Knowledge

Lyddane–Sachs–Teller relation

Source 📝

241: 498: 248:. The separation between LO and TO phonon frequencies near the Γ-point (small wave vectors) is described by the LST relation. Note this plot shows much higher wavevectors than considered below, and the scale cannot not show the hybridization of the TO branch with light (which would be confined extremely close to Γ). 403: 228:
The relation holds for systems with a single optical branch, such as cubic systems with two different atoms per unit cell. For systems with many phonon branches, the relation does not necessarily hold, as the permittivity for any pair of longitudinal and transverse modes will be altered by the other
935: 668:
In these modes, the electric field is perpendicular to the wavevector, producing transverse currents, which in turn generate magnetic fields. As light is also a transverse electromagnetic wave, the behaviour is described as a coupling of the transverse vibration modes with the
223: 811:
In the case of multiple, lossy Lorentzian oscillators, there are generalized Lyddane–Sachs–Teller relations available. Most generally, the permittivity cannot be described as a combination of Lorentizan oscillators, and the longitudinal mode frequency can only be found as a
1281: 940:
the absolute value is necessary since the phonon frequencies are now complex, with an imaginary part that is equal to the finite lifetime of the phonon, and proportional to the anharmonic phonon damping (described by Klemens' theory for optical phonons).
508:. Red curves are the uncoupled phonon and photon dispersion relations, black curves are the result of coupling (from top to bottom: upper polariton, LO phonon, lower polariton). The LST relation relates the frequencies of the horizontal red curve ( 275: 834: 991: 796:
Since the Lyddane–Sachs–Teller relation is derived from the lossless Lorentzian oscillator, it may break down in realistic materials where the permittivity function is more complicated for various reasons:
150: 265:(over ranges much longer than the inter-atom distances). The relation assumes an idealized polar ("infrared active") optical lattice vibration that gives a contribution to the frequency-dependent 791: 1208: 1116: 1149: 115: 142: 650:. This remains 'split off' from the bare oscillation frequency even at high wave vectors, because the importance of electric restoring forces does not diminish at high wavevectors. 435: 1353: 1326: 1063: 1036: 735: 701: 648: 611: 560: 533: 492: 88: 57: 465: 1176: 398:{\displaystyle \varepsilon (\omega )=\varepsilon (\infty )+(\varepsilon (\infty )-\varepsilon _{st}){\frac {\omega _{\text{TO}}^{2}}{\omega ^{2}-\omega _{\text{TO}}^{2}}},} 703:
because magnetic restoring forces can be neglected: the transverse currents produce a small magnetic field and the magnetically induced electric field is also very small.
620:
In this mode, the electric field is parallel to the wavevector and produces no transverse currents, hence it is purely electric (there is no associated magnetic field).
1383: 1196: 1359:. As previously mentioned, the phonon frequencies used in the LST relation are those corresponding to the TO and LO branches evaluated at the gamma-point ( 1705: 494:
is the "natural" oscillation frequency of the lattice vibration taking into account only the short-ranged (microscopic) restoring forces.
930:{\displaystyle {\frac {|\omega _{\text{LO}}|^{2}}{|\omega _{\text{TO}}|^{2}}}={\frac {\varepsilon _{\text{st}}}{\varepsilon _{\infty }}}} 1680: 956: 218:{\displaystyle {\frac {\omega _{\text{LO}}^{2}}{\omega _{\text{TO}}^{2}}}={\frac {\varepsilon _{\text{st}}}{\varepsilon _{\infty }}}} 570:
to find the complete set of normal modes including all restoring forces (short-ranged and long-ranged), which are sometimes called
1798:
Chang, I. F.; Mitra, S. S.; Plendl, J. N.; Mansur, L. C. (1968). "Long-Wavelength Longitudinal Phonons of Multi-Mode Crystals".
1669: 1614: 754: 1732:
Irmer, G.; Wenzel, M.; Monecke, J. (1996). "The temperature dependence of the LO(T) and TO(T) phonons in GaAs and InP".
1715: 1694: 1648: 1623: 1867: 1827:
Casella, L.; Zaccone, A. (2021). "Soft mode theory of ferroelectric phase transitions in the low-temperature phase".
1276:{\displaystyle \nu _{\text{LO}}={\sqrt {\varepsilon _{\text{st}}/\varepsilon _{\infty }}}\times \nu _{\text{TO}}=7.9} 807:
There may be other electrically active degrees of freedom (notably, mobile electrons) and non-Lorentzian oscillators.
1088: 741:
effects that make the transverse magnetic back-action behave identically to the longitudinal electric back-action.
