Knowledge

Kyropoulos method

Source 📝

335: 443:
The most significant disadvantage of the method is an unstable speed of growth which happens due to heat exchange changes incurred by a growing boule size and which are difficult to predict. Due to this problem the crystals are typically grown at very slow speed in order to avoid unnecessary internal
362:
is dipped into the molten material. The seed crystal is slowly pulled upwards and may be rotated simultaneously. By precisely controlling the temperature gradients, rate of pulling and rate of temperature decrease, it is possible to produce a large, single-crystal, roughly cylindrical ingot from the
468:
The sizes of sapphire crystals grown by the Kyropoulos method have increased dramatically since the 1980s. In the mid-2000s sapphire crystals up to 30 kg were developed which could yield 150 mm diameter substrates. By 2017, the largest reported sapphire grown by the Kyropoulos method was
370:
of the crucible is close to that of the final crystal, and the crystal grows downward into the crucible, rather than being pulled up and out of the crucible as in the Czochralski method. The upward pulling of the seed is at a much slower rate than the downward growth of the crystal, and serves
479:, the orientation of the cylindrical axis of the boules grown by the Kyropoulos method is perpendicular to the orientation required for deposition of GaN on the LED substrates. This means that cores must be drilled through the sides of the boule before being sliced into 406:
The Kyropoulos method is characterized by smaller temperature gradients at the crystallization front than the Czochralski method. Like the Czochralski method, the crystal grows free of any external mechanical shaping forces, and thus has few
394:
to determine the growth rate, although precise measurements are complicated by the changing and imperfect shape of the crystal diameter, the unknown convex shape of the solid-liquid interface, and these features' interaction with
42: 555:"Evolution and Application of the Kyropoulos Crystal Growth Method", David F. Bliss, in "50 Years of Progress in Crystal Growth: A Reprint Collection", Ed. Robert Feigelson, Elsevier, 2005 486:
As of 2017 the leading manufacturers of blue and white LEDs used 150 mm diameter sapphire substrates, with some manufacturers still using 100 mm, and 2 inch substrates.
435:
The major advantages include technical simplicity of the process and possibility to grow crystals with large sizes (≥30 cm). The method also shows low dislocation density.
338:
Single crystal sapphire boule grown by Kyropoulos method. Approximately 200 mm diameter and approximately 30 kg. (A second boule is visible in the background.)
539:
Dobrovinskaya, Elena R., Leonid A. Lytvynov, and Valerian Pishchik. Sapphire: material, manufacturing, applications. Springer Science & Business Media, 2009.
289: 366:
In contrast with the Czochralski method, the Kyropoulos technique crystallizes the entire feedstock volume into the boule. The size and
224: 294: 153: 787:
Bruni, Frank J. (11 September 2014). "Crystal growth of sapphire for substrates for high-brightness, light emitting diodes".
749:"Status Of the Sapphire Industry." Eric Virey. Yole-CIOE Sapphire Forum, Shenzhen, August 31st 2015. Yole Development. p. 32. 759: 713: 183: 628: 855: 674: 722: 495: 128: 277: 560: 544: 845: 840: 217: 133: 92: 510: 173: 712:
Duffar, Thierry; Sen, Gourav; Stelian, Carmen; Baruchel, José; Tran Caliste, Thu Nhi; Barthalay, Nicolas.
657:
Winkler, Jan; Neubert, Michael (2015). "Automation of Crystal Growth from Melt". In Rudolph, Peter (ed.).
701:. Kharkiv, Ukraine: Вісник національного технічного университету "ХПІ" №15 (1058). 2014. pp. 3–11. 17: 309:
crystals for precision optics. The method was a response to the limited boule sizes attainable by the
