Knowledge

Laser-heated pedestal growth

Source 📝

303: 324:, consisting of an inner cone surrounded by a larger coaxial cone section, both with reflecting surfaces. This optical element converts the cylindrical laser beam into a larger diameter hollow cylinder surface. This optical component allows radial distribution of the laser energy over the molten zone, reducing radial thermal gradients. The axial 310:
Until 1980, laser-heated crystal growth used only two laser beams focused over the source material. This condition generated a high radial thermal gradient in the molten zone, making the process unstable. Increasing the number of beams to four did not solve the problem, although it improved the
293:
materials. However, single-crystal fibers must have equal or superior optical and structural qualities compared to bulk crystals to substitute for them in technological devices. This can be achieved by carefully controlling the growth conditions.
288:
The geometric shape of the crystals (the technique can produce small diameters), and the low production cost, make the single-crystal fibers (SCF) produced by LHPG suitable substitutes for bulk crystals in many devices, especially those that use
28: 740:
Prokofiev, V.V.; Andreeta, J.P.; Delima, C.J.; et al. (1995). "The influence of temperature gradients on structural perfection of single-crystal sillenite fibers grown by the LHPG method".
777:
Andreeta, M.R.B.; Andreeta, E.R.M.; Hernandes, A.C.; et al. (2002). "Thermal gradient control at the solid–liquid interface in the laser-heated pedestal growth technique".
257:, is moved along the crystal. The molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it. This technique for growing 572:
De Vicente, F.S.; Hernandes, A.C.; De Castro, A.C.; et al. (1999). "Photoluminescence spectrum of rare earth doped zirconia fibre and power excitation dependence".
443:
Andreeta, M.R.B.; Hernandes, A.C. (2010). "Laser-Heated Pedestal Growth of Oxide Fibers". In Dhanaraj, G.; Byrappa, K.; Prasad, V.; Dudley, M. (eds.).
328:
in this technique can go as high as 10000 °C/cm, which is very high when compared to traditional crystal growth techniques (10–100 °C/cm).
959:
Liu, M.; Chen, J.C.; Chiang, C.H.; Hu, L.J.; Lin, S.P. (2006). "Mg-doped sapphire crystal fibers grown by laser-heated pedestal growth method".
607:
De Camargo, A.S.S.; Andreeta, M.R.B; Hernandes, A.C.; et al. (2006). "1.8 µm emission and excited state absorption in LHPG grown Gd
515:
De Camargo, A.S.S; Nunes, L.A.O.; Andreeta, M.R.B.; et al. (2002). "Near-infrared and upconversion properties of neodymium-doped RE
344:. It is possible to see that it spins very fast. Even when it appears to be standing still, it is in fact spinning fast on its axis. 210: 881:
Fejer, M.M.; Byer, R.L.; Feigelson R.; Kway W. (1982). "Growth and characterization of single crystal refractory oxide fibers".
373: 139: 894: 452: 427: 368: 529: 961: 169: 705:
Prokofiev, V.V.; Andreeta, J.P.; Delima, C.J.; et al. (1995). "Microstructure of single-crystal sillenite fibers".
1060: 849:
Haggerty, J.S. (1972). "Production of fibers by a floating zone fiber drawing technique, Final Report". NASA-CR-120948.
114: 393: 203: 119: 78: 273:
The main advantages of this technique are the high pulling rates (60 times greater than the conventional
