Knowledge

Kyropoulos method

Source 📝

324: 432:
The most significant disadvantage of the method is an unstable speed of growth which happens due to heat exchange changes incurred by a growing boule size and which are difficult to predict. Due to this problem the crystals are typically grown at very slow speed in order to avoid unnecessary internal
351:
is dipped into the molten material. The seed crystal is slowly pulled upwards and may be rotated simultaneously. By precisely controlling the temperature gradients, rate of pulling and rate of temperature decrease, it is possible to produce a large, single-crystal, roughly cylindrical ingot from the
457:
The sizes of sapphire crystals grown by the Kyropoulos method have increased dramatically since the 1980s. In the mid-2000s sapphire crystals up to 30 kg were developed which could yield 150 mm diameter substrates. By 2017, the largest reported sapphire grown by the Kyropoulos method was
359:
of the crucible is close to that of the final crystal, and the crystal grows downward into the crucible, rather than being pulled up and out of the crucible as in the Czochralski method. The upward pulling of the seed is at a much slower rate than the downward growth of the crystal, and serves
468:, the orientation of the cylindrical axis of the boules grown by the Kyropoulos method is perpendicular to the orientation required for deposition of GaN on the LED substrates. This means that cores must be drilled through the sides of the boule before being sliced into 395:
The Kyropoulos method is characterized by smaller temperature gradients at the crystallization front than the Czochralski method. Like the Czochralski method, the crystal grows free of any external mechanical shaping forces, and thus has few
383:
to determine the growth rate, although precise measurements are complicated by the changing and imperfect shape of the crystal diameter, the unknown convex shape of the solid-liquid interface, and these features' interaction with
31: 544:"Evolution and Application of the Kyropoulos Crystal Growth Method", David F. Bliss, in "50 Years of Progress in Crystal Growth: A Reprint Collection", Ed. Robert Feigelson, Elsevier, 2005 475:
As of 2017 the leading manufacturers of blue and white LEDs used 150 mm diameter sapphire substrates, with some manufacturers still using 100 mm, and 2 inch substrates.
424:
The major advantages include technical simplicity of the process and possibility to grow crystals with large sizes (≥30 cm). The method also shows low dislocation density.
327:
Single crystal sapphire boule grown by Kyropoulos method. Approximately 200 mm diameter and approximately 30 kg. (A second boule is visible in the background.)
528:
Dobrovinskaya, Elena R., Leonid A. Lytvynov, and Valerian Pishchik. Sapphire: material, manufacturing, applications. Springer Science & Business Media, 2009.
278: 355:
In contrast with the Czochralski method, the Kyropoulos technique crystallizes the entire feedstock volume into the boule. The size and
213: 283: 142: 776:
Bruni, Frank J. (11 September 2014). "Crystal growth of sapphire for substrates for high-brightness, light emitting diodes".
738:"Status Of the Sapphire Industry." Eric Virey. Yole-CIOE Sapphire Forum, Shenzhen, August 31st 2015. Yole Development. p. 32. 748: 702: 172: 617: 844: 663: 711: 484: 117: 266: 549: 533: 834: 829: 206: 122: 81: 499: 162: 701:
Duffar, Thierry; Sen, Gourav; Stelian, Carmen; Baruchel, José; Tran Caliste, Thu Nhi; Barthalay, Nicolas.
646:
Winkler, Jan; Neubert, Michael (2015). "Automation of Crystal Growth from Melt". In Rudolph, Peter (ed.).
690:. Kharkiv, Ukraine: Вісник національного технічного университету "ХПІ" №15 (1058). 2014. pp. 3–11. 298:
crystals for precision optics. The method was a response to the limited boule sizes attainable by the