210: 483:. This means the as-grown boules have a significantly larger diameter than the resulting wafers. 500: 408: 269: 825: 163: 457: 8: 480: 350:—only a few parts per million of impurities—which is then heated above 2100 °C in a 302: 158: 390:
until the entire melt has solidified. Hanging the seed from a weight sensor can provide
804: 666: 515: 505: 412: 376: 310: 306: 178: 138: 850: 670: 556: 540: 476: 372: 61: 808: 334: 796: 662: 581: 102: 41: 693: 380: 320:
The Kyropoulos method was applied to sapphire crystal growth in the 1970s in the
314: 273: 261: 193: 123: 82: 33: 726: 387: 347: 254: 250: 188: 107: 87: 452:
Currently the method is used by several companies around the world to produce
834: 695:Синтез регуляторов простой структуры для управления процессами кристаллизации 585: 604: 800: 367: 359: 321: 198: 97: 386:
The growth rate is controlled by slowly decreasing the temperature of the
636: 572:
Kyropoulos, S. (1926). "Ein Verfahren zur Herstellung großer Kristalle".
473: 148: 400: 355: 295: 66: 760:"Monocrystal introduced world's first 350 kg KY sapphire crystal" 416: 453: 396: 391: 351: 343: 265: 260:
The largest application of the Kyropoulos method is to grow large
469:
350 kg, and could produce 300 mm diameter substrates.
301:, who proposed the technique in 1926 as a method to grow brittle 143: 56: 424: 420: 346:. (For sapphire crystal growth, the feedstock is high-purity 27:
Method of bulk crystal growth used to obtain single crystals
711: 661:(2nd ed.). Elsevier B.V. pp. 1176–1178. 574:Zeitschrift für Anorganische und Allgemeine Chemie 832: 656: 218: 571: 535: 533: 531: 225: 211: 333: 528: 14: 833: 715:Kyropoulos Crystal Growth Presentation 415:. This process can be performed in an 786: 280:, and as a durable optical material. 688: 686: 599: 597: 595: 184:Shaping processes in crystal growth 24: 826:Crystal growth technique summaries 667:10.1016/B978-0-444-63303-3.00028-6 25: 867: 819: 683: 621: 592: 358:crucible.) A precisely oriented 723:Grenoble Institute of Technology 463: 438: 40: 789:Crystal Research and Technology 780: 752: 154:Fractional crystallization 743: 705: 650: 565: 549: 447: 13: 1: 607:[Kyropoulos method]. 521: 430: 342:The feedstock is melted in a 329: 511:Laser-heated pedestal growth 174:Laser-heated pedestal growth 7: 725:. p. 4. Archived from 496:Bridgman–Stockbarger method 489: 164:Hydrothermal synthesis 129:Bridgman–Stockbarger method 10: 872: 659:Handbook of Crystal Growth 283: 856:Methods of crystal growth 206: 134:Van Arkel–de Boer process 120: 115: 79: 74: 53: 48: 39: 32: 586:10.1002/zaac.19261540129 288:The method is named for 159:Fractional freezing 501:Monocrystalline silicon 460:and optics industries. 371:primarily to shape the 266:single crystal sapphire 139:Czochralski method 801:10.1002/crat.201400230 472:Because of sapphire's 339: 317:methods at the time. 249:, is a method of bulk 116:Methods and technology 337: 846:Industrial processes 841:Semiconductor growth 419:atmosphere, such as 375:of the solid-liquid 272:for the manufacture 247:Kyropoulos technique 241:, also known as the 108:Single crystal 88:Crystal growth 605:"МЕТОД КИРОПУЛОСА" 516:Micro-pulling-down 506:Float-zone silicon 403:within the melt. 340: 307:alkali earth metal 179:Micro-pulling-down 477:crystal structure 239:Kyropoulos method 235: 234: 169:Kyropoulos method 98:Seed crystal 93:Recrystallization 62:Crystal structure 16:(Redirected from 863: 813: 812: 784: 778: 777: 775: 773: 764: 756: 750: 747: 741: 740: 738: 737: 731: 720: 709: 703: 702: 700: 690: 681: 680: 654: 648: 647: 645: 644: 635:. Archived from 625: 619: 618: 616: 615: 601: 590: 589: 569: 563: 553: 547: 537: 423:, or under high 300: 297: 290:Spyro Kyropoulos 268:used to produce 227: 220: 213: 103:Protocrystalline 44: 30: 29: 21: 871: 870: 866: 865: 864: 862: 861: 860: 831: 830: 822: 817: 816: 785: 781: 771: 769: 762: 758: 757: 753: 748: 744: 735: 733: 729: 721:(pdf). France: 718: 710: 706: 698: 692: 691: 684: 677: 655: 651: 642: 640: 633:clearlysapphire 627: 626: 622: 613: 611: 603: 602: 593: 