1050: 468:
Ardila, D.R.; Andreeta, M.R.B.; Cuffini, S.L.; et al. (1997). "Laser heated pedestal growth of Sr
867: 656:
Romero, J.J.; Montoya, E.; Bausa, L.E.; et al. (2004). "Multiwavelength laser action of Nd:YAlO
1045: 250: 196: 911: 814: 277:) and the possibility of growing materials with very high melting points. In addition, LHPG is a 149: 812:
Burrus, C.A.; Stone, J. (1975). "Single−crystal fiber optical devices: A Nd:YAG fiber laser".
854: 274: 970: 925: 823: 786: 751: 714: 671: 630: 581: 538: 489: 325: 243: 8: 1055: 527:(RE = Y, Gd) single-crystal fibres grown by the laser-heated pedestal growth technique". 144: 1003:
The video presented in the following reference shows the liquid phase convection during
974: 929: 827: 790: 755: 718: 675: 634: 585: 542: 493: 986: 687: 554: 378: 164: 124: 798: 683: 550: 501: 1040: 990: 941: 890: 763: 742: 662: 621: 558: 448: 423: 354: 154: 47: 691: 978: 933: 831: 794: 759: 722: 679: 638: 589: 546: 497: 388: 341: 262: 88: 27: 1004: 642: 364: 179: 109: 68: 19: 916: 282: 239: 174: 93: 73: 1017: 726: 593: 314:
An improvement to the laser-heated crystal growth technique was made by Fejer
1034: 290: 945: 398: 254: 184: 83: 937: 912:"The reflaxicon: a new reflective optical element, and some applications" 739: 704: 359: 134: 982: 606: 571: 418:
Feigelson, R.S. (1985). "Growth of fiber crystals". In Kaldis, E (ed.).
776: 514: 383: 337: 320: 52: 835: 1012: 660:
single crystals grown by the laser heated pedestal growth method".
467: 278: 880: 242:
technique. A narrow region of a crystal is melted with a powerful
958: 258: 129: 42: 655: 886: 318:, who incorporated a special optical component known as a 883:
Proceedings of the SPIE, Advances in Infrared Fibers II
442: 1018:"Convection in Laser Heated Pedestal Growth technique" 302: 619::Tm single crystal fibers for miniature lasers". 1032: 1015:wire inside the liquid that is allowed to spin. 811: 285:to be grown with high purity and low stress. 204: 1011:) fiber pulling using a very small piece of 336:A feature of the LHPG technique is its high 211: 197: 417: 848: 301: 909: 707:Radiation Effects and Defects in Solids 574:Radiation Effects and Defects in Solids 1033: 420:Crystal Growth of Electronic Materials 530:Journal of Physics: Condensed Matter 962:Japanese Journal of Applied Physics 445:Springer Handbook of Crystal Growth 331: 297: 170:Shaping processes in crystal growth 13: 14: 1072: 885:. Vol. 320. Bellingham, WA: 340:speed in the liquid phase due to 265:) is used in materials research. 476:single-crystal fibers from SrRuO 26: 997: 952: 903: 874: 842: 805: 770: 253:laser. The laser and hence the 140:Fractional crystallization 733: 698: 649: 600: 565: 508: 461: 436: 411: 394:Recrystallization (metallurgy) 281:-free technique, which allows 1: 799:10.1016/S0022-0248(01)01736-5 684:10.1016/S0925-3467(03)00179-4 502:10.1016/S0022-0248(96)00904-9 405: 268: 764:10.1016/0925-3467(94)00123-5 643:10.1016/j.optmat.2005.07.002 261:from the melt (liquid/solid 224:Laser-heated pedestal growth 160:Laser-heated pedestal growth 7: 551:10.1088/0953-8984/14/50/314 347: 150:Hydrothermal synthesis 115:Bridgman–Stockbarger method 10: 1077: 374:Fractional crystallization 1061:Methods of crystal growth 779:Journal of Crystal Growth 727:10.1080/10420159508227216 594:10.1080/10420159908230149 482:Journal of Crystal Growth 306:Schematic of a LFZ system 192: 120:Van Arkel–de Boer process 106: 101: 65: 60: 39: 34: 25: 18: 145:Fractional freezing 815:Applied Physics Letters 125:Czochralski method 910:Edmonds, W.R. (1973). 