199: 472:. This means the as-grown boules have a significantly larger diameter than the resulting wafers. 489: 397: 258: 814: 152: 446: 8: 469: 339:—only a few parts per million of impurities—which is then heated above 2100 °C in a 291: 147: 379:
until the entire melt has solidified. Hanging the seed from a weight sensor can provide
793: 655: 504: 494: 401: 365: 299: 295: 167: 127: 839: 659: 545: 529: 465: 361: 50: 797: 323: 785: 651: 570: 91: 30: 682: 369: 309:
The Kyropoulos method was applied to sapphire crystal growth in the 1970s in the
303: 262: 250: 182: 112: 71: 22: 715: 376: 336: 243: 239: 177: 96: 76: 441:
Currently the method is used by several companies around the world to produce
823: 684:Синтез регуляторов простой структуры для управления процессами кристаллизации 574: 593: 789: 356: 348: 310: 187: 86: 375:
The growth rate is controlled by slowly decreasing the temperature of the
625: 561:
Kyropoulos, S. (1926). "Ein Verfahren zur Herstellung großer Kristalle".
462: 137: 389: 344: 284: 55: 749:"Monocrystal introduced world's first 350 kg KY sapphire crystal" 405: 442: 385: 380: 340: 332: 254: 249:
The largest application of the Kyropoulos method is to grow large
458:
350 kg, and could produce 300 mm diameter substrates.
290:, who proposed the technique in 1926 as a method to grow brittle 132: 45: 413: 409: 335:. (For sapphire crystal growth, the feedstock is high-purity 16:
Method of bulk crystal growth used to obtain single crystals
700: 650:(2nd ed.). Elsevier B.V. pp. 1176–1178. 563:Zeitschrift für Anorganische und Allgemeine Chemie 821: 645: 207: 560: 524: 522: 520: 214: 200: 322: 517: 822: 704:Kyropoulos Crystal Growth Presentation 404:. This process can be performed in an 775: 269:, and as a durable optical material. 677: 675: 588: 586: 584: 173:Shaping processes in crystal growth 13: 815:Crystal growth technique summaries 656:10.1016/B978-0-444-63303-3.00028-6 14: 856: 808: 672: 610: 581: 347:crucible.) A precisely oriented 712:Grenoble Institute of Technology 452: 427: 29: 778:Crystal Research and Technology 769: 741: 143:Fractional crystallization 732: 694: 639: 554: 538: 436: 1: 596:[Kyropoulos method]. 510: 419: 331:The feedstock is melted in a 318: 500:Laser-heated pedestal growth 163:Laser-heated pedestal growth 7: 714:. p. 4. Archived from 485:Bridgman–Stockbarger method 478: 153:Hydrothermal synthesis 118:Bridgman–Stockbarger method 10: 861: 648:Handbook of Crystal Growth 272: 845:Methods of crystal growth 195: 123:Van Arkel–de Boer process 109: 104: 68: 63: 42: 37: 28: 21: 575:10.1002/zaac.19261540129 277:The method is named for 148:Fractional freezing 490:Monocrystalline silicon 449:and optics industries. 360:primarily to shape the 255:single crystal sapphire 128:Czochralski method 790:10.1002/crat.201400230 461:Because of sapphire's 328: 306:methods at the time. 238:, is a method of bulk 105:Methods and technology 326: 835:Industrial processes 830:Semiconductor growth 408:atmosphere, such as 364:of the solid-liquid 261:for the manufacture 236:Kyropoulos technique 230:, also known as the 97:Single crystal 77:Crystal growth 594:"МЕТОД КИРОПУЛОСА" 505:Micro-pulling-down 495:Float-zone silicon 392:within the melt. 329: 296:alkali earth metal 168:Micro-pulling-down 466:crystal structure 228:Kyropoulos method 224: 223: 158:Kyropoulos method 87:Seed crystal 82:Recrystallization 51:Crystal structure 852: 802: 801: 773: 767: 766: 764: 762: 753: 745: 739: 736: 730: 729: 727: 726: 720: 709: 698: 692: 691: 689: 679: 670: 669: 643: 637: 636: 634: 633: 624:. Archived from 614: 608: 607: 605: 604: 590: 579: 578: 558: 552: 542: 536: 526: 412:, or under high 289: 286: 279:Spyro Kyropoulos 257:used to produce 216: 209: 202: 92:Protocrystalline 33: 19: 18: 860: 859: 855: 854: 853: 851: 850: 849: 820: 819: 811: 806: 805: 774: 770: 760: 758: 751: 747: 746: 742: 737: 733: 724: 722: 718: 710:(pdf). France: 707: 699: 695: 687: 681: 680: 673: 666: 644: 640: 631: 629: 622:clearlysapphire 616: 615: 611: 602: 600: 