570: 566: 554: 550: 538: 529: 524: 492: 466: 450: 441: 433: 413:internal stress 409:lattice defects 381:surface tension 332: 292: 286: 274:gallium nitride 255:single crystals 253:used to obtain 231: 194:Verneuil method 83:Crystallization 34:Crystallization 28: 23: 22: 15: 12: 11: 5: 869: 859: 858: 853: 848: 843: 829: 828: 821: 820:External links 818: 815: 814: 779: 751: 742: 704: 682: 675: 649: 620: 591: 564: 548: 526: 525: 523: 520: 519: 518: 513: 508: 503: 498: 491: 488: 465: 462: 449: 446: 440: 437: 432: 429: 397:buoyant forces 348:aluminum oxide 331: 328: 285: 282: 251:crystal growth 233: 232: 230: 229: 222: 215: 207: 204: 203: 202: 201: 196: 191: 189:Skull crucible 186: 181: 176: 171: 166: 161: 156: 151: 146: 141: 136: 131: 126: 118: 117: 113: 112: 111: 110: 105: 100: 95: 90: 85: 77: 76: 72: 71: 70: 69: 64: 59: 51: 50: 46: 45: 37: 36: 26: 9: 6: 4: 3: 2: 868: 857: 854: 852: 849: 847: 844: 842: 839: 838: 836: 827: 824: 823: 810: 806: 802: 798: 794: 790: 783: 768: 761: 755: 746: 732:on 2018-12-22 728: 724: 717: 716: 708: 697: 696: 689: 687: 678: 676:9780444633033 672: 668: 664: 660: 653: 639:on 2021-09-17 638: 634: 630: 624: 610: 609:mathscinet.ru 606: 600: 598: 596: 587: 583: 579: 576:(in German). 575: 568: 562: 558: 552: 546: 542: 536: 534: 532: 527: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 493: 487: 484: 482: 478: 475: 470: 464:Crystal sizes 461: 459: 455: 445: 439:Disadvantages 436: 428: 426: 422: 418: 414: 410: 404: 402: 398: 393: 389: 384: 382: 378: 374: 369: 364: 361: 357: 353: 349: 345: 336: 327: 325: 323: 318: 316: 312: 308: 304: 303:alkali halide 298: 291: 281: 279: 275: 271: 267: 263: 258: 256: 252: 248: 244: 240: 228: 223: 221: 216: 214: 209: 208: 205: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 150: 147: 145: 142: 140: 137: 135: 132: 130: 127: 125: 122: 121: 119: 114: 109: 106: 104: 101: 99: 96: 94: 91: 89: 86: 84: 81: 80: 78: 73: 68: 65: 63: 60: 58: 55: 54: 52: 47: 43: 38: 35: 31: 19: 792: 788: 782: 770:. Retrieved 766: 754: 745: 734:. Retrieved 727:the original 714: 707: 694: 658: 652: 641:. Retrieved 637:the original 632: 623: 612:. Retrieved 608: 577: 573: 567: 551: 485: 471: 467: 451: 442: 434: 405: 385: 368:aspect ratio 365: 360:seed crystal 341: 326: 322:Soviet Union 319: 287: 259: 246: 242: 238: 236: 199:Zone melting 168: 49:Fundamentals 795:: 133–142. 767:Monocrystal 580:: 308–313. 474:anisotropic 458:electronics 448:Application 311:Czochralski 293: [ 149:Flux method 835:Categories 772:16 January 736:2019-04-29 643:2019-04-29 614:2019-04-29 561:0080489931 545:0387856943 522:References 431:Advantages 401:convection 356:molybdenum 330:The method 270:substrates 67:Nucleation 18:Kyropoulos 444:defects. 377:interface 243:KY method 851:Crystals 809:93605097 629:"Growth" 490:See also 456:for the 454:sapphire 411:and low 392:feedback 373:meniscus 352:tungsten 344:crucible 315:Verneuil 296:Wikidata 75:Concepts 388:furnace 363:melt. 284:History 276:-based 144:Epitaxy 57:Crystal 807:  673:  559:  543:  481:wafers 425:vacuum 262:boules 124:Boules 805:S2CID 763:(PDF) 730:(PDF) 719:(PDF) 699:(PDF) 421:argon 417:inert 299:] 774:2018 671:ISBN 557:ISBN 541:ISBN 399:and 379:via 313:and 305:and 278:LEDs 237:The 797:doi 663:doi 582:doi 578:154 383:. 354:or 264:of 257:. 245:or 837:: 803:. 793:50 791:. 765:. 685:^ 669:. 631:. 594:^ 530:^ 427:. 324:. 811:. 799:: 776:. 739:. 679:. 665:: 646:. 617:. 588:. 584:: 226:e 219:t 212:v 20:)

Index

Kyropoulos
Crystallization

Crystal
Crystal structure
Nucleation
Crystallization
Crystal growth
Recrystallization
Seed crystal
Protocrystalline
Single crystal
Boules
Bridgman–Stockbarger method
Van Arkel–de Boer process
Czochralski method
Epitaxy
Flux method
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Kyropoulos method
Laser-heated pedestal growth
Micro-pulling-down
Shaping processes in crystal growth
Skull crucible
Verneuil method
Zone melting
v
t

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.