862:Cite journal requires 307: 102:Methods and technology 305: 275:Czochralski technique 938:10.1364/AO.12.001940 342:Marangoni convection 326:temperature gradient 983:10.1143/JJAP.45.194 975:2006JaJAP..45..194L 930:1973ApOpt..12.1940E 828:1975ApPhL..26..318B 791:2002JCrGr.234..759A 756:1995OptMa...4..521P 719:1995REDS..134..209P 676:2004OptMa..24..643R 635:2006OptMa..28..551D 586:1999REDS..149..153D 543:2002JPCM...1413889D 537:(50): 13889–13897. 494:1997JCrGr.177...52A 369:engineering aspects 232:laser floating zone 94:Single crystal 74:Crystal growth 379:Micro-pulling-down 308: 165:Micro-pulling-down 1051:Materials science 896:978-0-89252-355-9 743:Optical Materials 663:Optical Materials 622:Optical Materials 454:978-3-540-74182-4 429:978-0-444-86919-7 355:Crystal structure 311:growth process. 247: 221: 220: 155:Kyropoulos method 84:Seed crystal 79:Recrystallization 48:Crystal structure 1068: 1026: 1025: 1001: 995: 994: 956: 950: 949: 907: 901: 900: 878: 872: 871: 865: 860: 858: 850: 846: 840: 839: 809: 803: 802: 774: 768: 767: 737: 731: 730: 713:(1–4): 209–211. 702: 696: 695: 653: 647: 646: 604: 598: 597: 580:(1–4): 153–157. 569: 563: 562: 512: 506: 505: 465: 459: 458: 440: 434: 433: 415: 389:Protocrystalline 332:Convection speed 298:Optical elements 263:phase transition 245: 213: 206: 199: 89:Protocrystalline 30: 16: 15: 1076: 1075: 1071: 1070: 1069: 1067: 1066: 1065: 1046:Crystallography 1031: 1030: 1029: 1024:. 23 July 2008. 1016: 1010: 1005:lithium niobate 1002: 998: 969:(1A): 194–199. 957: 953: 908: 904: 897: 879: 875: 863: 861: 852: 851: 847: 843: 836:10.1063/1.88172 810: 806: 775: 771: 738: 734: 703: 699: 659: 654: 650: 618: 614: 610: 605: 601: 570: 566: 526: 522: 518: 513: 509: 479: 475: 471: 466: 462: 455: 447:. p. 393. 441: 437: 430: 422:. p. 127. 416: 412: 408: 403: 365:Crystallization 350: 334: 300: 283:single crystals 271: 217: 180:Verneuil method 69:Crystallization 20:Crystallization 12: 11: 5: 1074: 1064: 1063: 1058: 1053: 1048: 1043: 1028: 1027: 1008: 996: 951: 917:Applied Optics 902: 895: 889:. p. 50. 873: 864:|journal= 841: 804: 785:(4): 759–761. 769: 750:(4): 521–527. 732: 697: 670:(4): 643–650. 657: 648: 629:(5): 551–555. 616: 612: 608: 599: 564: 524: 520: 516: 507: 488:(1–2): 52–56. 477: 473: 469: 460: 453: 435: 428: 409: 407: 404: 402: 401: 396: 391: 386: 381: 376: 371: 362: 357: 351: 349: 346: 333: 330: 299: 296: 270: 267: 240:crystal growth 219: 218: 216: 215: 208: 201: 193: 190: 189: 188: 187: 182: 177: 175:Skull crucible 172: 167: 162: 157: 152: 147: 142: 137: 132: 127: 122: 117: 112: 104: 103: 99: 98: 97: 96: 91: 86: 81: 76: 71: 63: 62: 58: 57: 56: 55: 50: 45: 37: 36: 32: 31: 23: 22: 9: 6: 4: 3: 2: 1073: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1038: 1036: 1023: 1019: 1014: 1006: 1000: 992: 988: 984: 980: 976: 972: 968: 964: 963: 955: 947: 943: 939: 935: 931: 927: 924:(8): 1940–5. 