8929: 5908: 6733: 10986: 10846: 10720: 10117: 9482: 312: 8971: 5636: 10898: 9359: 4193:
methods of testing for deviations from HWP have been proposed (Guo & Thompson, 1992; Wigginton
4190: 4178: 1699: 306:, who first demonstrated it mathematically. Hardy's paper was focused on debunking the view that a 35: 7261: 6710: 2974:
can cause a random change in allele frequencies. This is due to a sampling effect, and is called
10710: 10015: 6704: 6664: 3689: 3543: 3497: 10695: 6660: 5147: 4226: 4182: 3065: 210: 52: 10275: 9746:"Quantification of the Power of Hardy–Weinberg Equilibrium Testing to Detect Genotyping Error" 9613: 8019:
where the final equality holds because the allele proportions must sum to one. In both cases,
3033:
is an X-linked recessive trait. In western European males, the trait affects about 1 in 12, (
595: 10937: 10831: 10826: 10730: 10599: 10226: 9477: 9467: 9235:{\displaystyle {\begin{aligned}2pq=2\cdot {\frac {1}{50}}\\2pq={\frac {1}{25}}\end{aligned}}} 3735: 3650: 2978:. Sampling effects are most important when the allele is present in a small number of copies. 2971: 2968:, for example). For those models, the Hardy–Weinberg proportions will normally not be valid. 2946: 194: 10229:(June 1992). "Performing the exact test of Hardy–Weinberg proportion for multiple alleles". 6667:
pointed out that it had first been formulated independently in 1908 by the German physician
287:. In the absence of selection, mutation, genetic drift, or other forces, allele frequencies 10783: 10447: 10416: 10290: 6699:. These recurrence relations follow from fundamental concepts in probability, specifically 6487: 5934: 3774: 3617: 1541: 307: 103: 10336:
Ineichen, Robert; Batschelet, Eduard (1975). "Genetic selection and de Finetti diagrams".
8928:
The Hardy–Weinberg principle can also be used to estimate the frequency of carriers of an
2863:, it can be shown that if the allele frequencies are initially unequal in the two sexes , 8: 10927: 10803: 10690: 10666: 9452: 6684: 6506: 6467: 6305: 3852: 2950: 188: 111: 10451: 10420: 10294: 6650:
may be, the distribution will in any case continue unchanged after the second generation
10917: 10913: 10773: 10594: 10565: 10548: 10530: 10497: 10463: 10393: 10353: 10319: 10254: 10198: 10150: 10062: 10050: 9992: 9967: 9870: 9819: 9781: 9726: 9589: 9556: 9298: 9290: 6452: 5970: 5760: 5660: 5128: 4210: 3834: 3814: 152: 10037:
Cannings, C.; Edwards, A.W.F. (1968). "Natural selection and the de Finetti diagram".
9689:
Pompanon, François; Bonin, Aurélie; Bellemain, Eva; Taberlet, Pierre (November 2005).
572:{\displaystyle f_{t}({\text{a}})=f_{t}({\text{aa}})+{\tfrac {1}{2}}f_{t}({\text{Aa}})} 456:{\displaystyle f_{t}({\text{A}})=f_{t}({\text{AA}})+{\tfrac {1}{2}}f_{t}({\text{Aa}})} 10908: 10903: 10841: 10768: 10760: 10735: 10589: 10535: 10517: 10471: 10438: 10385: 10357: 10324: 10306: 10262: 10246: 10206: 10171: 10155: 10137: 10054: 9997: 9862: 9858: 9827: 9773: 9765: 9718: 9710: 9671: 9663: 9630:
Hartl DL, Clarke AG (2007) Principles of population genetics. Sunderland, MA: Sinauer
9594: 9576: 9497: 9492: 9457: 9314: 6672: 6463: 2942: 158: 10397: 9874: 9785: 9730: 4633:{\displaystyle {\begin{aligned}q&=1-p\\&=1-0.954\\&=0.046\end{aligned}}} 10867: 10778: 10560: 10525: 10509: 10455: 10424: 10377: 10345: 10314: 10298: 10238: 10190: 10145: 10129: 10066: 10046: 9987: 9979: 9904: 9854: 9811: 9757: 9702: 9653: 9584: 9568: 9318: 6668: 6502: 6483: 5366:
are the observed numbers of the three genotypes, AA, Aa, and aa, respectively, and
3488: 3078: 303: 164: 135: 92: 3037: = 0.083) whereas it affects about 1 in 200 females (0.005, compared to 10685: 10625: 10133: 9983: 8965: 5132: 4222: 10459: 10368:(2012). "Rethinking Hardy–Weinberg and genetic drift in undergraduate biology". 9745: 9525:
usually refers to a number or count, but in this context, it is synonymous with
984:{\displaystyle f_{1}({\text{Aa}})=pq+qp=2pq=2f_{0}({\text{A}})f_{0}({\text{a}})} 10932: 10922: 10836: 10715: 10604: 9572: 9462: 9349: 9344: 9339: 6491: 4644: 2965: 2945:, in general, causes allele frequencies to change, often quite rapidly. While 629: 628:
The different ways to form genotypes for the next generation can be shown in a
200: 10302: 9802:
Emigh, Ted H. (1980). "A Comparison of Tests for Hardy–Weinberg Equilibrium".
9313:
are in Hardy–Weinberg equilibrium. It is possible to represent the effects of
5131:
for 1 degree of freedom is 3.84, and since the χ value is less than this, the
10965: 10872: 10862: 10818: 10521: 10310: 10250: 10141: 9963: 9769: 9714: 9667: 9580: 9472: 6707:. For example, consider the probability of an offspring from the generation 6494: 6460: 3053:
The simple derivation above can be generalized for more than two alleles and
2975: 2923: 2871: 2856: 182: 140: 10181:
Emigh, T.H. (1980). "A comparison of tests for Hardy–Weinberg equilibrium".
9658: 9641: 5435:
Using one of the examples from Emigh (1980), we can consider the case where
2893:
The seven assumptions underlying Hardy–Weinberg equilibrium are as follows:
10888: 10740: 10539: 10475: 10428: 10389: 10381: 10365: 10328: 10210: 10159: 10001: 9893:"New equivalence tests for Hardy–Weinberg equilibrium and multiple alleles" 9866: 9831: 9777: 9722: 9675: 9598: 9502: 9334: 9302: 6759:
represent inheritance of a dominant allele from a parent. Furthermore, let
6471: 5988: 2860: 1739:
genotype: . Overall, the resulting genotype frequencies are calculated as:
284: 10619:
Online Hardy–Weinberg equilibrium tests and drawing of de Finetti diagrams
10581: 10266: 10058: 9690: 9274:, which is about the frequency observed in Northern European populations. 249:, respectively, the expected genotype frequencies under random mating are 9909: 9892: 2991: 2882: 299: 146: 10614:
Online de Finetti Diagram Generator and Hardy–Weinberg equilibrium tests
10618: 10467: 10349: 10258: 10202: 9915: 9879: 9823: 4206: 4174: 3054: 3006:
females) have two copies. The genotype frequencies at equilibrium are
2927: 2844: 324: 260: 206: 10635: 10483:
Weinberg, W. (1908). "Über den Nachweis der Vererbung beim Menschen".
9761: 9642:"Detection of genotyping errors by Hardy–Weinberg equilibrium testing" 10893: 9285: 6456: 6188:
where the expected value from Hardy–Weinberg equilibrium is given by
5750:{\displaystyle d(p,{\mathcal {M}})=\min _{q\in {\mathcal {M}}}d(p,q)} 4214: 3484: 2852: 2848: 1517: 176: 10549:"Mendel's laws and their probable relation to intra-racial heredity" 10485:
Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg
10242: 10194: 9815: 9706: 9301:. This uses a triangular plot (also known as trilinear, triaxial or 8829:{\displaystyle p_{1}+2q_{1}+r_{1}=0.84325+0.15007+0.00668=1.00000\,} 6835:
represent potential parental genotypes in the preceding generation.
10513: 10495: 9306: 4186: 3396: 3321: 2956: 2931: 1520: 357: 327: 170: 10613: 2915:
there is no migration, gene flow, admixture, mutation or selection
9437:{\displaystyle (\theta ^{2},2\theta (1-\theta ),(1-\theta )^{2})} 6515:
called my attention, suggest that it may still be worth making...
6498: 4225:
is that the population is in Hardy–Weinberg proportions, and the
3089:), and thus the three-allele case is the trinomial expansion of ( 83: 4181:, will no longer hold, and it may be necessary to use a form of 620:). Then area of rectangle represents genotype frequencies (thus 9362:(Hardy–Weinberg is a trinomial distribution with probabilities 9310: 3588: 3537:
and therefore the polyploid case is the binomial expansion of:
3045:
mother. The population converges on equilibrium very quickly.
3041: = 0.007), very close to Hardy–Weinberg proportions. 218: 88: 9688: 5834:{\displaystyle H_{0}=\{d(p,{\mathcal {M}})\geq \varepsilon \}} 1084:{\displaystyle f_{1}({\text{aa}})=q^{2}=f_{0}({\text{a}})^{2}} 850:{\displaystyle f_{1}({\text{AA}})=p^{2}=f_{0}({\text{A}})^{2}} 5898:{\displaystyle H_{1}=\{d(p,{\mathcal {M}})<\varepsilon \}} 4229:
is that the population is not in Hardy–Weinberg proportions.
3003: 2888: 295:
are constant between generations, so equilibrium is reached.
6486:, unable to counter Yule's point, introduced the problem to 4169:
Testing deviation from the HWP is generally performed using
2820:
As before, one can show that the allele frequencies at time
10036: 8116:
values used by Hardy are not the same as those used above.
5777:
is some distance. The equivalence test problem is given by
3218:{\displaystyle (p+q+r)^{2}=p^{2}+q^{2}+r^{2}+2pq+2pr+2qr\,} 3060: 10335: 5142: 4200: 1709:. For example, the probability of the mating combination 10105:
Proceedings of the American Academy of Arts and Sciences
8459:{\displaystyle p+2q+r=0.83943+0.15771+0.00286=1.00000\,} 5135:
that the population is in Hardy–Weinberg frequencies is
3483:
The Hardy–Weinberg principle may also be generalized to
10170:
Cambridge University Press, Cambridge (2nd ed., 2000).
9691:"Genotyping errors: causes, consequences and solutions" 3599:
Table 2: Expected genotype frequencies for tetraploidy
1129:
times will equal the Hardy–Weinberg frequencies, e.g.
9639: 9252: 9132: 9099: 8975: 8942: 8102: 8026: 7780: 7760: 7719: 7678: 7637: 7398: 7344: 7290: 7265: 6804: 6766: 6737: 6714: 6239:{\displaystyle \operatorname {E} (f({\text{Aa}}))=2pq} 4233:
Table 3: Example Hardy–Weinberg principle calculation
2627: 2556: 2489: 2410: 2277: 2262: 2186: 2171: 2156: 2001: 1986: 1394: 1232: 537: 421: 106:. Each line shows one of the three possible genotypes. 10498:"A Note on Exact Tests of Hardy–Weinberg Equilibrium" 9368: 9251: 9169: 9131: 9098: 9005: 8974: 8941: 8848: 8761: 8540: 8478: 8412: 8284: 8125: 8087:{\displaystyle \textstyle q_{t-1}^{2}=p_{t-1}r_{t-1}} 8025: 7805: 7759: 7718: 7677: 7636: 7457: 7397: 7343: 7289: 7264: 6844: 6803: 6765: 6736: 6713: 6474:(1903) found one equilibrium position with values of 6398: 6337: 6308: 6259: 6197: 6004: 5973: 5937: 5911: 5847: 5783: 5763: 5683: 5663: 5639: 5379: 5167: 4903: 4656: 4570: 4282: 3923: 3861: 3837: 3817: 3777: 3738: 3692: 3653: 3620: 3546: 3500: 3408: 3333: 3263: 3110: 1748: 1544: 1174: 1015: 881: 781: 622:
AA : Aa : aa = 0.36 : 0.48 : 0.16
487: 371: 10496:
Wigginton, Je; Cutler, Dj; Abecasis, Gr (May 2005).