592: 591: 582: 559: 555: 543: 539: 527: 518: 513: 481: 455: 439: 430: 422: 402:internal stress 398:lattice defects 370:surface tension 321: 281: 275: 263:gallium nitride 244:single crystals 242:used to obtain 220: 183:Verneuil method 72:Crystallization 23:Crystallization 17: 12: 11: 5: 858: 848: 847: 842: 837: 832: 818: 817: 810: 809:External links 807: 804: 803: 768: 740: 731: 693: 671: 664: 638: 609: 580: 553: 537: 515: 514: 512: 509: 508: 507: 502: 497: 492: 487: 480: 477: 454: 451: 438: 435: 429: 426: 421: 418: 386:buoyant forces 337:aluminum oxide 320: 317: 274: 271: 240:crystal growth 222: 221: 219: 218: 211: 204: 196: 193: 192: 191: 190: 185: 180: 178:Skull crucible 175: 170: 165: 160: 155: 150: 145: 140: 135: 130: 125: 120: 115: 107: 106: 102: 101: 100: 99: 94: 89: 84: 79: 74: 66: 65: 61: 60: 59: 58: 53: 48: 40: 39: 35: 34: 26: 25: 15: 9: 6: 4: 3: 2: 857: 846: 843: 841: 838: 836: 833: 831: 828: 827: 825: 816: 813: 812: 799: 795: 791: 787: 783: 779: 772: 757: 750: 744: 735: 721:on 2018-12-22 717: 713: 706: 705: 697: 686: 685: 678: 676: 667: 665:9780444633033 661: 657: 653: 649: 642: 628:on 2021-09-17 627: 623: 619: 613: 599: 598:mathscinet.ru 595: 589: 587: 585: 576: 572: 568: 565:(in German). 564: 557: 551: 547: 541: 535: 531: 525: 523: 521: 516: 506: 503: 501: 498: 496: 493: 491: 488: 486: 483: 482: 476: 473: 471: 467: 464: 459: 453:Crystal sizes 450: 448: 444: 434: 428:Disadvantages 425: 417: 415: 411: 407: 403: 399: 393: 391: 387: 382: 378: 373: 371: 367: 363: 358: 353: 350: 346: 342: 338: 334: 325: 316: 314: 312: 307: 305: 301: 297: 293: 292:alkali halide 287: 280: 270: 268: 264: 260: 256: 252: 247: 245: 241: 237: 233: 229: 217: 212: 210: 205: 203: 198: 197: 194: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 144: 141: 139: 136: 134: 131: 129: 126: 124: 121: 119: 116: 114: 111: 110: 108: 103: 98: 95: 93: 90: 88: 85: 83: 80: 78: 75: 73: 70: 69: 67: 62: 57: 54: 52: 49: 47: 44: 43: 41: 36: 32: 27: 24: 20: 781: 777: 771: 759:. Retrieved 755: 743: 734: 723:. Retrieved 716:the original 703: 696: 683: 647: 641: 630:. Retrieved 626:the original 621: 612: 601:. Retrieved 597: 566: 562: 556: 540: 474: 460: 456: 440: 431: 423: 394: 374: 357:aspect ratio 354: 349:seed crystal 330: 315: 311:Soviet Union 308: 276: 248: 235: 231: 227: 225: 188:Zone melting 157: 38:Fundamentals 784:: 133–142. 756:Monocrystal 569:: 308–313. 463:anisotropic 447:electronics 437:Application 300:Czochralski 282: [ 138:Flux method 824:Categories 761:16 January 725:2019-04-29 632:2019-04-29 603:2019-04-29 550:0080489931 534:0387856943 511:References 420:Advantages 390:convection 345:molybdenum 319:The method 259:substrates 56:Nucleation 433:defects. 366:interface 232:KY method 840:Crystals 798:93605097 618:"Growth" 479:See also 445:for the 443:sapphire 400:and low 381:feedback 362:meniscus 341:tungsten 333:crucible 304:Verneuil 285:Wikidata 64:Concepts 377:furnace 352:melt. 273:History 265:-based 133:Epitaxy 46:Crystal 796:  662:  548:  532:  470:wafers 414:vacuum 251:boules 113:Boules 794:S2CID 752:(PDF) 719:(PDF) 708:(PDF) 688:(PDF) 410:argon 406:inert 288:] 763:2018 660:ISBN 546:ISBN 530:ISBN 388:and 368:via 302:and 294:and 267:LEDs 226:The 786:doi 652:doi 571:doi 567:154 372:. 343:or 253:of 246:. 234:or 826:: 792:. 782:50 780:. 754:. 674:^ 658:. 620:. 583:^ 519:^ 416:. 313:. 800:. 788:: 765:. 728:. 668:. 654:: 635:. 606:. 577:. 573:: 215:e 208:t 201:v

Index

Crystallization

Crystal
Crystal structure
Nucleation
Crystallization
Crystal growth
Recrystallization
Seed crystal
Protocrystalline
Single crystal
Boules
Bridgman–Stockbarger method
Van Arkel–de Boer process
Czochralski method
Epitaxy
Flux method
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Kyropoulos method
Laser-heated pedestal growth
Micro-pulling-down
Shaping processes in crystal growth
Skull crucible
Verneuil method
Zone melting
v
t
e

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.