923: 919: 918: 913: 906: 898: 892: 888: 884: 877: 869: 856: 845: 837: 833: 829: 825: 821: 817: 816: 808: 800: 796: 792: 788: 784: 780: 773: 765: 761: 757: 753: 749: 745: 744: 736: 728: 724: 720: 716: 712: 708: 701: 693: 689: 685: 681: 677: 673: 669: 665: 664: 652: 644: 640: 636: 632: 628: 624: 623: 603: 595: 591: 587: 583: 579: 575: 568: 560: 556: 552: 548: 544: 540: 536: 532: 531: 511: 503: 499: 495: 491: 487: 483: 464: 456: 450: 446: 439: 431: 425: 421: 414: 410: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 370: 366: 363: 361: 358: 356: 353: 352: 345: 343: 339: 329: 327: 323: 322: 317: 312: 304: 295: 292: 291:melting-point 286: 284: 280: 276: 266: 264: 260: 256: 255:floating zone 252: 248: 241: 237: 233: 229: 225: 214: 209: 207: 202: 200: 195: 194: 191: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 136: 133: 131: 128: 126: 123: 121: 118: 116: 113: 111: 108: 107: 105: 100: 95: 92: 90: 87: 85: 82: 80: 77: 75: 72: 70: 67: 66: 64: 59: 54: 51: 49: 46: 44: 41: 40: 38: 33: 29: 24: 21: 17: 1021: 999: 966: 960: 954: 921: 915: 905: 882: 876: 855:cite journal 844: 819: 813: 807: 782: 778: 772: 747: 741: 735: 710: 706: 700: 667: 661: 651: 626: 620: 602: 577: 573: 567: 534: 528: 510: 485: 481: 463: 444: 438: 419: 413: 399:Seed crystal 335: 319: 315: 313: 309: 287: 272: 235: 231: 227: 223: 222: 185:Zone melting 159: 35:Fundamentals 360:Crystallite 135:Flux method 1056:Mineralogy 1035:Categories 822:(6): 318. 406:References 384:Nucleation 338:convection 321:reflaxicon 269:Advantages 53:Nucleation 991:120615103 559:250907003 1041:Crystals 1013:platinum 946:20125635 692:95249182 348:See also 279:crucible 259:crystals 61:Concepts 1022:YouTube 971:Bibcode 926:Bibcode 824:Bibcode 787:Bibcode 752:Bibcode 715:Bibcode 672:Bibcode 631:Bibcode 582:Bibcode 539:Bibcode 490:Bibcode 238:) is a 130:Epitaxy 43:Crystal 1007:(LiNbO 989:  944:  893:  690:  557:  451:  426:  316:et al. 110:Boules 987:S2CID 688:S2CID 555:S2CID 289:high- 230:) or 942:PMID 891:ISBN 887:SPIE 868:help 449:ISBN 424:ISBN 367:and 228:LHPG 979:doi 934:doi 832:doi 795:doi 783:234 760:doi 723:doi 711:134 680:doi 639:doi 613:0.2 609:0.8 590:doi 578:149 547:doi 521:0.2 517:0.8 498:doi 486:177 480:". 472:RuO 251:YAG 249:or 236:LFZ 1037:: 1020:. 985:. 977:. 967:45 965:. 940:. 932:. 922:12 920:. 914:. 859:: 857:}} 853:{{ 830:. 820:26 818:. 793:. 781:. 758:. 746:. 721:. 709:. 686:. 678:. 668:24 666:. 637:. 627:28 625:. 615:VO 611:La 588:. 576:. 553:. 545:. 535:14 533:. 523:VO 519:La 496:. 484:. 244:CO 1009:3 993:. 981:: 973:: 948:. 936:: 928:: 899:. 870:) 866:( 838:. 834:: 826:: 801:. 797:: 789:: 766:. 762:: 754:: 748:4 729:. 725:: 717:: 694:. 682:: 674:: 658:3 645:. 641:: 633:: 617:4 596:. 592:: 584:: 561:. 549:: 541:: 525:4 504:. 500:: 492:: 478:3 474:4 470:2 457:. 432:. 246:2 234:( 226:( 212:e 205:t 198:v

Index

Crystallization

Crystal
Crystal structure
Nucleation
Crystallization
Crystal growth
Recrystallization
Seed crystal
Protocrystalline
Single crystal
Boules
Bridgman–Stockbarger method
Van Arkel–de Boer process
Czochralski method
Epitaxy
Flux method
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Kyropoulos method
Laser-heated pedestal growth
Micro-pulling-down
Shaping processes in crystal growth
Skull crucible
Verneuil method
Zone melting
v
t
e

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.