8910:{\displaystyle E_{1}=q_{1}^{2}-p_{1}r_{1}=0.00000\,} 9557:"G. H. Hardy (1908) and Hardy–Weinberg Equilibrium" 9293:
representing a distribution of genotype frequencies
8932:in a population based on the frequency of suffers. 7789:{\displaystyle \textstyle p_{t-1}\neq \textstyle 0} 4164: 9436: 9266: 9234: 9152: 9113: 9081: 8988: 8956: 8923: 8909: 8828: 8741: 8520: 8458: 8392: 8267: 8086: 8008: 7788: 7745: 7704: 7663: 7619: 7437: 7383: 7329: 7272: 7246: 6827: 6789: 6751: 6721: 6678: 6436: 6384: 6320: 6290: 6238: 6176: 5979: 5950: 5923: 5897: 5833: 5769: 5749: 5669: 5649: 5421: 5334: 5112: 4880: 4632: 4550: 4153: 3906: 3843: 3823: 3790: 3757: 3718: 3672: 3633: 3572: 3526: 3467: 3384: 3309: 3217: 2809: 1686: 1505: 1083: 983: 849: 571: 455: 10600:HARDY C implementation of Guo & Thompson 1992 10408:Philosophical Transactions of the Royal Society A 4273:From this, allele frequencies can be calculated: 4098: 4057: 10963: 8531:For the next generation, Hardy's equations give 6470:, the genotype frequencies would remain stable. 5710: 3478: 217:In the simplest case of a single locus with two 10224: 729:, as the genotype frequencies must sum to one. 2953:, lead to equilibrium without loss of alleles. 1165:), are preserved from the initial generation: 10651: 10364: 10276:"Mendelian Proportions in a Mixed Population" 9245:We therefore estimate the carrier rate to be 8752:Again as checks on the distribution, compute 6405: 6344: 5677:and Hardy Weinberg equilibrium is defined by 5305: 5265: 5258: 5210: 4217:of a sample of the population were recorded. 1125:. However, the genotype frequencies for all 10605:Source code (C/C++/Fortran/R) for Wigginton 10436:Stern, C. (1943). "The Hardy–Weinberg law". 9797: 9795: 9153:{\displaystyle \textstyle 1-{\frac {1}{50}}} 8957:{\displaystyle \textstyle {\frac {1}{2500}}} 6385:{\displaystyle F{\big |}_{E=0,O=0}=-\infty } 6291:{\displaystyle F=1-{138 \over 141.2}=0.023.} 5931:is a tolerance parameter. If the hypothesis 5892: 5861: 5828: 5797: 5447:Table 4: Example of Fisher's exact test for 9280: 3468:{\displaystyle f(A_{i}A_{j})=2p_{i}p_{j}\,} 3310:{\displaystyle (p_{1}+\cdots +p_{n})^{2}\,} 636:Table 1: Punnett square for Hardy–Weinberg 10658: 10644: 10118:"Hardy, Weinberg and language impediments" 9968:"Hardy, Weinberg and language impediments" 9267:{\displaystyle \textstyle {\frac {1}{25}}} 9114:{\displaystyle \textstyle {\frac {1}{50}}} 7438:{\displaystyle \textstyle 0=r_{t}-r_{t-1}} 7384:{\displaystyle \textstyle 0=q_{t}-q_{t-1}} 7330:{\displaystyle \textstyle 0=p_{t}-p_{t-1}} 3806: 2889:Deviations from Hardy–Weinberg equilibrium 10564: 10529: 10318: 10149: 9991: 9908: 9890: 9880:Official web link (subscription required) 9792: 9657: 9588: 8906: 8825: 8521:{\displaystyle E_{0}=q^{2}-pr=0.00382.\,} 8517: 8455: 7753:. Now consider the remaining case, where 5962: 4010: 3907:{\displaystyle (p_{1}+\cdots +p_{n})^{c}} 3569: 3523: 3464: 3385:{\displaystyle f(A_{i}A_{i})=p_{i}^{2}\,} 3381: 3306: 3214: 3073:Consider an extra allele frequency,  2912:allele frequencies are equal in the sexes 102:and the vertical axis shows the expected 71:Learn how and when to remove this message 10482: 10115: 9743: 9624: 9284: 4221:is assumed to be negligibly small. The 3064: 3061:Generalization for more than two alleles 609:corresponds to allele frequencies (here 594: 82: 34:This article includes a list of general 10665: 10404: 10079:See e.g. Ineichen & Batschelet 1975 9614:"Hardy–Weinberg in dioecious organisms" 9554: 9448:Additive disequilibrium and z statistic 8403:As checks on the distribution, compute 10964: 10951:Index of evolutionary biology articles 10595:genetics Population Genetics Simulator 10102: 9844: 6437:{\displaystyle F{\big |}_{E=0,O>0}} 5143:Fisher's exact test (probability test) 4201:Example chi-squared test for deviation 3228:More generally, consider the alleles A 315:and other forms of non-random mating. 10639: 10631:Hardy–Weinberg Equilibrium Calculator 10590:Hardy–Weinberg Equilibrium Calculator 10435: 10273: 10180: 10168:Foundations of Mathematical Genetics. 10014: 10008: 9891:Ostrovski, Vladimir (February 2020). 9801: 4189:to solve. More recently a number of 2859:and the gene locus is located on the 640: 10546: 9962: 9956: 9744:Cox, David G.; Kraft, Peter (2006). 9323:Foundations of Mathematical Genetics 8097: 7746:{\displaystyle \textstyle r_{t-1}=1} 7705:{\displaystyle \textstyle q_{t-1}=0} 7664:{\displaystyle \textstyle p_{t-1}=0} 6249:For example, for Ford's data above: 5628: 5422:{\displaystyle n_{1}=2n_{11}+n_{12}} 1006: 872: 772: 478: 362: 91:: the horizontal axis shows the two 20: 8103:Estimation of genotype distribution 6828:{\displaystyle \textstyle Aa_{t-1}} 6790:{\displaystyle \textstyle AA_{t-1}} 2909:population size is infinitely large 87:Hardy–Weinberg proportions for two 13: 10566:10.1111/j.1469-8137.1902.tb07336.x 10502:American Journal of Human Genetics 10051:10.1111/j.1469-1809.1968.tb00575.x 9646:European Journal of Human Genetics 8206: 8203: 8200: 8181: 8178: 8175: 8150: 8147: 8144: 6379: 6198: 6142: 6114: 6073: 6045: 6014: 5878: 5814: 5722: 5698: 5642: 5373:is the number of A alleles, where 5269: 5214: 4814: 4811: 4808: 4739: 4736: 4733: 4668: 4665: 4662: 4421: 4418: 4415: 4396: 4393: 4390: 4371: 4368: 4365: 4338: 4335: 4332: 4313: 4310: 4307: 4061: 3048: 40:it lacks sufficient corresponding 14: 10998: 10575: 5924:{\displaystyle \varepsilon >0} 9859:10.1111/j.0006-341X.2004.00219.x 9611: 7671:, and note that it implies that 6752:{\displaystyle \textstyle A_{t}} 6683:Hardy's statement begins with a 6655:The principle was thus known as 4165:Significance tests for deviation 3238:given by the allele frequencies 25: 10338:Journal of Mathematical Biology 10082: 10073: 10030: 9947: 9938: 9929: 9920: 9884: 9309:and represents the state where 8924:Estimation of carrier frequency 7630:First consider the case, where 6679:Derivation of Hardy's equations 3591:, for example with tetraploid ( 2900:only sexual reproduction occurs 2682: 2370: 2104: 2103: 1861: 10751:Constructive neutral evolution 9838: 9737: 9682: 9633: 9605: 9548: 9515: 9431: 9422: 9409: 9403: 9391: 9369: 8989:{\displaystyle \textstyle 2pq} 8720: 8707: 8677: 8665: 8662: 8650: 8608: 8595: 8218: 8210: 8193: 8185: 8162: 8154: 7928: 7836: 7145: 7139: 7117: 7111: 7081: 7059: 7053: 7018: 7009: 6987: 6981: 6946: 6918: 6904: 6895: 6869: 6221: 6218: 6210: 6204: 6165: 6162: 6154: 6148: 6137: 6134: 6126: 6120: 6096: 6093: 6085: 6079: 6068: 6065: 6057: 6051: 6038: 6035: 6027: 6021: 5883: 5867: 5819: 5803: 5744: 5732: 5703: 5687: 5650:{\displaystyle {\mathcal {M}}} 5200: 5174: 5053: 5040: 5019: 5006: 4985: 4972: 4944: 4931: 4826: 4818: 4751: 4743: 4680: 4672: 4499: 4481: 4436: 4433: 4425: 4408: 4400: 4383: 4375: 4361: 4350: 4342: 4325: 4317: 4219:Genotype–phenotype distinction 3957: 3924: 3895: 3862: 3560: 3547: 3514: 3501: 3435: 3412: 3360: 3337: 3297: 3264: 3130: 3111: 3077:. The two-allele case is the 3014:for the heterogametic sex but 2985: 2960:strong selection against them. 2930:, which causes an increase in 2903:generations are nonoverlapping 2789: 2780: 2764: 2756: 2743: 2735: 2710: 2701: 2656: 2648: 2620: 2612: 2585: 2577: 2549: 2541: 2518: 2510: 2482: 2474: 2439: 2431: 2403: 2395: 2335: 2327: 2314: 2306: 2247: 2239: 2226: 2218: 2147: 2139: 2126: 2118: 2068: 2060: 2047: 2039: 1977: 1969: 1956: 1948: 1904: 1896: 1883: 1875: 1843: 1835: 1813: 1805: 1783: 1775: 1735:and it can only result in the 1676: 1660: 1654: 1638: 1632: 1616: 1610: 1594: 1588: 1572: 1566: 1550: 1496: 1488: 1466: 1454: 1423: 1415: 1387: 1379: 1359: 1351: 1334: 1326: 1304: 1292: 1261: 1253: 1225: 1217: 1197: 1189: 1072: 1063: 1034: 1026: 978: 970: 957: 949: 900: 892: 838: 829: 800: 792: 767:gives the same relationships. 566: 558: 530: 522: 506: 498: 450: 442: 414: 406: 390: 382: 1: 9536: 8930:autosomal recessive condition 3479:Generalization for polyploidy 1516:For the more general case of 318: 298:The principle is named after 10701:Fisher's fundamental theorem 10018:(1962). "Wilhelm Weinberg". 9541: 7273:{\displaystyle \textstyle t} 6722:{\displaystyle \textstyle t} 5967:The inbreeding coefficient, 743:, the binomial expansion of 273:for the aa homozygotes, and 7: 10726:Coefficient of relationship 10460:10.1126/science.97.2510.137 9488:Coefficient of relationship 9328: 8935:Let us assume an estimated 6466:(1903) showed that without 3719:{\displaystyle 6p^{2}q^{2}} 3573:{\displaystyle (p+q)^{c}\,} 3527:{\displaystyle (p+q)^{2}\,} 2840:are also constant in time. 1161: 1155: 1097: 997: 863: 585: 469: 10: 11003: 10274:Hardy, G. H. (July 1908). 10134:10.1093/genetics/152.3.821 10095: 9984:10.1093/genetics/152.3.821 9573:10.1534/genetics.104.92940 9555:Edwards, A. W. F. (2008). 9355:Regression toward the mean 6447: 4892:Pearson's chi-squared test 4171:Pearson's chi-squared test 714:The sum of the entries is 120:Hardy–Weinberg equilibrium 10946: 10881: 10855: 10817: 10792: 10759: 10721:Coefficient of inbreeding 10673: 10303:10.1126/science.28.706.49 9483:Coefficient of inbreeding 3026:for the homogametic sex. 2994:, the heterogametic sex ( 663: 642: 323:Consider a population of 313:population stratification 10899:Evolutionary game theory 10681:Hardy–Weinberg principle 10039:Annals of Human Genetics 9508: 9360:Multinomial distribution 9281:Graphical representation 5614:levels is quite coarse. 5460:Number of heterozygotes 4179:chi-squared distribution 3031:red–green colorblindness 1700:multinomial distribution 116:Hardy–Weinberg principle 10711:Shifting balance theory 9695:Nature Reviews Genetics 9659:10.1038/sj.ejhg.5201164 6705:conditional probability 3807:Complete generalization 3758:{\displaystyle 4pq^{3}} 3673:{\displaystyle 4p^{3}q} 3029:For example, in humans 55:more precise citations. 10696:Linkage disequilibrium 10429:10.1098/rsta.1903.0001 10382:10.1002/bies.201100178 10227:Thompson, Elizabeth A. 10166:Edwards, A.W.F. 1977. 10116:Crow, Jf (July 1999). 