1121: 93: 710:
mode is primarily vibrational and its frequency instead coincides with the longitudinal mode, with frequency
120: 411: 661:
modes appear (actually, four modes, in pairs with identical dispersion), with complex dispersion behavior.
1331: 1304: 1041: 1014: 713: 679: 626: 589: 538: 511: 470: 66: 35: 824:
The most general Lyddane–Sachs–Teller relation applicable in crystals where the phonons are affected by
676:
At high wavevectors, the lower mode is primarily vibrational. This mode approaches the 'bare' frequency
1640: 623:
The longitudinal wave is basically dispersionless, and appears as a flat line in the plot at frequency
440: 1154: 240: 793:. Solving this for the Lorentzian resonance described above gives the Lyddane–Sachs–Teller relation. 257:
The Lyddane–Sachs–Teller relation applies to optical lattice vibrations that have an associated net
229:
modes in the system. The Lyddane–Sachs–Teller relation is named after the physicists R. H. Lyddane,
950: 17: 1686: 949:
A corollary of the LST relation is that for non-polar crystals, the LO and TO phonon modes are
567: 262: 804:
Materials may have multiple phonon resonances that add together to produce the permittivity.
1807: 1778: 1741: 258: 28:) determines the ratio of the natural frequency of longitudinal optic lattice vibrations ( 8: 1406: 1362: 1181: 1006: 501: 1811: 1782: 1769:
Lyddane, R.; Sachs, R.; Teller, E. (1941). "On the Polar Vibrations of Alkali Halides".
1745: 1836: 1356: 738: 90:) for long wavelengths (zero wavevector). The ratio is that of the static permittivity 1757: 1711: 1690: 1665: 1644: 1634: 1619: 583: 571: 505: 1389:. This is also the point where the photon-phonon coupling most often occurs for the 1846: 1815: 1786: 1749: 1659: 994: 658: 230: 1850: 1609: 1394: 1386: 1861: 1819: 1761: 825: 234: 60: 1753: 737:. This coincidence is required by symmetry considerations and occurs due to 1790: 1390: 1065:
there is 100% reflectivity. This range of frequencies (band) is called the
813: 748: 266: 575: 63:
to the natural frequency of the transverse optical lattice vibration (
1511: 1509: 497: 1841: 1581: 1506: 801:
Real phonons have losses (also known as damping or dissipation).
1448: 1446: 986:{\displaystyle \varepsilon _{\text{st}}=\varepsilon _{\infty }} 673:
inside the material (in the figure, shown as red dashed lines).
29: 1431: 670: 586:
mode occurs with an essentially flat dispersion at frequency
1494: 1443: 993:. This indeed holds for the purely covalent crystals of the 1198:
THz. Using the LST relation, we are able to calculate that
1082: 245: 1393:
measured in Raman. Hence two peaks will be present in the
1521: 747:
The longitudinal mode appears at the frequency where the
117:
to the permittivity for frequencies in the visible range
1707:
Physical Principles of Far-Infrared Radiation, Volume 10
1397:, each corresponding to the TO and LO phonon frequency. 1419: 1797: 1569: 1545: 1515: 1482: 1081:
The static and high-frequency dielectric constants of