9438: 9294: 9268: 9236: 9154: 9115: 9083: 8990: 8958: 8911: 8830: 8743: 8522: 8460: 8394: 8269: 8088: 8010: 7790: 7747: 7706: 7665: 7621: 7439: 7385: 7331: 7274: 7248: 6829: 6791: 6753: 6723: 6661:English-speaking world 6633:whatever the values of 6497:, with whom he played 6438: 6386: 6322: 6292: 6240: 6178: 5981: 5963:Inbreeding coefficient 5952: 5925: 5899: 5835: 5771: 5751: 5671: 5651: 5439: = 100, and 5423: 5336: 5114: 4882: 4643:So the Hardy–Weinberg 4634: 4552: 4227:alternative hypothesis 4155: 3908: 3845: 3825: 3792: 3759: 3720: 3674: 3635: 3574: 3528: 3469: 3386: 3311: 3219: 3070: 2811: 1688: 1507: 1085: 985: 851: 625: 573: 457: 211:outbreeding depression 107: 10938:Quantitative genetics 10847:Balding–Nichols model 10832:Population bottleneck 10827:Small population size 10731:Selection coefficient 9478:Inbreeding depression 9468:Population bottleneck 9439: 9288: 9269: 9237: 9155: 9121:is small we can take 9116: 9084: 8991: 8964:babies are born with 8959: 8912: 8831: 8744: 8523: 8461: 8395: 8270: 8089: 8011: 7791: 7748: 7707: 7666: 7622: 7440: 7386: 7332: 7275: 7249: 6830: 6792: 6754: 6724: 6439: 6387: 6323: 6293: 6241: 6179: 5982: 5953: 5951:{\displaystyle H_{0}} 5926: 5900: 5836: 5772: 5752: 5672: 5652: 5424: 5337: 5115: 4883: 4635: 4553: 4247:Little spotting (aa) 4156: 3909: 3853:multinomial expansion 3846: 3826: 3793: 3791:{\displaystyle q^{4}} 3760: 3721: 3675: 3636: 3634:{\displaystyle p^{4}} 3575: 3529: 3470: 3387: 3312: 3220: 3068: 2972:Small population size 2947:directional selection 2897:organisms are diploid 2812: 1689: 1687:{\displaystyle \left} 1508: 1086: 986: 852: 598: 574: 458: 195:population bottleneck 86: 16:Principle in genetics 10982:Statistical genetics 10809:Background selection 10796:on genomic variation 10794:Effects of selection 10746:Population structure 10559:(193–207): 222–238. 10547:Yule, G. U. (1902). 9910:10.3390/stats3010004 9612:Carr, Dr. Steven M. 9366: 9249: 9167: 9129: 9096: 9003: 8972: 8939: 8846: 8759: 8538: 8476: 8410: 8282: 8123: 8023: 7803: 7757: 7716: 7675: 7634: 7455: 7395: 7341: 7287: 7262: 6842: 6801: 6763: 6734: 6711: 6687:for the frequencies 6396: 6335: 6306: 6257: 6195: 6002: 5971: 5935: 5909: 5845: 5781: 5761: 5681: 5661: 5637: 5377: 5165: 4901: 4654: 4568: 4280: 3921: 3859: 3835: 3831:distinct alleles in 3815: 3775: 3736: 3690: 3651: 3618: 3544: 3498: 3406: 3331: 3261: 3108: 2990:Where the A gene is 2827:equal those at time 1746: 1542: 1172: 1013: 879: 779: 485: 369: 118:, also known as the 104:genotype frequencies 10972:Population genetics 10928:Population genomics 10804:Genetic hitchhiking 10691:Identity by descent 10667:Population genetics 10624:26 May 2015 at the 10585:(at bottom of page) 10452:1943Sci....97..137S 10421:1903RSPTA.200....1P 10295:1908Sci....28...49H 10219:Ecological Genetics 10217:Ford, E.B. (1971). 9453:Population genetics 8876: 8047: 7961: 7900: 7593: 7531: 6685:recurrence relation 6507:applied mathematics 6321:{\displaystyle F=0} 5463:Significance level 5456: 5455: = 0.34. 5148:Fisher's exact test 4241:White-spotted (AA) 4234: 4185:, which requires a 4183:Fisher's exact test 4150: 4125: 3600: 3380: 2951:balancing selection 732:Note again that as 637: 189:genetic hitchhiking 112:population genetics 10977:Classical genetics 10914:Landscape genetics 10350:10.1007/BF00276014 9434: 9299:de Finetti diagram 9295: 9291:de Finetti diagram 9264: 9263: 9232: 9230: 9150: 9149: 9111: 9110: 9079: 9077: 8986: 8985: 8954: 8953: 8907: 8862: 8826: 8739: 8737: 8518: 8456: 8390: 8388: 8265: 8263: 8084: 8083: 8027: 8006: 8004: 7941: 7880: 7786: 7785: 7784: 7743: 7742: 7702: 7701: 7661: 7660: 7617: 7615: 7573: 7511: 7435: 7434: 7381: 7380: 7327: 7326: 7270: 7269: 7244: 7242: 6825: 6824: 6787: 6786: 6749: 6748: 6719: 6718: 6538:numbers will be as 6503:pure mathematician 6482: = 0.5. 6453:Mendelian genetics 6434: 6382: 6318: 6288: 6236: 6174: 5977: 5948: 5921: 5895: 5831: 5767: 5747: 5728: 5667: 5647: 5451: = 100, 5446: 5419: 5332: 5129:significance level 5110: 5108: 4878: 4876: 4630: 4628: 4548: 4546: 4244:Intermediate (Aa) 4232: 4211:scarlet tiger moth 4205:This data is from 4177:assumption of the 4151: 4129: 4104: 4053: 3904: 3841: 3821: 3788: 3755: 3716: 3670: 3631: 3598: 3570: 3524: 3489:binomial expansion 3465: 3382: 3366: 3307: 3215: 3079:binomial expansion 3071: 2807: 2805: 2636: 2565: 2498: 2419: 2286: 2271: 2195: 2180: 2165: 2010: 1995: 1684: 1503: 1501: 1403: 1241: 1081: 981: 847: 635: 626: 569: 546: 453: 430: 153:assortative mating 108: 93:allele frequencies 10959: 10958: 10909:Genetic genealogy 10904:Fitness landscape 10583:EvolutionSolution 10446:(2510): 137–138. 10415:(321–330): 1–66. 9916:Official web link 9762:10.1159/000091787 9493:Natural selection 9458:Genetic diversity 9315:natural selection 9261: 9226: 9200: 9147: 9108: 9053: 9032: 8951: 8563: 8378: 8348: 8307: 8216: 8191: 8160: 8133: 8098:Numerical example 6663:until 1943, when 6464:William E. Castle 6280: 6216: 6169: 6160: 6132: 6100: 6091: 6063: 6033: 5980:{\displaystyle F} 5770:{\displaystyle d} 5709: 5670:{\displaystyle p} 5629:Equivalence tests 5611: 5610: 5310: 5303: 5256: 5125:degree of freedom 5066: 5032: 4998: 4957: 4824: 4749: 4678: 4526: 4503: 4440: 4431: 4406: 4381: 4348: 4323: 4271: 4270: 4096: 4005: 3969: 3844:{\displaystyle c} 3824:{\displaystyle n} 3801: 3800: 2786: 2762: 2741: 2707: 2654: 2635: 2618: 2583: 2564: 2547: 2516: 2497: 2480: 2437: 2418: 2401: 2333: 2312: 2285: 2270: 2245: 2224: 2194: 2179: 2164: 2145: 2124: 2066: 2045: 2009: 1994: 1975: 1954: 1902: 1881: 1841: 1811: 1781: 1674: 1666: 1652: 1644: 1630: 1622: 1608: 1600: 1586: 1578: 1564: 1556: 1494: 1421: 1402: 1385: 1357: 1332: 1259: 1240: 1223: 1195: 1105: 1104: 1069: 1032: 1005: 1004: 976: 955: 898: 871: 870: 835: 798: 712: 711: 593: 592: 564: 545: 528: 504: 477: 476: 448: 429: 412: 388: 229:with frequencies 159:natural selection 81: 80: 73: 10994: 10987:Sexual selection 10868:J. B. S. Haldane 10660: 10653: 10646: 10637: 10636: 10570: 10568: 10543: 10533: 10492: 10479: 10432: 10401: 10361: 10332: 10322: 10280: 10270: 10214: 10163: 10153: 10112: 10089: 10086: 10080: 10077: 10071: 10070: 10034: 10028: 10027: 10012: 10006: 10005: 9995: 9960: 9954: 9951: 9945: 9942: 9936: 9933: 9927: 9924: 9918: 9914: 9912: 9888: 9882: 9878: 9842: 9836: 9835: 9799: 9790: 9789: 9741: 9735: 9734: 9686: 9680: 9679: 9661: 9637: 9631: 9628: 9622: 9621: 9609: 9603: 9602: 9592: 9567:(3): 1143–1150. 9552: 9530: 9519: 9443: 9441: 9440: 9435: 9430: 9429: 9381: 9380: 9319:A. W. F. Edwards 9273: 9271: 9270: 9265: 9262: 9254: 9241: 9239: 9238: 9233: 9231: 9227: 9219: 9201: 9193: 9159: 9157: 9156: 9151: 9148: 9140: 9120: 9118: 9117: 9112: 9109: 9101: 9088: 9086: 9085: 9080: 9078: 9058: 9054: 9046: 9037: 9033: 9025: 9020: 9019: 9009: 8995: 8993: 8992: 8987: 8963: 8961: 8960: 8955: 8952: 8944: 8916: 8914: 8913: 8908: 8899: 8898: 8889: 8888: 8875: 8870: 8858: 8857: 8835: 8833: 8832: 8827: 8800: 8799: 8787: 8786: 8771: 8770: 8748: 8746: 8745: 8740: 8738: 8728: 8727: 8699: 8698: 8639: 8638: 8616: 8615: 8587: 8586: 8574: 8564: 8556: 8527: 8525: 8524: 8519: 8501: 8500: 8488: 8487: 8465: 8463: 8462: 8457: 8399: 8397: 8396: 8391: 8389: 8379: 8371: 8349: 8344: 8333: 8308: 8300: 8274: 8272: 8271: 8266: 8264: 8251: 8247: 8221: 8217: 8214: 8209: 8192: 8189: 8184: 8161: 8158: 8153: 8134: 8131: 8093: 8091: 8090: 8085: 8082: 8081: 8066: 8065: 8046: 8041: 8015: 8013: 8012: 8007: 8005: 8001: 8000: 7982: 7981: 7966: 7960: 7955: 7934: 7921: 7920: 7905: 7899: 7894: 7876: 7875: 7854: 7853: 7835: 7834: 7795: 7793: 7792: 7787: 7776: 7775: 7752: 7750: 7749: 7744: 7735: 7734: 7711: 7709: 7708: 7703: 7694: 7693: 7670: 7668: 7667: 7662: 7653: 7652: 7626: 7624: 7623: 7618: 7616: 7612: 7611: 7592: 7587: 7569: 7568: 7553: 7552: 7530: 7525: 7504: 7500: 7499: 7481: 7480: 7444: 7442: 7441: 7436: 7433: 7432: 7414: 7413: 7390: 7388: 7387: 7382: 7379: 7378: 7360: 7359: 7336: 7334: 7333: 7328: 7325: 7324: 7306: 7305: 7279: 7277: 7276: 7271: 7253: 7251: 7250: 7245: 7243: 7239: 7238: 7233: 7229: 7228: 7227: 7209: 7208: 7181: 7177: 7176: 7171: 7167: 7166: 7165: 7135: 7134: 7098: 7094: 7093: 7088: 7084: 7080: 7079: 7052: 7051: 7030: 7029: 7008: 7007: 6980: 6979: 6958: 6957: 6930: 6926: 6925: 6916: 6915: 6894: 6893: 6881: 6880: 6858: 6857: 6834: 6832: 6831: 6826: 6823: 6822: 6796: 6794: 6793: 6788: 6785: 6784: 6758: 6756: 6755: 6750: 6747: 6746: 6728: 6726: 6725: 6720: 6669:Wilhelm Weinberg 6484:Reginald Punnett 6443: 6441: 6440: 6435: 6433: 6432: 6409: 6408: 6391: 6389: 6388: 6383: 6372: 6371: 6348: 6347: 6327: 6325: 6324: 6319: 6298: 6297: 6295: 6294: 6289: 6281: 6273: 6245: 6243: 6242: 6237: 6217: 6214: 6184: 6183: 6181: 6180: 6175: 6170: 6168: 6161: 6158: 6140: 6133: 6130: 6112: 6101: 6099: 6092: 6089: 6071: 6064: 6061: 6041: 6034: 6031: 6012: 5986: 5984: 5983: 5978: 5957: 5955: 5954: 5949: 5947: 5946: 5930: 5928: 5927: 5922: 5904: 5902: 5901: 5896: 5882: 5881: 5857: 5856: 5840: 5838: 5837: 5832: 5818: 5817: 5793: 5792: 5776: 5774: 5773: 5768: 5756: 5754: 5753: 5748: 5727: 5726: 5725: 5702: 5701: 5676: 5674: 5673: 5668: 5656: 5654: 5653: 5648: 5646: 5645: 5457: 5445: 5428: 5426: 5425: 5420: 5418: 5417: 5405: 5404: 5389: 5388: 5341: 5339: 5338: 5333: 5328: 5327: 5326: 5325: 5311: 5309: 5308: 5302: 5301: 5300: 5288: 5287: 5277: 5268: 5262: 5261: 5255: 5254: 5253: 5241: 5240: 5228: 5227: 5213: 5207: 5199: 5198: 5186: 5185: 5119: 5117: 5116: 5111: 5109: 5096: 5071: 5067: 5062: 5061: 5060: 5038: 5033: 5028: 5027: 5026: 5004: 4999: 4994: 4993: 4992: 4970: 4962: 4958: 4953: 4952: 4951: 4929: 4917: 4916: 4887: 4885: 4884: 4879: 4877: 4861: 4860: 4845: 4844: 4825: 4822: 4817: 4750: 4747: 4742: 4715: 4714: 4699: 4698: 4679: 4676: 4671: 4639: 4637: 4636: 4631: 4629: 4616: 4597: 4557: 4555: 4554: 4549: 4547: 4534: 4531: 4527: 4519: 4511: 4508: 4504: 4502: 4473: 4456: 4448: 4445: 4441: 4439: 4432: 4429: 4424: 4407: 4404: 4399: 4382: 4379: 4374: 4353: 4349: 4346: 4341: 4324: 4321: 4316: 4298: 4235: 4231: 4213:, for which the 4160: 4158: 4157: 4152: 4149: 4148: 4147: 4137: 4124: 4123: 4122: 4112: 4103: 4102: 4101: 4095: 4094: 4093: 4075: 4074: 4060: 4052: 4045: 4044: 4026: 4025: 4013: 4003: 4002: 4001: 3983: 3982: 3965: 3964: 3955: 3954: 3936: 3935: 3913: 3911: 3910: 3905: 3903: 3902: 3893: 3892: 3874: 3873: 3850: 3848: 3847: 3842: 3830: 3828: 3827: 3822: 3797: 3795: 3794: 3789: 3787: 3786: 3764: 3762: 3761: 3756: 3754: 3753: 3725: 3723: 3722: 3717: 3715: 3714: 3705: 3704: 3679: 3677: 3676: 3671: 3666: 3665: 3640: 3638: 3637: 3632: 3630: 3629: 3601: 3597: 3579: 3577: 3576: 3571: 3568: 3567: 3533: 3531: 3530: 3525: 3522: 3521: 3474: 3472: 3471: 3466: 3463: 3462: 3453: 3452: 3434: 3433: 3424: 3423: 3391: 3389: 3388: 3383: 3379: 3374: 3359: 3358: 3349: 3348: 3316: 3314: 3313: 3308: 3305: 3304: 3295: 3294: 3276: 3275: 3224: 3222: 3221: 3216: 3177: 3176: 3164: 3163: 3151: 3150: 3138: 3137: 2906:mating is random 2880: 2869: 2839: 2832: 2826: 2816: 2814: 2813: 2808: 2806: 2802: 2798: 2797: 2796: 2787: 2784: 2779: 2778: 2763: 2760: 2755: 2754: 2742: 2739: 2734: 2733: 2718: 2717: 2708: 2705: 2700: 2699: 2678: 2674: 2670: 2669: 2668: 2663: 2659: 2655: 2652: 2647: 2646: 2637: 2628: 2619: 2616: 2611: 2610: 2592: 2588: 2584: 2581: 2576: 2575: 2566: 2557: 2548: 2545: 2540: 2539: 2525: 2521: 2517: 2514: 2509: 2508: 2499: 2490: 2481: 2478: 2473: 2472: 2452: 2451: 2446: 2442: 2438: 2435: 2430: 2429: 2420: 2411: 2402: 2399: 2394: 2393: 2366: 2362: 2358: 2334: 2331: 2326: 2325: 2313: 2310: 2305: 2304: 2292: 2288: 2287: 2278: 2272: 2263: 2246: 2243: 2238: 2237: 2225: 2222: 2217: 2216: 2201: 2197: 2196: 2187: 2181: 2172: 