1365: 1334: 1307: 1211: 1184: 1157: 1124: 1091: 1044: 1017: 959: 837: 757: 716: 682: 629: 592: 541: 514: 473: 443: 414: 278: 153: 123: 96: 69: 38: 1470: 997:, such as for diamond (C), silicon, and germanium. 786:{\displaystyle \varepsilon (\omega _{\text{LO}})=0} 1768: 1731: 1587: 1557: 1533: 1437: 1377: 1347: 1320: 1275: 1190: 1170: 1143: 1110: 1057: 1030: 985: 929: 785: 729: 695: 642: 605: 574:. These modes are plotted in the figure. At every 554: 527: 486: 459: 429: 397: 217: 136: 109: 82: 51: 1458: 1859: 269:described by a lossless Lorentzian oscillator: 1826: 1632: 1527: 1500: 1452: 828:damping has been derived in Ref. and reads as 1633:Ashcroft, Neil W.; Mermin, N. David (1976). 1301:One of the ways to experimentally determine 1111:{\displaystyle \varepsilon _{\text{st}}=5.9} 1144:{\displaystyle \varepsilon _{\infty }=2.25} 1657: 1425: 1840: 437:is the permittivity at high frequencies, 252: 1703: 1488: 535:) and the black curve intercept at k=0 ( 496: 239: 110:{\displaystyle \varepsilon _{\text{st}}} 1291: 566:The above equation can be plugged into 261:, so that they can produce long ranged 1860: 1608: 1476: 1000: 819: 137:{\displaystyle \varepsilon _{\infty }} 1296: 944: 430:{\displaystyle \varepsilon (\infty )} 1829:Journal of Physics: Condensed Matter 1076: 1678: 1615:Introduction to Solid State Physics 1575: 1563: 1551: 1539: 1464: 1348:{\displaystyle \omega _{\text{LO}}} 1321:{\displaystyle \omega _{\text{TO}}} 1069:. The name derives from the German 1058:{\displaystyle \omega _{\text{LO}}} 1031:{\displaystyle \omega _{\text{TO}}} 730:{\displaystyle \omega _{\text{LO}}} 696:{\displaystyle \omega _{\text{TO}}} 643:{\displaystyle \omega _{\text{LO}}} 606:{\displaystyle \omega _{\text{LO}}} 555:{\displaystyle \omega _{\text{LO}}} 528:{\displaystyle \omega _{\text{TO}}} 487:{\displaystyle \omega _{\text{TO}}} 467:is the static DC permittivity, and 83:{\displaystyle \omega _{\text{TO}}} 52:{\displaystyle \omega _{\text{LO}}} 13: 1247: 1130: 978: 920: 421: 318: 300: 208: 129: 14: 1879: 460:{\displaystyle \varepsilon _{st}} 1588:Irmer, Wenzel & Monecke 1996 1438:Lyddane, Sachs & Teller 1941 1171:{\displaystyle \nu _{\text{TO}}} 578:there are three distinct modes: 706:At zero, or low wavevector the 1151:, and the TO phonon frequency 887: 871: 858: 842: 816:in the permittivity function. 774: 761: 424: 418: 340: 321: 315: 309: 303: 297: 288: 282: 1: 1658:Klingshirn, Claus F. (2012). 1597: 22:Lyddane–Sachs–Teller relation 1682:Optical Properties of Solids 1602: 1412: 1073:which means "residual ray". 7: 1725: 1400: 1011:In the frequencies between 10: 1884: 1641:Holt, Rinehart and Winston 1528:Casella & Zaccone 2021 1501:Ashcroft & Mermin 1976 1453:Ashcroft & Mermin 1976 1004: 751:passes through zero, i.e. 739:electrodynamic retardation 244:Phonon band structure in 1868:Condensed matter physics 1851:10.1088/1361-648X/abdb68 1820:10.1002/pssb.19680280224 1710:(1 ed.). Elsevier. 1704:Robinson, L. C. (1973). 1664:(4 ed.). Springer. 504:of phonon polaritons in 18:condensed matter physics 1800:Physica Status Solidi B 1754:10.1002/pssb.2221950110 1734:Physica Status Solidi B 1687:Oxford University Press 1791:10.1103/PhysRev.59.673 1379: 1349: 1322: 1277: 1192: 1172: 1145: 1112: 1059: 1032: 987: 931: 787: 731: 697: 644: 607: 563: 556: 529: 488: 461: 431: 399: 263:electromagnetic fields 253:Origin and limitations 249: 219: 138: 111: 84: 53: 1618:(8 ed.). Wiley. 1380: 1350: 1323: 1278: 1193: 1173: 1146: 1113: 1060: 1033: 988: 932: 788: 732: 698: 645: 608: 557: 530: 500: 489: 462: 432: 400: 243: 220: 139: 112: 85: 54: 1661:Semiconductor Optics 1363: 1332: 1305: 1292:Experimental methods 1209: 1182: 1155: 1122: 1089: 1042: 1015: 957: 835: 755: 714: 680: 627: 590: 539: 512: 471: 441: 412: 276: 259:polarization density 151: 121: 94: 67: 36: 1812:1968PSSBR..28..663C 1783:1941PhRv...59..673L 1746:1996PSSBR.195...85I 1636:Solid State Physics 1407:Reststrahlen effect 1378:{\displaystyle k=0} 1191:{\displaystyle 4.9} 1007:Reststrahlen effect 1001:Reststrahlen effect 820:Anharmonic crystals 568:Maxwell's equations 502:Dispersion relation 388: 359: 185: 170: 1679:Fox, Mark (2010). 