2166: 2157: 2146: 2143: 2138: 2137: 2125: 2122: 2117: 2116: 2099: 2095: 2091: 2067: 2064: 2059: 2058: 2046: 2043: 2038: 2037: 2022: 2018: 2011: 2002: 1996: 1987: 1976: 1973: 1968: 1967: 1955: 1952: 1947: 1946: 1931: 1927: 1903: 1900: 1895: 1894: 1882: 1879: 1874: 1873: 1857: 1850: 1846: 1842: 1839: 1834: 1833: 1812: 1809: 1804: 1803: 1782: 1779: 1774: 1773: 1752: 1738: 1734: 1712: 1708: 1693: 1691: 1690: 1685: 1683: 1679: 1675: 1672: 1667: 1664: 1653: 1650: 1645: 1642: 1631: 1628: 1623: 1620: 1609: 1606: 1601: 1598: 1587: 1584: 1579: 1576: 1565: 1562: 1557: 1554: 1512: 1510: 1509: 1504: 1502: 1495: 1492: 1487: 1486: 1438: 1437: 1422: 1419: 1414: 1413: 1404: 1395: 1386: 1383: 1378: 1377: 1358: 1355: 1350: 1349: 1333: 1330: 1325: 1324: 1276: 1275: 1260: 1257: 1252: 1251: 1242: 1233: 1224: 1221: 1216: 1215: 1196: 1193: 1188: 1187: 1152: 1145: 1124: 1099: 1090: 1088: 1087: 1082: 1080: 1079: 1070: 1067: 1062: 1061: 1049: 1048: 1033: 1030: 1025: 1024: 1007: 999: 990: 988: 987: 982: 977: 974: 969: 968: 956: 953: 948: 947: 899: 896: 891: 890: 873: 865: 856: 854: 853: 848: 846: 845: 836: 833: 828: 827: 815: 814: 799: 796: 791: 790: 773: 766: 742: 728: 638: 634: 623: 619: 608: 587: 578: 576: 575: 570: 565: 562: 557: 556: 547: 538: 529: 526: 521: 520: 505: 502: 497: 496: 479: 471: 462: 460: 459: 454: 449: 446: 441: 440: 431: 422: 413: 410: 405: 404: 389: 386: 381: 380: 363: 355: 342: 304:Wilhelm Weinberg 282: 272: 258: 248: 238: 165:sexual selection 76: 69: 65: 62: 56: 51:this article by 42:inline citations 29: 28: 21: 11002: 11001: 10997: 10996: 10995: 10993: 10992: 10991: 10962: 10961: 10960: 10955: 10942: 10877: 10851: 10813: 10797: 10795: 10788: 10755: 10686:Genetic linkage 10669: 10664: 10626:Wayback Machine 10578: 10573: 10278: 10243:10.2307/2532296 10195:10.2307/2556115 10098: 10093: 10092: 10087: 10083: 10078: 10074: 10035: 10031: 10013: 10009: 9961: 9957: 9952: 9948: 9943: 9939: 9934: 9930: 9925: 9921: 9889: 9885: 9843: 9839: 9816:10.2307/2556115 9800: 9793: 9742: 9738: 9707:10.1038/nrg1707 9701:(11): 847–859. 9687: 9683: 9638: 9634: 9629: 9625: 9610: 9606: 9553: 9549: 9544: 9539: 9534: 9533: 9520: 9516: 9511: 9425: 9421: 9376: 9372: 9367: 9364: 9363: 9331: 9283: 9253: 9250: 9247: 9246: 9229: 9228: 9218: 9203: 9202: 9192: 9170: 9168: 9165: 9164: 9139: 9130: 9127: 9126: 9100: 9097: 9094: 9093: 9076: 9075: 9056: 9055: 9045: 9035: 9034: 9024: 9015: 9011: 9006: 9004: 9001: 9000: 8973: 8970: 8969: 8966:cystic fibrosis 8943: 8940: 8937: 8936: 8926: 8894: 8890: 8884: 8880: 8871: 8866: 8853: 8849: 8847: 8844: 8843: 8795: 8791: 8782: 8778: 8766: 8762: 8760: 8757: 8756: 8736: 8735: 8723: 8719: 8700: 8694: 8690: 8687: 8686: 8640: 8634: 8630: 8624: 8623: 8611: 8607: 8588: 8582: 8578: 8575: 8572: 8571: 8555: 8548: 8541: 8539: 8536: 8535: 8496: 8492: 8483: 8479: 8477: 8474: 8473: 8411: 8408: 8407: 8387: 8386: 8370: 8363: 8357: 8356: 8334: 8332: 8325: 8316: 8315: 8299: 8292: 8285: 8283: 8280: 8279: 8262: 8261: 8249: 8248: 8225: 8213: 8199: 8188: 8174: 8157: 8143: 8142: 8135: 8130: 8126: 8124: 8121: 8120: 8105: 8100: 8071: 8067: 8055: 8051: 8042: 8031: 8024: 8021: 8020: 8003: 8002: 7990: 7986: 7971: 7967: 7962: 7956: 7945: 7932: 7931: 7910: 7906: 7901: 7895: 7884: 7865: 7861: 7843: 7839: 7824: 7820: 7813: 7806: 7804: 7801: 7800: 7765: 7761: 7758: 7755: 7754: 7724: 7720: 7717: 7714: 7713: 7683: 7679: 7676: 7673: 7672: 7642: 7638: 7635: 7632: 7631: 7614: 7613: 7601: 7597: 7588: 7577: 7558: 7554: 7542: 7538: 7526: 7515: 7502: 7501: 7489: 7485: 7476: 7472: 7465: 7458: 7456: 7453: 7452: 7422: 7418: 7409: 7405: 7396: 7393: 7392: 7368: 7364: 7355: 7351: 7342: 7339: 7338: 7314: 7310: 7301: 7297: 7288: 7285: 7284: 7263: 7260: 7259: 7241: 7240: 7234: 7217: 7213: 7198: 7194: 7193: 7189: 7188: 7179: 7178: 7172: 7155: 7151: 7124: 7120: 7110: 7106: 7105: 7096: 7095: 7089: 7069: 7065: 7041: 7037: 7025: 7021: 6997: 6993: 6969: 6965: 6953: 6949: 6942: 6938: 6937: 6928: 6927: 6921: 6917: 6911: 6907: 6889: 6885: 6876: 6872: 6859: 6853: 6849: 6845: 6843: 6840: 6839: 6812: 6808: 6802: 6799: 6798: 6774: 6770: 6764: 6761: 6760: 6742: 6738: 6735: 6732: 6731: 6712: 6709: 6708: 6681: 6630: 6624: 6617: 6592: 6585: 6578: 6501:. Hardy was a 6450: 6410: 6404: 6403: 6402: 6397: 6394: 6393: 6349: 6343: 6342: 6341: 6336: 6333: 6332: 6307: 6304: 6303: 6272: 6258: 6255: 6254: 6253: 6213: 6196: 6193: 6192: 6157: 6141: 6129: 6113: 6111: 6088: 6072: 6060: 6030: 6020: 6013: 6011: 6003: 6000: 5999: 5998: 5972: 5969: 5968: 5965: 5942: 5938: 5936: 5933: 5932: 5910: 5907: 5906: 5877: 5876: 5852: 5848: 5846: 5843: 5842: 5813: 5812: 5788: 5784: 5782: 5779: 5778: 5762: 5759: 5758: 5721: 5720: 5713: 5697: 5696: 5682: 5679: 5678: 5662: 5659: 5658: 5641: 5640: 5638: 5635: 5634: 5631: 5413: 5409: 5400: 5396: 5384: 5380: 5378: 5375: 5374: 5372: 5365: 5358: 5351: 5321: 5317: 5316: 5312: 5304: 5296: 5292: 5283: 5279: 5278: 5270: 5264: 5263: 5257: 5249: 5245: 5236: 5232: 5223: 5219: 5218: 5209: 5208: 5206: 5194: 5190: 5181: 5177: 5166: 5163: 5162: 5145: 5133:null hypothesis 5107: 5106: 5094: 5093: 5069: 5068: 5056: 5052: 5039: 5037: 5022: 5018: 5005: 5003: 4988: 4984: 4971: 4969: 4960: 4959: 4947: 4943: 4930: 4928: 4918: 4912: 4908: 4904: 4902: 4899: 4898: 4875: 4874: 4856: 4852: 4840: 4836: 4829: 4821: 4807: 4804: 4803: 4754: 4746: 4732: 4729: 4728: 4710: 4706: 4694: 4690: 4683: 4675: 4661: 4657: 4655: 4652: 4651: 4627: 4626: 4614: 4613: 4595: 4594: 4578: 4571: 4569: 4566: 4565: 4545: 4544: 4532: 4529: 4528: 4518: 4509: 4506: 4505: 4474: 4457: 4455: 4446: 4443: 4442: 4428: 4414: 4403: 4389: 4378: 4364: 4354: 4345: 4331: 4320: 4306: 4299: 4297: 4290: 4283: 4281: 4278: 4277: 4223:null hypothesis 4203: 4167: 4143: 4139: 4138: 4133: 4118: 4114: 4113: 4108: 4097: 4089: 4085: 4070: 4066: 4065: 4056: 4055: 4054: 4040: 4036: 4021: 4017: 4009: 3997: 3993: 3978: 3974: 3973: 3960: 3956: 3950: 3946: 3931: 3927: 3922: 3919: 3918: 3898: 3894: 3888: 3884: 3869: 3865: 3860: 3857: 3856: 3836: 3833: 3832: 3816: 3813: 3812: 3809: 3782: 3778: 3776: 3773: 3772: 3749: 3745: 3737: 3734: 3733: 3710: 3706: 3700: 3696: 3691: 3688: 3687: 3661: 3657: 3652: 3649: 3648: 3625: 3621: 3619: 3616: 3615: 3563: 3559: 3545: 3542: 3541: 3517: 3513: 3499: 3496: 3495: 3481: 3458: 3454: 3448: 3444: 3429: 3425: 3419: 3415: 3407: 3404: 3403: 3375: 3370: 3354: 3350: 3344: 3340: 3332: 3329: 3328: 3320:giving for all 3300: 3296: 3290: 3286: 3271: 3267: 3262: 3259: 3258: 3253: 3244: 3237: 3231: 3172: 3168: 3159: 3155: 3146: 3142: 3133: 3129: 3109: 3106: 3105: 3063: 3051: 3049:Generalizations 2988: 2891: 2878: 2875: 2867: 2864: 2834: 2828: 2821: 2804: 2803: 2792: 2788: 2783: 2774: 2770: 2759: 2750: 2746: 2738: 2729: 2725: 2713: 2709: 2704: 2695: 2691: 2690: 2686: 2676: 2675: 2664: 2651: 2642: 2638: 2626: 2615: 2606: 2602: 2601: 2597: 2596: 2580: 2571: 2567: 2555: 2544: 2535: 2531: 2530: 2526: 2513: 2504: 2500: 2488: 2477: 2468: 2464: 2463: 2459: 2447: 2434: 2425: 2421: 2409: 2398: 2389: 2385: 2384: 2380: 2379: 2378: 2374: 2364: 2363: 2342: 2338: 2330: 2321: 2317: 2309: 2300: 2296: 2276: 2261: 2254: 2250: 2242: 2233: 2229: 2221: 2212: 2208: 2185: 2170: 2155: 2154: 2150: 2142: 2133: 2129: 2121: 2112: 2108: 2097: 2096: 2075: 2071: 2063: 2054: 2050: 2042: 2033: 2029: 2000: 1985: 1984: 1980: 1972: 1963: 1959: 1951: 1942: 1938: 1911: 1907: 1899: 1890: 1886: 1878: 1869: 1865: 1855: 1854: 1838: 1823: 1819: 1808: 1793: 1789: 1778: 1763: 1759: 1758: 1754: 1749: 1747: 1744: 1743: 1736: 1732: 1723: 1714: 1710: 1703: 1671: 1663: 1649: 1641: 1627: 1619: 1605: 1597: 1583: 1575: 1561: 1553: 1549: 1545: 1543: 1540: 1539: 1500: 1499: 1491: 1482: 1478: 1433: 1429: 1418: 1409: 1405: 1393: 1382: 1373: 1369: 1362: 1354: 1345: 1341: 1338: 1337: 1329: 1320: 1316: 1271: 1267: 1256: 1247: 1243: 1231: 1220: 1211: 1207: 1200: 1192: 1183: 1179: 1175: 1173: 1170: 1169: 1147: 1143: 1135: 1130: 1122: 1115: 1109: 1075: 1071: 1066: 1057: 1053: 1044: 1040: 1029: 1020: 1016: 1014: 1011: 1010: 973: 964: 960: 952: 943: 939: 895: 886: 882: 880: 877: 876: 841: 837: 832: 823: 819: 810: 806: 795: 786: 782: 780: 777: 776: 744: 733: 715: 621: 610: 600: 561: 552: 548: 536: 525: 516: 512: 501: 492: 488: 486: 483: 482: 445: 436: 432: 420: 409: 400: 396: 385: 376: 372: 370: 367: 366: 350: 344: 337: 331: 321: 277: 274: 267: 264: 253: 250: 243: 240: 233: 230: 77: 66: 60: 57: 47:Please help to 46: 30: 26: 17: 12: 11: 5: 11000: 10990: 10989: 10984: 10979: 10974: 10957: 10956: 10954: 10953: 10947: 10944: 10943: 10941: 10940: 10935: 10933:Phylogeography 10930: 10925: 10923:Microevolution 10920: 10911: 10906: 10901: 10896: 10891: 10885: 10883: 10882:Related topics 10879: 10878: 10876: 10875: 10870: 10865: 10859: 10857: 10853: 10852: 10850: 10849: 10844: 10839: 10837:Founder effect 10834: 10829: 10823: 10821: 10815: 10814: 10812: 10811: 10806: 10800: 10798: 10793: 10790: 10789: 10787: 10786: 10781: 10776: 10771: 10765: 10763: 10757: 10756: 10754: 10753: 10748: 10743: 10738: 10733: 10728: 10723: 10718: 10716:Price equation 10713: 10708: 10706:Neutral theory 10703: 10698: 10693: 10688: 10683: 10677: 10675: 10671: 10670: 10663: 10662: 10655: 10648: 10640: 10634: 10633: 10628: 10616: 10611: 10602: 10597: 10592: 10587: 10577: 10576:External links 10574: 10572: 10571: 10544: 10514:10.1086/429864 10493: 10480: 10433: 10402: 10362: 10333: 10289:(706): 49–50. 10271: 10222: 10215: 10189:(4): 627–642. 10178: 10164: 10113: 10099: 10097: 10094: 10091: 10090: 10081: 10072: 10045:(4): 421–428. 10029: 10007: 9978:(3): 821–825. 9964:Crow, James F. 9955: 9946: 9937: 9928: 9919: 9883: 9853:(3): 694–703. 9837: 9810:(4): 627–642. 9791: 9750:Human Heredity 9736: 9681: 9652:(5): 395–399. 9632: 9623: 9604: 9546: 9545: 9543: 9540: 9538: 9535: 9532: 9531: 9513: 9512: 9510: 9507: 9506: 9505: 9500: 9495: 9490: 9485: 9480: 9475: 9470: 9465: 9463:Founder effect 9460: 9455: 9450: 9445: 9433: 9428: 9424: 9420: 9417: 9414: 9411: 9408: 9405: 9402: 9399: 9396: 9393: 9390: 9387: 9384: 9379: 9375: 9371: 9357: 9352: 9350:Wahlund effect 9347: 9345:QST_(genetics) 9342: 9340:Fixation index 9337: 9330: 9327: 9282: 9279: 9260: 9257: 9243: 9242: 9225: 9222: 9217: 9214: 9211: 9208: 9205: 9204: 9199: 9196: 9191: 9188: 9185: 9182: 9179: 9176: 9173: 9172: 9146: 9143: 9138: 9135: 9107: 9104: 9090: 9089: 9074: 9071: 9068: 9065: 9062: 9059: 9057: 9052: 9049: 9044: 9041: 9038: 9036: 9031: 9028: 9023: 9018: 9014: 9010: 9008: 8984: 8981: 8978: 8950: 8947: 8925: 8922: 8918: 8917: 8905: 8902: 8897: 8893: 8887: 8883: 8879: 8874: 8869: 8865: 8861: 8856: 8852: 8837: 8836: 8824: 8821: 8818: 8815: 8812: 8809: 8806: 8803: 8798: 8794: 8790: 8785: 8781: 8777: 8774: 8769: 8765: 8750: 8749: 8734: 8731: 8726: 8722: 8718: 8715: 8712: 8709: 8706: 8703: 8701: 8697: 8693: 8689: 8688: 8685: 8682: 8679: 8676: 8673: 8670: 8667: 8664: 8661: 8658: 8655: 8652: 8649: 8646: 8643: 8641: 8637: 8633: 8629: 8626: 8625: 8622: 8619: 8614: 8610: 8606: 8603: 8600: 8597: 8594: 8591: 8589: 8585: 8581: 8577: 8576: 8573: 8570: 8567: 8562: 8559: 8554: 8551: 8549: 8547: 8544: 8543: 8529: 8528: 8516: 8513: 8510: 8507: 8504: 8499: 8495: 8491: 8486: 8482: 8467: 8466: 8454: 8451: 8448: 8445: 8442: 8439: 8436: 8433: 8430: 8427: 8424: 8421: 8418: 8415: 8401: 8400: 8385: 8382: 8377: 8374: 8369: 8366: 8364: 8362: 8359: 8358: 8355: 8352: 8347: 8343: 8340: 8337: 8331: 8328: 8326: 8324: 8321: 8318: 8317: 8314: 8311: 8306: 8303: 8298: 8295: 8293: 8291: 8288: 8287: 8276: 8275: 8260: 8257: 8254: 8252: 8250: 8246: 8243: 8240: 8237: 8234: 8231: 8228: 8224: 8220: 8212: 8208: 8205: 8202: 8198: 8195: 8187: 8183: 8180: 8177: 8173: 8170: 8167: 8164: 8156: 8152: 8149: 8146: 8141: 8138: 8136: 8129: 8128: 8104: 8101: 8099: 8096: 8080: 8077: 8074: 8070: 8064: 8061: 8058: 8054: 8050: 8045: 8040: 8037: 8034: 8030: 8017: 8016: 7999: 7996: 7993: 7989: 7985: 7980: 7977: 7974: 7970: 7965: 7959: 7954: 7951: 7948: 7944: 7940: 7937: 7935: 7933: 7930: 7927: 7924: 7919: 7916: 7913: 7909: 7904: 7898: 7893: 7890: 7887: 7883: 7879: 7874: 7871: 7868: 7864: 7860: 7857: 7852: 7849: 7846: 7842: 7838: 7833: 7830: 7827: 7823: 7819: 7816: 7814: 7812: 7809: 7808: 7783: 7779: 7774: 7771: 7768: 7764: 7741: 7738: 7733: 7730: 7727: 7723: 7700: 7697: 7692: 7689: 7686: 7682: 7659: 7656: 7651: 7648: 7645: 7641: 7628: 7627: 7610: 7607: 7604: 7600: 7596: 7591: 7586: 7583: 7580: 7576: 7572: 7567: 7564: 7561: 7557: 7551: 7548: 7545: 7541: 7537: 7534: 7529: 7524: 7521: 7518: 7514: 7510: 7507: 7505: 7503: 7498: 7495: 7492: 7488: 7484: 7479: 7475: 7471: 7468: 7466: 7464: 7461: 7460: 7446: 7445: 7431: 7428: 7425: 7421: 7417: 7412: 7408: 7404: 7401: 7377: 7374: 7371: 7367: 7363: 7358: 7354: 7350: 7347: 7323: 7320: 7317: 7313: 7309: 7304: 7300: 7296: 7293: 7268: 7255: 7254: 7237: 7232: 7226: 7223: 7220: 7216: 7212: 7207: 7204: 7201: 7197: 7192: 7187: 7184: 7182: 7180: 7175: 7170: 7164: 7161: 7158: 7154: 7150: 7147: 7144: 7141: 7138: 7133: 7130: 7127: 7123: 7119: 7116: 7113: 7109: 7104: 7101: 7099: 7097: 7092: 7087: 7083: 7078: 7075: 7072: 7068: 7064: 7061: 7058: 7055: 7050: 7047: 7044: 7040: 7036: 7033: 7028: 7024: 7020: 7017: 7014: 7011: 7006: 7003: 7000: 6996: 6992: 6989: 6986: 6983: 6978: 6975: 6972: 6968: 6964: 6961: 6956: 6952: 6948: 6945: 6941: 6936: 6933: 6931: 6929: 6924: 6920: 6914: 6910: 6906: 6903: 6900: 6897: 6892: 6888: 6884: 6879: 6875: 6871: 6868: 6865: 6862: 6860: 6856: 6852: 6848: 6847: 6821: 6818: 6815: 6811: 6807: 6783: 6780: 6777: 6773: 6769: 6745: 6741: 6717: 6680: 6677: 6673:William Castle 6653: 6652: 6628: 6622: 6615: 6598: 6597: 6590: 6583: 6576: 6518: 6517: 6449: 6446: 6444:is undefined. 6431: 6428: 6425: 6422: 6419: 6416: 6413: 6407: 6401: 6381: 6378: 6375: 6370: 6367: 6364: 6361: 6358: 6355: 6352: 6346: 6340: 6317: 6314: 6311: 6300: 6299: 6287: 6284: 6279: 6276: 6271: 6268: 6265: 6262: 6247: 6246: 6235: 6232: 6229: 6226: 6223: 6220: 6212: 6209: 6206: 6203: 6200: 6186: 6185: 6173: 6167: 6164: 6156: 6153: 6150: 6147: 6144: 6139: 6136: 6128: 6125: 6122: 6119: 6116: 6110: 6107: 6104: 6098: 6095: 6087: 6084: 6081: 6078: 6075: 6070: 6067: 6059: 6056: 6053: 6050: 6047: 6044: 6040: 6037: 6029: 6026: 6023: 6019: 6016: 6010: 6007: 5976: 5964: 5961: 5945: 5941: 5920: 5917: 5914: 5894: 5891: 5888: 5885: 5880: 5875: 5872: 5869: 5866: 5863: 5860: 5855: 5851: 5830: 5827: 5824: 5821: 5816: 5811: 5808: 5805: 5802: 5799: 5796: 5791: 5787: 5766: 5746: 5743: 5740: 5737: 5734: 5731: 5724: 5719: 5716: 5712: 5708: 5705: 5700: 5695: 5692: 5689: 5686: 5666: 5644: 5630: 5627: 5609: 5608: 5605: 5601: 5600: 5597: 5593: 5592: 5589: 5585: 5584: 5581: 5577: 5576: 5573: 5569: 5568: 5565: 5561: 5560: 5557: 5553: 5552: 5549: 5545: 5544: 5541: 5537: 5536: 5533: 5529: 5528: 5525: 5521: 5520: 5517: 5513: 5512: 5509: 5505: 5504: 5501: 5497: 5496: 5493: 5489: 5488: 5485: 5481: 5480: 5477: 5473: 5472: 5469: 5465: 5464: 5461: 5416: 5412: 5408: 5403: 5399: 5395: 5392: 5387: 5383: 5370: 5363: 5356: 5349: 5343: 5342: 5331: 5324: 5320: 5315: 5307: 5299: 5295: 5291: 5286: 5282: 5276: 5273: 5267: 5260: 5252: 5248: 5244: 5239: 5235: 5231: 5226: 5222: 5217: 5212: 5205: 5202: 5197: 5193: 5189: 5184: 5180: 5176: 5173: 5170: 5144: 5141: 5121: 5120: 5105: 5102: 5099: 5097: 5095: 5092: 5089: 5086: 5083: 5080: 5077: 5074: 5072: 5070: 5065: 5059: 5055: 5051: 5048: 5045: 5042: 5036: 5031: 5025: 5021: 5017: 5014: 5011: 5008: 5002: 4997: 4991: 4987: 4983: 4980: 4977: 4974: 4968: 4965: 4963: 4961: 4956: 4950: 4946: 4942: 4939: 4936: 4933: 4927: 4924: 4921: 4919: 4915: 4911: 4907: 4906: 4889: 4888: 4873: 4870: 4867: 4864: 4859: 4855: 4851: 4848: 4843: 4839: 4835: 4832: 4830: 4828: 4820: 4816: 4813: 4810: 4806: 4805: 4802: 4799: 4796: 4793: 4790: 4787: 4784: 4781: 4778: 4775: 4772: 4769: 4766: 4763: 4760: 4757: 4755: 4753: 4745: 4741: 4738: 4735: 4731: 4730: 4727: 4724: 4721: 4718: 4713: 4709: 4705: 4702: 4697: 4693: 4689: 4686: 4684: 4682: 4674: 4670: 4667: 4664: 4660: 4659: 4641: 4640: 4625: 4622: 4619: 4617: 4615: 4612: 4609: 4606: 4603: 4600: 4598: 4596: 4593: 4590: 4587: 4584: 4581: 4579: 4577: 4574: 4573: 4559: 4558: 4543: 4540: 4537: 4535: 4533: 4530: 4525: 4522: 4517: 4514: 4512: 4510: 4507: 4501: 4498: 4495: 4492: 4489: 4486: 4483: 4480: 4477: 4472: 4469: 4466: 4463: 4460: 4454: 4451: 4449: 4447: 4444: 4438: 4435: 4427: 4423: 4420: 4417: 4413: 4410: 4402: 4398: 4395: 4392: 4388: 4385: 4377: 4373: 4370: 4367: 4363: 4360: 4357: 4352: 4344: 4340: 4337: 4334: 4330: 4327: 4319: 4315: 4312: 4309: 4305: 4302: 4296: 4293: 4291: 4289: 4286: 4285: 4269: 4268: 4265: 4262: 4259: 4256: 4252: 4251: 4248: 4245: 4242: 4239: 4209:(1971) on the 4202: 4199: 4166: 4163: 4162: 4161: 4146: 4142: 4136: 4132: 4128: 4121: 4117: 4111: 4107: 4100: 4092: 4088: 4084: 4081: 4078: 4073: 4069: 4064: 4059: 4051: 4048: 4043: 4039: 4035: 4032: 4029: 4024: 4020: 4016: 4012: 4008: 4000: 3996: 3992: 3989: 3986: 3981: 3977: 3972: 3968: 3963: 3959: 3953: 3949: 3945: 3942: 3939: 3934: 3930: 3926: 3901: 3897: 3891: 3887: 3883: 3880: 3877: 3872: 3868: 3864: 3840: 3820: 3808: 3805: 3799: 3798: 3785: 3781: 3770: 3766: 3765: 3752: 3748: 3744: 3741: 3731: 3727: 3726: 3713: 3709: 3703: 3699: 3695: 3685: 3681: 3680: 3669: 3664: 3660: 3656: 3646: 3642: 3641: 3628: 3624: 3613: 3609: 3608: 3605: 3581: 3580: 3566: 3562: 3558: 3555: 3552: 3549: 3535: 3534: 3520: 3516: 3512: 3509: 3506: 3503: 3480: 3477: 3476: 3475: 3461: 3457: 3451: 3447: 3443: 3440: 3437: 3432: 3428: 3422: 3418: 3414: 3411: 3393: 3392: 3378: 3373: 3369: 3365: 3362: 3357: 3353: 3347: 3343: 3339: 3336: 3318: 3317: 3303: 3299: 3293: 3289: 3285: 3282: 3279: 3274: 3270: 3266: 3249: 3242: 3233: 3229: 3226: 3225: 3213: 3210: 3207: 3204: 3201: 3198: 3195: 3192: 3189: 3186: 3183: 3180: 3175: 3171: 3167: 3162: 3158: 3154: 3149: 3145: 3141: 3136: 3132: 3128: 3125: 3122: 3119: 3116: 3113: 3062: 3059: 3050: 3047: 2987: 2984: 2980: 2979: 2969: 2966:Wahlund effect 2961: 2954: 2936: 2935: 2934:for all genes. 2917: 2916: 2913: 2910: 2907: 2904: 2901: 2898: 2890: 2887: 2876: 2865: 2855:organisms are 2838: = 1 2818: 2817: 2801: 2795: 2791: 2782: 2777: 2773: 2769: 2766: 2758: 2753: 2749: 2745: 2737: 2732: 2728: 2724: 2721: 2716: 2712: 2703: 2698: 2694: 2689: 2685: 2681: 2679: 2677: 2673: 2667: 2662: 2658: 2650: 2645: 2641: 2634: 2631: 2625: 2622: 2614: 2609: 2605: 2600: 2595: 2591: 2587: 2579: 2574: 2570: 2563: 2560: 2554: 2551: 2543: 2538: 2534: 2529: 2524: 2520: 2512: 2507: 2503: 2496: 2493: 2487: 2484: 2476: 2471: 2467: 2462: 2458: 2455: 2450: 2445: 2441: 2433: 2428: 2424: 2417: 2414: 2408: 2405: 2397: 2392: 2388: 2383: 2377: 2373: 2369: 2367: 2365: 2361: 2357: 2354: 2351: 2348: 2345: 2341: 2337: 2329: 2324: 2320: 2316: 2308: 2303: 2299: 2295: 2291: 2284: 2281: 2275: 2269: 2266: 2260: 2257: 2253: 2249: 2241: 2236: 2232: 2228: 2220: 2215: 2211: 2207: 2204: 2200: 2193: 2190: 2184: 2178: 2175: 2169: 2163: 2160: 2153: 2149: 2141: 2136: 2132: 2128: 2120: 2115: 2111: 2107: 2102: 2100: 2098: 2094: 2090: 2087: 2084: 2081: 2078: 2074: 2070: 2062: 2057: 2053: 2049: 2041: 2036: 2032: 2028: 2025: 2021: 2017: 2014: 2008: 2005: 1999: 1993: 1990: 1983: 1979: 1971: 1966: 1962: 1958: 1950: 1945: 1941: 1937: 1934: 1930: 1926: 1923: 1920: 1917: 1914: 1910: 1906: 1898: 1893: 1889: 1885: 1877: 1872: 1868: 1864: 1860: 1858: 1856: 1853: 1849: 1845: 1837: 1832: 1829: 1826: 1822: 1818: 1815: 1807: 1802: 1799: 1796: 1792: 1788: 1785: 1777: 1772: 1769: 1766: 1762: 1757: 1753: 1751: 1728: 1719: 1695: 1694: 1682: 1678: 1670: 1662: 1659: 1656: 1648: 1640: 1637: 1634: 1626: 1618: 1615: 1612: 1604: 1596: 1593: 1590: 1582: 1574: 1571: 1568: 1560: 1552: 1548: 1514: 1513: 1498: 1490: 1485: 1481: 1477: 1474: 1471: 1468: 1465: 1462: 1459: 1456: 1453: 1450: 1447: 1444: 1441: 1436: 1432: 1428: 1425: 1417: 1412: 1408: 1401: 1398: 1392: 1389: 1381: 1376: 1372: 1368: 1365: 1363: 1361: 1353: 1348: 1344: 1340: 1339: 1336: 1328: 1323: 1319: 1315: 1312: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1274: 1270: 1266: 1263: 1255: 1250: 1246: 1239: 1236: 1230: 1227: 1219: 1214: 1210: 1206: 1203: 1201: 1199: 1191: 1186: 1182: 1178: 1177: 1141: 1133: 1120: 1113: 1103: 1102: 1093: 1091: 1078: 1074: 1065: 1060: 1056: 1052: 1047: 1043: 1039: 1036: 1028: 1023: 1019: 1003: 1002: 993: 991: 980: 972: 967: 963: 959: 951: 946: 942: 938: 935: 932: 929: 926: 923: 920: 917: 914: 911: 908: 905: 902: 894: 889: 885: 869: 868: 859: 857: 844: 840: 831: 826: 822: 818: 813: 809: 805: 802: 794: 789: 785: 710: 709: 702: 695: 687: 686: 679: 672: 665: 661: 660: 653: 645: 644: 641: 630:Punnett square 591: 590: 581: 579: 568: 560: 555: 551: 544: 541: 535: 532: 524: 519: 515: 511: 508: 500: 495: 491: 475: 474: 465: 463: 452: 444: 439: 435: 428: 425: 419: 416: 408: 403: 399: 395: 392: 384: 379: 375: 348: 335: 320: 317: 275: 265: 251: 241: 231: 201:founder effect 134:, states that 79: 78: 33: 31: 24: 15: 9: 6: 4: 3: 2: 10999: 10988: 10985: 10983: 10980: 10978: 10975: 10973: 10970: 10969: 10967: 10952: 10949: 10948: 10945: 10939: 10936: 10934: 10931: 10929: 10926: 10924: 10921: 10919: 10915: 10912: 10910: 10907: 10905: 10902: 10900: 10897: 10895: 10892: 10890: 10887: 10886: 10884: 10880: 10874: 10873:Sewall Wright 10871: 10869: 10866: 10864: 10861: 10860: 10858: 10854: 10848: 10845: 10843: 10840: 10838: 10835: 10833: 10830: 10828: 10825: 10824: 10822: 10820: 10819:Genetic drift 10816: 10810: 10807: 10805: 10802: 10801: 10799: 10791: 10785: 10782: 10780: 10777: 10775: 10772: 10770: 10767: 10766: 10764: 10762: 10758: 10752: 10749: 10747: 10744: 10742: 10739: 10737: 10734: 10732: 10729: 10727: 10724: 10722: 10719: 10717: 10714: 10712: 10709: 10707: 10704: 10702: 10699: 10697: 10694: 10692: 10689: 10687: 10684: 10682: 10679: 10678: 10676: 10672: 10668: 10661: 10656: 10654: 10649: 10647: 10642: 10641: 10638: 10632: 10629: 10627: 10623: 10620: 10617: 10615: 10612: 10610: 10608: 10603: 10601: 10598: 10596: 10593: 10591: 10588: 10586: 10584: 10580: 10579: 10567: 10562: 10558: 10554: 10550: 10545: 10541: 10537: 10532: 10527: 10523: 10519: 10515: 10511: 10508:(5): 887–93. 10507: 10503: 10499: 10494: 10490: 10486: 10481: 10477: 10473: 10469: 10465: 10461: 10457: 10453: 10449: 10445: 10441: 10440: 10434: 10430: 10426: 10422: 10418: 10414: 10410: 10409: 10403: 10399: 10395: 10391: 10387: 10383: 10379: 10376:(8): 701–10. 10375: 10371: 10367: 10366:Masel, Joanna 10363: 10359: 10355: 10351: 10347: 10343: 10339: 10334: 10330: 10326: 10321: 10316: 10312: 10308: 10304: 10300: 10296: 10292: 10288: 10284: 10277: 10272: 10268: 10264: 10260: 10256: 10252: 10248: 10244: 10240: 10237:(2): 361–72. 10236: 10232: 10228: 10223: 10220: 10216: 10212: 10208: 10204: 10200: 10196: 10192: 10188: 10184: 10179: 10177: 10176:0-521-77544-2 10173: 10169: 10165: 10161: 10157: 10152: 10147: 10143: 10139: 10135: 10131: 10127: 10123: 10119: 10114: 10110: 10106: 10101: 10100: 10088:Edwards, 1977 10085: 10076: 10068: 10064: 10060: 10056: 10052: 10048: 10044: 10040: 10033: 10025: 10021: 10017: 10011: 10003: 9999: 9994: 9989: 9985: 9981: 9977: 9973: 9969: 9965: 9959: 9950: 9944:Pearson, 1903 9941: 9932: 9923: 9917: 9911: 9906: 9902: 9898: 9894: 9887: 9881: 9876: 9872: 9868: 9864: 9860: 9856: 9852: 9848: 9841: 9833: 9829: 9825: 9821: 9817: 9813: 9809: 9805: 9798: 9796: 9787: 9783: 9779: 9775: 9771: 9767: 9763: 9759: 9755: 9751: 9747: 9740: 9732: 9728: 9724: 9720: 9716: 9712: 9708: 9704: 9700: 9696: 9692: 9685: 9677: 9673: 9669: 9665: 9660: 9655: 9651: 9647: 9643: 9636: 9627: 9619: 9615: 9608: 9600: 9596: 9591: 9586: 9582: 9578: 9574: 9570: 9566: 9562: 9558: 9551: 9547: 9528: 9524: 9518: 9514: 9504: 9501: 9499: 9496: 9494: 9491: 9489: 9486: 9484: 9481: 9479: 9476: 9474: 9473:Genetic drift 9471: 9469: 9466: 9464: 9461: 9459: 9456: 9454: 9451: 9449: 9446: 9426: 9418: 9415: 9412: 9406: 9400: 9397: 9394: 9388: 9385: 9382: 9377: 9373: 9361: 9358: 9356: 9353: 9351: 9348: 9346: 9343: 9341: 9338: 9336: 9333: 9332: 9326: 9324: 9320: 9316: 9312: 9308: 9304: 9300: 9292: 9287: 9278: 9275: 9258: 9255: 9223: 9220: 9215: 9212: 9209: 9206: 9197: 9194: 9189: 9186: 9183: 9180: 9177: 9174: 9163: 9162: 9161: 9144: 9141: 9136: 9133: 9124: 9105: 9102: 9072: 9069: 9066: 9063: 9060: 9050: 9047: 9042: 9039: 9029: 9026: 9021: 9016: 9012: 8999: 8998: 8997: 8982: 8979: 8976: 8967: 8948: 8945: 8933: 8931: 8921: 8903: 8900: 8895: 8891: 8885: 8881: 8877: 8872: 8867: 8863: 8859: 8854: 8850: 8842: 8841: 8840: 8822: 8819: 8816: 8813: 8810: 8807: 8804: 8801: 8796: 8792: 8788: 8783: 8779: 8775: 8772: 8767: 8763: 8755: 8754: 8753: 8732: 8729: 8724: 8716: 8713: 8710: 8704: 8702: 8695: 8691: 8683: 8680: 8674: 8671: 8668: 8659: 8656: 8653: 8647: 8644: 8642: 8635: 8631: 8627: 8620: 8617: 8612: 8604: 8601: 8598: 8592: 8590: 8583: 8579: 8568: 8565: 8560: 8557: 8552: 8550: 8545: 8534: 8533: 8532: 8514: 8511: 8508: 8505: 8502: 8497: 8493: 8489: 8484: 8480: 8472: 8471: 8470: 8452: 8449: 8446: 8443: 8440: 8437: 8434: 8431: 8428: 8425: 8422: 8419: 8416: 8413: 8406: 8405: 8404: 8383: 8380: 8375: 8372: 8367: 8365: 8360: 8353: 8350: 8345: 8341: 8338: 8335: 8329: 8327: 8322: 8319: 8312: 8309: 8304: 8301: 8296: 8294: 8289: 8278: 8277: 8258: 8255: 8253: 8244: 8241: 8238: 8235: 8232: 8229: 8226: 8222: 8196: 8171: 8168: 8165: 8139: 8137: 8119: 8118: 8117: 8115: 8111: 8095: 8078: 8075: 8072: 8068: 8062: 8059: 8056: 8052: 8048: 8043: 8038: 8035: 8032: 8028: 7997: 7994: 7991: 7987: 7983: 7978: 7975: 7972: 7968: 7963: 7957: 7952: 7949: 7946: 7942: 7938: 7936: 7925: 7922: 7917: 7914: 7911: 7907: 7902: 7896: 7891: 7888: 7885: 7881: 7877: 7872: 7869: 7866: 7862: 7858: 7855: 7850: 7847: 7844: 7840: 7831: 7828: 7825: 7821: 7817: 7815: 7810: 7799: 7798: 7797: 7781: 7777: 7772: 7769: 7766: 7762: 7739: 7736: 7731: 7728: 7725: 7721: 7698: 7695: 7690: 7687: 7684: 7680: 7657: 7654: 7649: 7646: 7643: 7639: 7608: 7605: 7602: 7598: 7594: 7589: 7584: 7581: 7578: 7574: 7570: 7565: 7562: 7559: 7555: 7549: 7546: 7543: 7539: 7535: 7532: 7527: 7522: 7519: 7516: 7512: 7508: 7506: 7496: 7493: 7490: 7486: 7482: 7477: 7473: 7469: 7467: 7462: 7451: 7450: 7449: 7429: 7426: 7423: 7419: 7415: 7410: 7406: 7402: 7399: 7375: 7372: 7369: 7365: 7361: 7356: 7352: 7348: 7345: 7321: 7318: 7315: 7311: 7307: 7302: 7298: 7294: 7291: 7283: 7282: 7281: 7266: 7235: 7230: 7224: 7221: 7218: 7214: 7210: 7205: 7202: 7199: 7195: 7190: 7185: 7183: 7173: 7168: 7162: 7159: 7156: 7152: 7148: 7142: 7136: 7131: 7128: 7125: 7121: 7114: 7107: 7102: 7100: 7090: 7085: 7076: 7073: 7070: 7066: 7062: 7056: 7048: 7045: 7042: 7038: 7034: 7031: 7026: 7022: 7015: 7012: 7004: 7001: 6998: 6994: 6990: 6984: 6976: 6973: 6970: 6966: 6962: 6959: 6954: 6950: 6943: 6939: 6934: 6932: 6922: 6912: 6908: 6901: 6898: 6890: 6886: 6882: 6877: 6873: 6866: 6863: 6861: 6854: 6850: 6838: 6837: 6836: 6819: 6816: 6813: 6809: 6805: 6781: 6778: 6775: 6771: 6767: 6743: 6739: 6715: 6706: 6702: 6698: 6694: 6690: 6686: 6676: 6674: 6670: 6666: 6662: 6658: 6651: 6648: 6645: 6641: 6637: 6634: 6627: 6621: 6618: =  6614: 6610: 6607: =  6606: 6603: 6600: 6599: 6596: 6589: 6582: 6575: 6571: 6568: +  6567: 6563: 6560: +  6559: 6555: 6552: +  6551: 6547: 6544: +  6543: 6539: 6534: 6530: 6526: 6523: 6520: 6519: 6516: 6512: 6511: 6510: 6508: 6504: 6500: 6496: 6495:mathematician 6493: 6489: 6485: 6481: 6478: =  6477: 6473: 6469: 6465: 6462: 6458: 6454: 6445: 6429: 6426: 6423: 6420: 6417: 6414: 6411: 6399: 6376: 6373: 6368: 6365: 6362: 6359: 6356: 6353: 6350: 6338: 6329: 6315: 6312: 6309: 6285: 6282: 6277: 6274: 6269: 6266: 6263: 6260: 6252: 6251: 6250: 6233: 6230: 6227: 6224: 6207: 6201: 6191: 6190: 6189: 6171: 6151: 6145: 6123: 6117: 6108: 6105: 6102: 6082: 6076: 6054: 6048: 6042: 6024: 6017: 6008: 6005: 5997: 5996: 5995: 5993: 5991: 5974: 5960: 5943: 5939: 5918: 5915: 5912: 5889: 5886: 5873: 5870: 5864: 5858: 5853: 5849: 5825: 5822: 5809: 5806: 5800: 5794: 5789: 5785: 5764: 5741: 5738: 5735: 5729: 5717: 5714: 5706: 5693: 5690: 5684: 5664: 5626: 5624: 5620: 5615: 5606: 5603: 5602: 5598: 5595: 5594: 5590: 5587: 5586: 5582: 5579: 5578: 5574: 5571: 5570: 5566: 5563: 5562: 5558: 5555: 5554: 5550: 5547: 5546: 5542: 5539: 5538: 5534: 5531: 5530: 5526: 5523: 5522: 5518: 5515: 5514: 5510: 5507: 5506: 5502: 5499: 5498: 5494: 5491: 5490: 5486: 5483: 5482: 5478: 5475: 5474: 5470: 5467: 5466: 5462: 5459: 5458: 5454: 5450: 5444: 5442: 5438: 5434: 5430: 5414: 5410: 5406: 5401: 5397: 5393: 5390: 5385: 5381: 5369: 5362: 5355: 5348: 5329: 5322: 5318: 5313: 5297: 5293: 5289: 5284: 5280: 5274: 5271: 5250: 5246: 5242: 5237: 5233: 5229: 5224: 5220: 5215: 5203: 5195: 5191: 5187: 5182: 5178: 5171: 5168: 5161: 5160: 5159: 5157: 5153: 5149: 5140: 5138: 5134: 5130: 5126: 5103: 5100: 5098: 5090: 5087: 5084: 5081: 5078: 5075: 5073: 5063: 5057: 5049: 5046: 5043: 5034: 5029: 5023: 5015: 5012: 5009: 5000: 4995: 4989: 4981: 4978: 4975: 4966: 4964: 4954: 4948: 4940: 4937: 4934: 4925: 4922: 4920: 4913: 4909: 4897: 4896: 4895: 4893: 4871: 4868: 4865: 4862: 4857: 4853: 4849: 4846: 4841: 4837: 4833: 4831: 4800: 4797: 4794: 4791: 4788: 4785: 4782: 4779: 4776: 4773: 4770: 4767: 4764: 4761: 4758: 4756: 4725: 4722: 4719: 4716: 4711: 4707: 4703: 4700: 4695: 4691: 4687: 4685: 4650: 4649: 4648: 4646: 4623: 4620: 4618: 4610: 4607: 4604: 4601: 4599: 4591: 4588: 4585: 4582: 4580: 4575: 4564: 4563: 4562: 4541: 4538: 4536: 4523: 4520: 4515: 4513: 4496: 4493: 4490: 4487: 4484: 4478: 4475: 4470: 4467: 4464: 4461: 4458: 4452: 4450: 4411: 4386: 4358: 4355: 4328: 4303: 4300: 4294: 4292: 4287: 4276: 4275: 4274: 4266: 4263: 4260: 4257: 4254: 4253: 4249: 4246: 4243: 4240: 4237: 4236: 4230: 4228: 4224: 4220: 4216: 4212: 4208: 4198: 4196: 4192: 4188: 4184: 4180: 4176: 4172: 4144: 4140: 4134: 4130: 4126: 4119: 4115: 4109: 4105: 4090: 4086: 4082: 4079: 4076: 4071: 4067: 4062: 4049: 4046: 4041: 4037: 4033: 4030: 4027: 4022: 4018: 4014: 4006: 3998: 3994: 3990: 3987: 3984: 3979: 3975: 3970: 3966: 3961: 3951: 3947: 3943: 3940: 3937: 3932: 3928: 3917: 3916: 3915: 3899: 3889: 3885: 3881: 3878: 3875: 3870: 3866: 3854: 3838: 3818: 3804: 3783: 3779: 3771: 3768: 3767: 3750: 3746: 3742: 3739: 3732: 3729: 3728: 3711: 3707: 3701: 3697: 3693: 3686: 3683: 3682: 3667: 3662: 3658: 3654: 3647: 3644: 3643: 3626: 3622: 3614: 3611: 3610: 3606: 3603: 3602: 3596: 3594: 3590: 3586: 3564: 3556: 3553: 3550: 3540: 3539: 3538: 3518: 3510: 3507: 3504: 3494: 3493: 3492: 3490: 3486: 3459: 3455: 3449: 3445: 3441: 3438: 3430: 3426: 3420: 3416: 3409: 3402: 3401: 3400: 3398: 3397:heterozygotes 3376: 3371: 3367: 3363: 3355: 3351: 3345: 3341: 3334: 3327: 3326: 3325: 3323: 3301: 3291: 3287: 3283: 3280: 3277: 3272: 3268: 3257: 3256: 3255: 3252: 3248: 3241: 3236: 3211: 3208: 3205: 3202: 3199: 3196: 3193: 3190: 3187: 3184: 3181: 3178: 3173: 3169: 3165: 3160: 3156: 3152: 3147: 3143: 3139: 3134: 3126: 3123: 3120: 3117: 3114: 3104: 3103: 3102: 3100: 3097: +  3096: 3093: +  3092: 3088: 3085: +  3084: 3080: 3076: 3067: 3058: 3056: 3046: 3042: 3040: 3036: 3032: 3027: 3025: 3021: 3017: 3013: 3009: 3005: 3001: 2997: 2993: 2983: 2977: 2976:genetic drift 2973: 2970: 2967: 2962: 2958: 2955: 2952: 2948: 2944: 2941: 2940: 2939: 2933: 2929: 2925: 2924:Random mating 2922: 2921: 2920: 2914: 2911: 2908: 2905: 2902: 2899: 2896: 2895: 2894: 2886: 2884: 2874:sex 'chases' 2873: 2872:heterogametic 2862: 2858: 2857:heterogametic 2854: 2850: 2846: 2843:If in either 2841: 2837: 2831: 2824: 2799: 2793: 2775: 2771: 2767: 2751: 2747: 2730: 2726: 2722: 2719: 2714: 2696: 2692: 2687: 2683: 2680: 2671: 2665: 2660: 2643: 2639: 2632: 2629: 2623: 2607: 2603: 2598: 2593: 2589: 2572: 2568: 2561: 2558: 2552: 2536: 2532: 2527: 2522: 2505: 2501: 2494: 2491: 2485: 2469: 2465: 2460: 2456: 2453: 2448: 2443: 2426: 2422: 2415: 2412: 2406: 2390: 2386: 2381: 2375: 2371: 2368: 2359: 2355: 2352: 2349: 2346: 2343: 2339: 2322: 2318: 2301: 2297: 2293: 2289: 2282: 2279: 2273: 2267: 2264: 2258: 2255: 2251: 2234: 2230: 2213: 2209: 2205: 2202: 2198: 2191: 2188: 2182: 2176: 2173: 2167: 2161: 2158: 2151: 2134: 2130: 2113: 2109: 2105: 2101: 2092: 2088: 2085: 2082: 2079: 2076: 2072: 2055: 2051: 2034: 2030: 2026: 2023: 2019: 2015: 2012: 2006: 2003: 1997: 1991: 1988: 1981: 1964: 1960: 1943: 1939: 1935: 1932: 1928: 1924: 1921: 1918: 1915: 1912: 1908: 1891: 1887: 1870: 1866: 1862: 1859: 1851: 1847: 1830: 1827: 1824: 1820: 1816: 1800: 1797: 1794: 1790: 1786: 1770: 1767: 1764: 1760: 1755: 1742: 1741: 1740: 1731: 1727: 1722: 1718: 1706: 1701: 1680: 1668: 1657: 1646: 1635: 1624: 1613: 1602: 1591: 1580: 1569: 1558: 1546: 1538: 1537: 1536: 1534: 1530: 1526: 1522: 1519: 1483: 1479: 1475: 1472: 1469: 1463: 1460: 1457: 1451: 1448: 1445: 1442: 1439: 1434: 1430: 1426: 1410: 1406: 1399: 1396: 1390: 1374: 1370: 1366: 1364: 1346: 1342: 1321: 1317: 1313: 1310: 1307: 1301: 1298: 1295: 1289: 1286: 1283: 1280: 1277: 1272: 1268: 1264: 1248: 1244: 1237: 1234: 1228: 1212: 1208: 1204: 1202: 1184: 1180: 1168: 1167: 1166: 1164: 1163: 1158: 1157: 1150: 1140: 1136: 1128: 1119: 1112: 1101: 1094: 1092: 1076: 1058: 1054: 1050: 1045: 1041: 1037: 1021: 1017: 1009: 1008: 1001: 994: 992: 965: 961: 944: 940: 936: 933: 930: 927: 924: 921: 918: 915: 912: 909: 906: 903: 887: 883: 875: 874: 867: 860: 858: 842: 824: 820: 816: 811: 807: 803: 787: 783: 775: 774: 771: 768: 764: 760: 756: 752: 748: 740: 736: 730: 726: 722: 718: 707: 703: 700: 696: 693: 689: 688: 684: 680: 677: 673: 670: 666: 662: 658: 654: 651: 647: 646: 639: 633: 631: 617: 613: 607: 603: 597: 589: 582: 580: 553: 549: 542: 539: 533: 517: 513: 509: 493: 489: 481: 480: 473: 466: 464: 437: 433: 426: 423: 417: 401: 397: 393: 377: 373: 365: 364: 361: 359: 354: 347: 341: 334: 329: 326: 316: 314: 309: 305: 301: 296: 294: 290: 286: 285:heterozygotes 281: 271: 262: 257: 247: 237: 228: 224: 220: 215: 213: 212: 208: 204: 202: 197: 196: 191: 190: 185: 184: 183:meiotic drive 179: 178: 173: 172: 167: 166: 161: 160: 155: 154: 149: 148: 143: 142: 141:genetic drift 137: 133: 129: 125: 121: 117: 113: 105: 101: 97: 94: 90: 85: 75: 72: 64: 54: 50: 44: 43: 37: 32: 23: 22: 19: 10889:Biogeography 10863:R. A. Fisher 10741:Heritability 10680: 10674:Key concepts 10606: 10582: 10556: 10552: 10505: 10501: 10488: 10484: 10443: 10437: 10412: 10406: 10373: 10369: 10341: 10337: 10286: 10282: 10234: 10230: 10218: 10186: 10182: 10167: 10128:(3): 821–5. 10125: 10121: 10108: 10104: 10084: 10075: 10042: 10038: 10032: 10023: 10019: 10010: 9975: 9971: 9958: 9949: 9940: 9935:Castle, 1903 9931: 9922: 9900: 9896: 9886: 9850: 9846: 9840: 9807: 9803: 9756:(1): 10–14. 9753: 9749: 9739: 9698: 9694: 9684: 9649: 9645: 9635: 9626: 9617: 9607: 9564: 9560: 9550: 9526: 9522: 9517: 9503:Genetic load 9335:F-statistics 9322: 9321:in his book 9303:ternary plot 9296: 9276: 9244: 9122: 9091: 8934: 8927: 8919: 8838: 8751: 8530: 8468: 8402: 8113: 8109: 8106: 8018: 7629: 7447: 7256: 6701:independence 6696: 6692: 6688: 6682: 6656: 6654: 6649: 6646: 6643: 6639: 6635: 6632: 6625: 6619: 6612: 6611:. And since 6608: 6604: 6601: 6594: 6587: 6580: 6573: 6569: 6565: 6561: 6557: 6553: 6549: 6545: 6541: 6536: 6532: 6528: 6524: 6521: 6513: 6479: 6475: 6472:Karl Pearson 6451: 6330: 6301: 6248: 6187: 5989: 5966: 5632: 5622: 5618: 5616: 5612: 5452: 5448: 5440: 5436: 5432: 5431: 5367: 5360: 5353: 5346: 5344: 5155: 5151: 5146: 5136: 5122: 4890: 4642: 4560: 4272: 4204: 4194: 4168: 3810: 3802: 3592: 3584: 3582: 3536: 3482: 3395:and for all 3394: 3319: 3250: 3246: 3239: 3234: 3227: 3098: 3094: 3090: 3086: 3082: 3074: 3072: 3052: 3043: 3038: 3034: 3028: 3023: 3019: 3015: 3011: 3007: 2999: 2995: 2989: 2981: 2937: 2932:homozygosity 2918: 2892: 2861:X chromosome 2842: 2835: 2829: 2822: 2819: 1729: 1725: 1720: 1716: 1704: 1696: 1532: 1528: 1524: 1515: 1160: 1154: 1148: 1138: 1131: 1126: 1117: 1110: 1106: 1095: 995: 861: 769: 762: 758: 754: 750: 746: 738: 734: 731: 724: 720: 716: 713: 705: 698: 691: 682: 675: 668: 656: 649: 627: 615: 611: 605: 601: 583: 467: 352: 345: 339: 332: 322: 297: 292: 288: 279: 269: 255: 245: 235: 226: 222: 216: 205: 199: 193: 187: 181: 175: 169: 163: 157: 151: 145: 139: 131: 127: 123: 119: 115: 109: 99: 95: 67: 58: 39: 18: 10842:Coalescence 10016:Stern, Curt 9953:Hardy, 1908 9527:probability 9160:, to be 1. 6657:Hardy's law 6488:G. H. Hardy 5992:-statistics 5123:There is 1 4645:expectation 3322:homozygotes 2986:Sex linkage 2883:homogametic 300:G. H. Hardy 261:homozygotes 259:for the AA 147:mate choice 53:introducing 10966:Categories 10784:Ecological 10774:Artificial 10553:New Phytol 10491:: 368–382. 10231:Biometrics 10183:Biometrics 10111:: 233–242. 9926:Yule, 1902 9847:Biometrics 9804:Biometrics 9618:www.mun.ca 9537:References 6665:Curt Stern 5987:(see also 5433:An example 5139:rejected. 4238:Phenotype 4215:phenotypes 4207:E. B. Ford 4175:asymptotic 3607:Frequency 3055:polyploidy 2992:sex linked 2928:inbreeding 2845:monoecious 599:Length of 325:monoecious 319:Derivation 207:inbreeding 61:April 2020 36:references 10894:Evolution 10761:Selection 10522:0002-9297 10370:BioEssays 10358:123415153 10344:: 33–39. 10311:0036-8075 10251:0006-341X 10225:Guo, Sw; 10221:, London. 10142:0016-6731 9903:: 34–39. 9770:0001-5652 9715:1471-0064 9668:1018-4813 9581:0016-6731 9542:Citations 9523:frequency 9521:The term 9419:θ 9416:− 9401:θ 9398:− 9389:θ 9374:θ 9190:⋅ 9137:− 9070:− 8878:− 8503:− 8339:× 8236:× 8172:× 8076:− 8060:− 8036:− 7995:− 7984:− 7976:− 7950:− 7923:− 7915:− 7889:− 7870:− 7848:− 7829:− 7778:≠ 7770:− 7729:− 7688:− 7647:− 7606:− 7595:− 7582:− 7563:− 7547:− 7520:− 7494:− 7483:− 7427:− 7416:− 7373:− 7362:− 7319:− 7308:− 7222:− 7203:− 7160:− 7129:− 7074:− 7046:− 7032:∣ 7002:− 6974:− 6960:∣ 6817:− 6779:− 6572:), or as 6505:and held 6468:selection 6457:Udny Yule 6380:∞ 6377:− 6270:− 6202:⁡ 6146:⁡ 6118:⁡ 6109:− 6077:⁡ 6049:⁡ 6043:− 6018:⁡ 5913:ε 5890:ε 5826:ε 5823:≥ 5718:∈ 5188:∣ 5172:⁡ 5047:− 5013:− 4979:− 4938:− 4926:∑ 4910:χ 4863:× 4792:× 4786:× 4780:× 4717:× 4608:− 4589:− 4479:× 4462:× 4359:× 4304:× 4127:⋯ 4080:… 4031:⋯ 4007:∈ 3988:… 3971:∑ 3941:⋯ 3879:⋯ 3604:Genotype 3485:polyploid 3281:⋯ 2943:Selection 2853:dioecious 2849:dioecious 1518:dioecious 177:gene flow 10918:genomics 10856:Founders 10622:Archived 10540:15789306 10476:17788516 10398:28513167 10390:22576789 10329:17779291 10211:25856832 10160:10388804 10122:Genetics 10020:Genetics 10002:10388804 9972:Genetics 9966:(1999). 9875:12028776 9867:15339292 9832:25856832 9786:37599930 9778:16514241 9731:14031116 9723:16304600 9676:14872201 9599:18645201 9561:Genetics 9329:See also 9307:parabola 8733:0.00668. 8515:0.00382. 6461:American 5905:, where 5757:, where 4894:states: 4187:computer 3232:, ..., A 2957:Mutation 1521:diploids 643:Females 358:genotype 328:diploids 308:dominant 283:for the 278:(Aa) = 2 221:denoted 171:mutation 10769:Natural 10736:Fitness 10531:1199378 10468:1670409 10448:Bibcode 10439:Science 10417:Bibcode 10320:2582692 10291:Bibcode 10283:Science 10267:1637966 10259:2532296 10203:2556115 10151:1460671 10096:Sources 10067:8863631 10059:5673165 9993:1460671 9824:2556115 9590:2475721 9498:Fitness 9311:alleles 8904:0.00000 8823:1.00000 8817:0.00668 8811:0.15007 8805:0.84325 8684:0.15007 8621:0.84325 8569:0.07886 8558:0.15771 8453:1.00000 8447:0.00286 8441:0.15771 8435:0.83943 8384:0.00286 8354:0.15771 8313:0.83943 6659:in the 6499:cricket 6492:British 6448:History 4255:Number 3587:is the 2881:in the 2870:in the 1711:(AA,aa) 1159:) and ( 1137:(AA) = 1116:(AA) ≠ 614:= 0.6, 268:(aa) = 254:(AA) = 219:alleles 128:theorem 89:alleles 49:improve 10779:Sexual 10607:et al. 10538:  10528:  10520:  10474:  10466:  10396:  10388:  10356:  10327:  10317:  10309:  10265:  10257:  10249:  10209:  10201:  10174:  10158:  10148:  10140:  10065:  10057:  10026:: 1–5. 10000:  9990:  9873:  9865:  9830:  9822:  9784:  9776:  9768:  9729:  9721:  9713:  9674:  9666:  9597:  9587:  9579:  7391:, and 6703:, and 6695:, and 6286:0.023. 5607:1.000 5599:0.730 5591:0.474 5583:0.291 5575:0.151 5567:0.067 5559:0.034 5551:0.007 5543:0.001 5535:0.000 5527:0.000 5519:0.000 5511:0.000 5503:0.000 5495:0.000 5487:0.000 5479:0.000 5471:0.000 5345:where 4996:1467.4 4982:1467.4 4726:1467.4 4250:Total 4197:2005) 4195:et al. 4004:  3595:= 4): 3589:ploidy 3583:where 1531:, and 1151:> 1 1127:future 664:Males 351:(a) = 338:(A) = 244:(a) = 234:(A) = 136:allele 114:, the 38:, but 10464:JSTOR 10394:S2CID 10354:S2CID 10279:(PDF) 10255:JSTOR 10199:JSTOR 10063:S2CID 9897:Stats 9871:S2CID 9820:JSTOR 9782:S2CID 9727:S2CID 9509:Notes 7280:when 6278:141.2 5091:0.756 5085:0.073 5079:0.001 5030:141.2 5016:141.2 4854:0.046 4801:141.2 4789:0.046 4783:0.954 4708:0.954 4624:0.046 4611:0.954 4542:0.954 4267:1612 4258:1469 3769:aaaa 3730:Aaaa 3684:AAaa 3645:AAAa 3612:AAAA 3004:human 1702:with 618:= 0.4 130:, or 124:model 10916:and 10609:2005 10536:PMID 10518:ISSN 10472:PMID 10386:PMID 10325:PMID 10307:ISSN 10263:PMID 10247:ISSN 10207:PMID 10172:ISBN 10156:PMID 10138:ISSN 10055:PMID 9998:PMID 9863:PMID 9828:PMID 9774:PMID 9766:ISSN 9719:PMID 9711:ISSN 9672:PMID 9664:ISSN 9595:PMID 9577:ISSN 9030:2500 8949:2500 8839:and 8469:and 8376:1750 8346:1750 8305:1750 8302:1469 8259:1750 8227:1469 8112:and 7712:and 6797:and 6595:say. 6548:):2( 6490:, a 6427:> 5916:> 5887:< 5841:and 5621:and 5169:prob 5154:and 5104:0.83 4976:1469 4866:1612 4795:1612 4720:1612 4647:is: 4561:and 4524:3224 4521:3076 4485:1469 4465:1469 4261:138 4191:MCMC 3811:For 3491:of: 3081:of ( 3022:and 3010:and 3000:e.g. 2996:e.g. 2868:′(a) 1733:(aa) 1724:(AA) 1146:for 1144:(AA) 1123:(AA) 753:) = 704:aa ( 697:Aa ( 681:Aa ( 674:AA ( 343:and 302:and 291:and 239:and 225:and 209:and 98:and 10561:doi 10526:PMC 10510:doi 10456:doi 10425:doi 10413:200 10378:doi 10346:doi 10315:PMC 10299:doi 10239:doi 10191:doi 10146:PMC 10130:doi 10126:152 10047:doi 9988:PMC 9980:doi 9976:152 9905:doi 9855:doi 9812:doi 9758:doi 9703:doi 9654:doi 9585:PMC 9569:doi 9565:179 9092:As 8342:138 8239:138 8132:sum 7143:0.5 6691:, 2 6644:and 6564:):( 6275:138 5711:min 5604:28 5596:30 5588:26 5580:32 5572:24 5564:34 5556:22 5548:20 5540:18 5532:16 5524:14 5516:12 5508:10 5137:not 5064:3.4 5050:3.4 5010:138 4872:3.4 4491:138 4471:138 3855:of 3245:to 3101:). 3018:, 2 2879:(a) 2847:or 2825:+ 1 1713:is 1707:= 3 765:= 1 757:+ 2 741:= 1 727:= 1 719:+ 2 690:a ( 667:A ( 655:a ( 648:A ( 132:law 110:In 10968:: 10555:. 10551:. 10534:. 10524:. 10516:. 10506:76 10504:. 10500:. 10489:64 10487:. 10470:. 10462:. 10454:. 10444:97 10442:. 10423:. 10411:. 10392:. 10384:. 10374:34 10372:. 10352:. 10340:. 10323:. 10313:. 10305:. 10297:. 10287:28 10285:. 10281:. 10261:. 10253:. 10245:. 10235:48 10233:. 10205:. 10197:. 10187:36 10185:. 10154:. 10144:. 10136:. 10124:. 10120:. 10109:35 10107:. 10061:. 10053:. 10043:31 10041:. 10024:47 10022:. 9996:. 9986:. 9974:. 9970:. 9899:. 9895:. 9869:. 9861:. 9851:60 9849:. 9826:. 9818:. 9808:36 9806:. 9794:^ 9780:. 9772:. 9764:. 9754:61 9752:. 9748:. 9725:. 9717:. 9709:. 9697:. 9693:. 9670:. 9662:. 9650:12 9648:. 9644:. 9616:. 9593:. 9583:. 9575:. 9563:. 9559:. 9325:. 9289:A 9259:25 9224:25 9198:50 9145:50 9125:, 9106:50 9051:50 8996:. 8215:aa 8190:Aa 8159:AA 7796:: 7337:, 6671:. 6642:, 6638:, 6631:, 6609:pr 6593:, 6579::2 6556:)( 6535:. 6527::2 6392:; 6328:. 6215:Aa 6159:Aa 6131:Aa 6090:Aa 6062:Aa 6032:Aa 5625:. 5500:8 5492:6 5484:4 5476:2 5468:0 5429:. 5415:12 5402:11 5364:22 5359:, 5357:12 5352:, 5350:11 5323:12 5251:22 5238:12 5225:11 5183:12 4823:aa 4748:Aa 4677:AA 4430:aa 4405:Aa 4380:AA 4347:Aa 4322:AA 4264:5 3914:: 3399:: 3324:: 3254:; 3057:. 3020:pq 3002:, 2653:Aa 2617:aa 2582:Aa 2546:aa 2515:Aa 2479:AA 2436:Aa 2400:AA 2332:aa 2311:aa 2244:aa 2223:Aa 2144:Aa 2123:Aa 2065:aa 2044:AA 1974:Aa 1953:AA 1901:AA 1880:AA 1840:aa 1810:Aa 1780:AA 1737:Aa 1715:2 1673:aa 1665:aa 1651:aa 1643:Aa 1629:Aa 1621:Aa 1607:aa 1599:AA 1585:Aa 1577:AA 1563:AA 1555:AA 1533:aa 1529:Aa 1527:, 1525:AA 1420:Aa 1384:aa 1258:Aa 1222:AA 1031:aa 897:Aa 797:AA 761:+ 759:pq 749:+ 737:+ 723:+ 721:pq 708:) 701:) 699:qp 694:) 685:) 683:pq 678:) 671:) 659:) 652:) 624:). 604:, 563:Aa 527:aa 447:Aa 411:AA 280:pq 263:, 214:. 198:, 192:, 186:, 180:, 174:, 168:, 162:, 156:, 150:, 144:, 126:, 122:, 10659:e 10652:t 10645:v 10569:. 10563:: 10557:1 10542:. 10512:: 10478:. 10458:: 10450:: 10431:. 10427:: 10419:: 10400:. 10380:: 10360:. 10348:: 10342:2 10331:. 10301:: 10293:: 10269:. 10241:: 10213:. 10193:: 10162:. 10132:: 10069:. 10049:: 10004:. 9982:: 9913:. 9907:: 9901:3 9877:. 9857:: 9834:. 9814:: 9788:. 9760:: 9733:. 9705:: 9699:6 9678:. 9656:: 9620:. 9601:. 9571:: 9529:. 9444:) 9432:) 9427:2 9423:) 9413:1 9410:( 9407:, 9404:) 9395:1 9392:( 9386:2 9383:, 9378:2 9370:( 9256:1 9221:1 9216:= 9213:q 9210:p 9207:2 9195:1 9187:2 9184:= 9181:q 9178:p 9175:2 9142:1 9134:1 9123:p 9103:1 9073:q 9067:1 9064:= 9061:p 9048:1 9043:= 9040:q 9027:1 9022:= 9017:2 9013:q 8983:q 8980:p 8977:2 8946:1 8901:= 8896:1 8892:r 8886:1 8882:p 8873:2 8868:1 8864:q 8860:= 8855:1 8851:E 8820:= 8814:+ 8808:+ 8802:= 8797:1 8793:r 8789:+ 8784:1 8780:q 8776:2 8773:+ 8768:1 8764:p 8730:= 8725:2 8721:) 8717:r 8714:+ 8711:q 8708:( 8705:= 8696:1 8692:r 8681:= 8678:) 8675:r 8672:+ 8669:q 8666:( 8663:) 8660:q 8657:+ 8654:p 8651:( 8648:2 8645:= 8636:1 8632:q 8628:2 8618:= 8613:2 8609:) 8605:q 8602:+ 8599:p 8596:( 8593:= 8584:1 8580:p 8566:= 8561:2 8553:= 8546:q 8512:= 8509:r 8506:p 8498:2 8494:q 8490:= 8485:0 8481:E 8450:= 8444:+ 8438:+ 8432:= 8429:r 8426:+ 8423:q 8420:2 8417:+ 8414:p 8381:= 8373:5 8368:= 8361:r 8351:= 8336:2 8330:= 8323:q 8320:2 8310:= 8297:= 8290:p 8256:= 8245:5 8242:+ 8233:2 8230:+ 8223:= 8219:) 8211:( 8207:s 8204:b 8201:o 8197:+ 8194:) 8186:( 8182:s 8179:b 8176:o 8169:2 8166:+ 8163:) 8155:( 8151:s 8148:b 8145:o 8140:= 8114:q 8110:p 8079:1 8073:t 8069:r 8063:1 8057:t 8053:p 8049:= 8044:2 8039:1 8033:t 8029:q 7998:1 7992:t 7988:r 7979:1 7973:t 7969:p 7964:/ 7958:2 7953:1 7947:t 7943:q 7939:= 7929:) 7926:1 7918:1 7912:t 7908:p 7903:/ 7897:2 7892:1 7886:t 7882:q 7878:+ 7873:1 7867:t 7863:q 7859:2 7856:+ 7851:1 7845:t 7841:p 7837:( 7832:1 7826:t 7822:p 7818:= 7811:0 7782:0 7773:1 7767:t 7763:p 7740:1 7737:= 7732:1 7726:t 7722:r 7699:0 7696:= 7691:1 7685:t 7681:q 7658:0 7655:= 7650:1 7644:t 7640:p 7609:1 7603:t 7599:p 7590:2 7585:1 7579:t 7575:q 7571:+ 7566:1 7560:t 7556:q 7550:1 7544:t 7540:p 7536:2 7533:+ 7528:2 7523:1 7517:t 7513:p 7509:= 7497:1 7491:t 7487:p 7478:t 7474:p 7470:= 7463:0 7430:1 7424:t 7420:r 7411:t 7407:r 7403:= 7400:0 7376:1 7370:t 7366:q 7357:t 7353:q 7349:= 7346:0 7322:1 7316:t 7312:p 7303:t 7299:p 7295:= 7292:0 7267:t 7236:2 7231:) 7225:1 7219:t 7215:q 7211:+ 7206:1 7200:t 7196:p 7191:( 7186:= 7174:2 7169:) 7163:1 7157:t 7153:q 7149:2 7146:) 7140:( 7137:+ 7132:1 7126:t 7122:p 7118:) 7115:1 7112:( 7108:( 7103:= 7091:2 7086:) 7082:) 7077:1 7071:t 7067:a 7063:A 7060:( 7057:P 7054:) 7049:1 7043:t 7039:a 7035:A 7027:t 7023:A 7019:( 7016:P 7013:+ 7010:) 7005:1 6999:t 6995:A 6991:A 6988:( 6985:P 6982:) 6977:1 6971:t 6967:A 6963:A 6955:t 6951:A 6947:( 6944:P 6940:( 6935:= 6923:2 6919:) 6913:t 6909:A 6905:( 6902:P 6899:= 6896:) 6891:t 6887:A 6883:, 6878:t 6874:A 6870:( 6867:P 6864:= 6855:t 6851:p 6820:1 6814:t 6810:a 6806:A 6782:1 6776:t 6772:A 6768:A 6744:t 6740:A 6716:t 6697:r 6693:q 6689:p 6647:r 6640:q 6636:p 6629:1 6626:r 6623:1 6620:p 6616:1 6613:q 6605:q 6591:1 6588:r 6586:: 6584:1 6581:q 6577:1 6574:p 6570:r 6566:q 6562:r 6558:q 6554:q 6550:p 6546:q 6542:p 6540:( 6533:r 6531:: 6529:q 6525:p 6480:q 6476:p 6430:0 6424:O 6421:, 6418:0 6415:= 6412:E 6406:| 6400:F 6374:= 6369:0 6366:= 6363:O 6360:, 6357:0 6354:= 6351:E 6345:| 6339:F 6316:0 6313:= 6310:F 6283:= 6267:1 6264:= 6261:F 6234:q 6231:p 6228:2 6225:= 6222:) 6219:) 6211:( 6208:f 6205:( 6199:E 6172:, 6166:) 6163:) 6155:( 6152:f 6149:( 6143:E 6138:) 6135:) 6127:( 6124:f 6121:( 6115:O 6106:1 6103:= 6097:) 6094:) 6086:( 6083:f 6080:( 6074:E 6069:) 6066:) 6058:( 6055:f 6052:( 6046:O 6039:) 6036:) 6028:( 6025:f 6022:( 6015:E 6009:= 6006:F 5990:F 5975:F 5944:0 5940:H 5919:0 5893:} 5884:) 5879:M 5874:, 5871:p 5868:( 5865:d 5862:{ 5859:= 5854:1 5850:H 5829:} 5820:) 5815:M 5810:, 5807:p 5804:( 5801:d 5798:{ 5795:= 5790:0 5786:H 5765:d 5745:) 5742:q 5739:, 5736:p 5733:( 5730:d 5723:M 5715:q 5707:= 5704:) 5699:M 5694:, 5691:p 5688:( 5685:d 5665:p 5643:M 5623:p 5619:n 5453:p 5449:n 5441:p 5437:n 5411:n 5407:+ 5398:n 5394:2 5391:= 5386:1 5382:n 5371:1 5368:n 5361:n 5354:n 5347:n 5330:, 5319:n 5314:2 5306:) 5298:2 5294:n 5290:, 5285:1 5281:n 5275:n 5272:2 5266:( 5259:) 5247:n 5243:, 5234:n 5230:, 5221:n 5216:n 5211:( 5204:= 5201:] 5196:1 5192:n 5179:n 5175:[ 5156:q 5152:p 5101:= 5088:+ 5082:+ 5076:= 5058:2 5054:) 5044:5 5041:( 5035:+ 5024:2 5020:) 5007:( 5001:+ 4990:2 4986:) 4973:( 4967:= 4955:E 4949:2 4945:) 4941:E 4935:O 4932:( 4923:= 4914:2 4869:= 4858:2 4850:= 4847:n 4842:2 4838:q 4834:= 4827:) 4819:( 4815:p 4812:x 4809:E 4798:= 4777:2 4774:= 4771:n 4768:q 4765:p 4762:2 4759:= 4752:) 4744:( 4740:p 4737:x 4734:E 4723:= 4712:2 4704:= 4701:n 4696:2 4692:p 4688:= 4681:) 4673:( 4669:p 4666:x 4663:E 4621:= 4605:1 4602:= 4592:p 4586:1 4583:= 4576:q 4539:= 4516:= 4500:) 4497:5 4494:+ 4488:+ 4482:( 4476:2 4468:+ 4459:2 4453:= 4437:) 4434:) 4426:( 4422:s 4419:b 4416:o 4412:+ 4409:) 4401:( 4397:s 4394:b 4391:o 4387:+ 4384:) 4376:( 4372:s 4369:b 4366:o 4362:( 4356:2 4351:) 4343:( 4339:s 4336:b 4333:o 4329:+ 4326:) 4318:( 4314:s 4311:b 4308:o 4301:2 4295:= 4288:p 4145:n 4141:k 4135:n 4131:p 4120:1 4116:k 4110:1 4106:p 4099:) 4091:n 4087:k 4083:, 4077:, 4072:1 4068:k 4063:c 4058:( 4050:c 4047:= 4042:n 4038:k 4034:+ 4028:+ 4023:1 4019:k 4015:: 4011:N 3999:n 3995:k 3991:, 3985:, 3980:1 3976:k 3967:= 3962:c 3958:) 3952:n 3948:p 3944:+ 3938:+ 3933:1 3929:p 3925:( 3900:c 3896:) 3890:n 3886:p 3882:+ 3876:+ 3871:1 3867:p 3863:( 3839:c 3819:n 3784:4 3780:q 3751:3 3747:q 3743:p 3740:4 3712:2 3708:q 3702:2 3698:p 3694:6 3668:q 3663:3 3659:p 3655:4 3627:4 3623:p 3593:c 3585:c 3565:c 3561:) 3557:q 3554:+ 3551:p 3548:( 3519:2 3515:) 3511:q 3508:+ 3505:p 3502:( 3460:j 3456:p 3450:i 3446:p 3442:2 3439:= 3436:) 3431:j 3427:A 3421:i 3417:A 3413:( 3410:f 3377:2 3372:i 3368:p 3364:= 3361:) 3356:i 3352:A 3346:i 3342:A 3338:( 3335:f 3302:2 3298:) 3292:n 3288:p 3284:+ 3278:+ 3273:1 3269:p 3265:( 3251:n 3247:p 3243:1 3240:p 3235:n 3230:1 3212:r 3209:q 3206:2 3203:+ 3200:r 3197:p 3194:2 3191:+ 3188:q 3185:p 3182:2 3179:+ 3174:2 3170:r 3166:+ 3161:2 3157:q 3153:+ 3148:2 3144:p 3140:= 3135:2 3131:) 3127:r 3124:+ 3121:q 3118:+ 3115:p 3112:( 3099:r 3095:q 3091:p 3087:q 3083:p 3075:r 3039:q 3035:q 3024:q 3016:p 3012:q 3008:p 2964:( 2877:f 2866:f 2836:t 2830:t 2823:t 2800:] 2794:2 2790:) 2785:a 2781:( 2776:t 2772:f 2768:, 2765:) 2761:a 2757:( 2752:t 2748:f 2744:) 2740:A 2736:( 2731:t 2727:f 2723:2 2720:, 2715:2 2711:) 2706:A 2702:( 2697:t 2693:f 2688:[ 2684:= 2672:] 2666:2 2661:) 2657:) 2649:( 2644:t 2640:f 2633:2 2630:1 2624:+ 2621:) 2613:( 2608:t 2604:f 2599:( 2594:, 2590:) 2586:) 2578:( 2573:t 2569:f 2562:2 2559:1 2553:+ 2550:) 2542:( 2537:t 2533:f 2528:( 2523:) 2519:) 2511:( 2506:t 2502:f 2495:2 2492:1 2486:+ 2483:) 2475:( 2470:t 2466:f 2461:( 2457:2 2454:, 2449:2 2444:) 2440:) 2432:( 2427:t 2423:f 2416:2 2413:1 2407:+ 2404:) 2396:( 2391:t 2387:f 2382:( 2376:[ 2372:= 2360:] 2356:1 2353:, 2350:0 2347:, 2344:0 2340:[ 2336:) 2328:( 2323:t 2319:f 2315:) 2307:( 2302:t 2298:f 2294:+ 2290:] 2283:2 2280:1 2274:, 2268:2 2265:1 2259:, 2256:0 2252:[ 2248:) 2240:( 2235:t 2231:f 2227:) 2219:( 2214:t 2210:f 2206:2 2203:+ 2199:] 2192:4 2189:1 2183:, 2177:2 2174:1 2168:, 2162:4 2159:1 2152:[ 2148:) 2140:( 2135:t 2131:f 2127:) 2119:( 2114:t 2110:f 2106:+ 2093:] 2089:0 2086:, 2083:1 2080:, 2077:0 2073:[ 2069:) 2061:( 2056:t 2052:f 2048:) 2040:( 2035:t 2031:f 2027:2 2024:+ 2020:] 2016:0 2013:, 2007:2 2004:1 1998:, 1992:2 1989:1 1982:[ 1978:) 1970:( 1965:t 1961:f 1957:) 1949:( 1944:t 1940:f 1936:2 1933:+ 1929:] 1925:0 1922:, 1919:0 1916:, 1913:1 1909:[ 1905:) 1897:( 1892:t 1888:f 1884:) 1876:( 1871:t 1867:f 1863:= 1852:= 1848:] 1844:) 1836:( 1831:1 1828:+ 1825:t 1821:f 1817:, 1814:) 1806:( 1801:1 1798:+ 1795:t 1791:f 1787:, 1784:) 1776:( 1771:1 1768:+ 1765:t 1761:f 1756:[ 1730:t 1726:f 1721:t 1717:f 1705:k 1681:] 1677:) 1669:, 1661:( 1658:, 1655:) 1647:, 1639:( 1636:, 1633:) 1625:, 1617:( 1614:, 1611:) 1603:, 1595:( 1592:, 1589:) 1581:, 1573:( 1570:, 1567:) 1559:, 1551:( 1547:[ 1497:) 1493:a 1489:( 1484:0 1480:f 1476:= 1473:q 1470:= 1467:) 1464:q 1461:+ 1458:p 1455:( 1452:q 1449:= 1446:q 1443:p 1440:+ 1435:2 1431:q 1427:= 1424:) 1416:( 1411:1 1407:f 1400:2 1397:1 1391:+ 1388:) 1380:( 1375:1 1371:f 1367:= 1360:) 1356:a 1352:( 1347:1 1343:f 1335:) 1331:A 1327:( 1322:0 1318:f 1314:= 1311:p 1308:= 1305:) 1302:q 1299:+ 1296:p 1293:( 1290:p 1287:= 1284:q 1281:p 1278:+ 1273:2 1269:p 1265:= 1262:) 1254:( 1249:1 1245:f 1238:2 1235:1 1229:+ 1226:) 1218:( 1213:1 1209:f 1205:= 1198:) 1194:A 1190:( 1185:1 1181:f 1162:2 1156:1 1149:t 1142:1 1139:f 1134:t 1132:f 1121:0 1118:f 1114:1 1111:f 1100:) 1098:5 1096:( 1077:2 1073:) 1068:a 1064:( 1059:0 1055:f 1051:= 1046:2 1042:q 1038:= 1035:) 1027:( 1022:1 1018:f 1000:) 998:4 996:( 979:) 975:a 971:( 966:0 962:f 958:) 954:A 950:( 945:0 941:f 937:2 934:= 931:q 928:p 925:2 922:= 919:p 916:q 913:+ 910:q 907:p 904:= 901:) 893:( 888:1 884:f 866:) 864:3 862:( 843:2 839:) 834:A 830:( 825:0 821:f 817:= 812:2 808:p 804:= 801:) 793:( 788:1 784:f 763:q 755:p 751:q 747:p 745:( 739:q 735:p 725:q 717:p 706:q 692:q 676:p 669:p 657:q 650:p 616:q 612:p 606:q 602:p 588:) 586:2 584:( 567:) 559:( 554:t 550:f 543:2 540:1 534:+ 531:) 523:( 518:t 514:f 510:= 507:) 503:a 499:( 494:t 490:f 472:) 470:1 468:( 451:) 443:( 438:t 434:f 427:2 424:1 418:+ 415:) 407:( 402:t 398:f 394:= 391:) 387:A 383:( 378:t 374:f 353:q 349:0 346:f 340:p 336:0 333:f 293:q 289:p 276:f 270:q 266:f 256:p 252:f 246:q 242:f 236:p 232:f 227:a 223:A 203:, 100:q 96:p 74:) 68:( 63:) 59:( 45:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message

alleles
allele frequencies
genotype frequencies
population genetics
allele
genetic drift
mate choice
assortative mating
natural selection
sexual selection
mutation
gene flow
meiotic drive
genetic hitchhiking
population bottleneck
founder effect
inbreeding
outbreeding depression
alleles
homozygotes
heterozygotes
G. H. Hardy
Wilhelm Weinberg
dominant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.