1578:, p. 287-289. 1554:, p. 277-278. 1375: 1357:Raman spectroscopy 1345: 1318: 1297:Raman spectroscopy 1273: 1188: 1168: 1141: 1108: 1055: 1028: 983: 945:Non-polar crystals 927: 783: 727: 693: 640: 603: 564: 552: 525: 484: 457: 427: 395: 374: 345: 250: 215: 171: 156: 134: 107: 80: 49: 1516:Chang et al. 1968 1342: 1315: 1264: 1252: 1234: 1219: 1165: 1099: 1077:Example with NaCl 1052: 1025: 995:group IV elements 967: 925: 912: 898: 882: 853: 771: 724: 690: 637: 600: 584:longitudinal wave 572:phonon polaritons 549: 522: 481: 390: 381: 352: 213: 200: 186: 178: 163: 104: 77: 46: 1875: 1854: 1844: 1823: 1794: 1765: 1721: 1700: 1675: 1654: 1629: 1591: 1590:, p. 85-95. 1585: 1579: 1573: 1567: 1561: 1555: 1549: 1543: 1537: 1531: 1525: 1519: 1513: 1504: 1498: 1492: 1486: 1480: 1474: 1468: 1462: 1456: 1450: 1441: 1435: 1429: 1423: 1384: 1382: 1381: 1376: 1354: 1352: 1351: 1346: 1344: 1343: 1340: 1327: 1325: 1324: 1319: 1317: 1316: 1313: 1282: 1280: 1279: 1274: 1266: 1265: 1262: 1253: 1251: 1250: 1241: 1236: 1235: 1232: 1226: 1221: 1220: 1217: 1197: 1195: 1194: 1189: 1177: 1175: 1174: 1169: 1167: 1166: 1163: 1150: 1148: 1147: 1142: 1134: 1133: 1117: 1115: 1114: 1109: 1101: 1100: 1097: 1064: 1062: 1061: 1056: 1054: 1053: 1050: 1037: 1035: 1034: 1029: 1027: 1026: 1023: 992: 990: 989: 984: 982: 981: 969: 968: 965: 936: 934: 933: 928: 926: 924: 923: 914: 913: 910: 904: 899: 897: 896: 895: 890: 884: 883: 880: 874: 868: 867: 866: 861: 855: 854: 851: 845: 839: 792: 790: 789: 784: 773: 772: 769: 736: 734: 733: 728: 726: 725: 722: 702: 700: 699: 694: 692: 691: 688: 649: 647: 646: 641: 639: 638: 635: 612: 610: 609: 604: 602: 601: 598: 561: 559: 558: 553: 551: 550: 547: 534: 532: 531: 526: 524: 523: 520: 493: 491: 490: 485: 483: 482: 479: 466: 464: 463: 458: 456: 455: 436: 434: 433: 428: 404: 402: 401: 396: 391: 389: 387: 382: 379: 370: 369: 358: 353: 350: 344: 339: 338: 224: 222: 221: 216: 214: 212: 211: 202: 201: 198: 192: 187: 184: 179: 176: 169: 164: 161: 155: 143: 141: 140: 135: 133: 132: 116: 114: 113: 108: 106: 105: 102: 89: 87: 86: 81: 79: 78: 75: 58: 56: 55: 50: 48: 47: 44: 1883: 1882: 1878: 1877: 1876: 1874: 1873: 1872: 1858: 1857: 1771:Physical Review 1728: 1718: 1697: 1672: 1671:978-364228362-8 1651: 1626: 1610:Kittel, Charles 1605: 1600: 1595: 1594: 1586: 1582: 1574: 1570: 1562: 1558: 1550: 1546: 1538: 1534: 1526: 1522: 1514: 1507: 1499: 1495: 1487: 1483: 1475: 1471: 1463: 1459: 1451: 1444: 1436: 1432: 1426:Klingshirn 2012 1424: 1420: 1415: 1403: 1364: 1361: 1360: 1339: 1335: 1333: 1330: 1329: 1312: 1308: 1306: 1303: 1302: 1299: 1294: 1261: 1257: 1246: 1242: 1237: 1231: 1227: 1225: 1216: 1212: 1210: 1207: 1206: 1183: 1180: 1179: 1162: 1158: 1156: 1153: 1152: 1129: 1125: 1123: 1120: 1119: 1096: 1092: 1090: 1087: 1086: 1079: 1067:Reststrahl band 1049: 1045: 1043: 1040: 1039: 1022: 1018: 1016: 1013: 1012: 1009: 1003: 977: 973: 964: 960: 958: 955: 954: 947: 938: 919: 915: 909: 905: 903: 891: 886: 885: 879: 875: 870: 869: 862: 857: 856: 850: 846: 841: 840: 838: 836: 833: 832: 822: 768: 764: 756: 753: 752: 721: 717: 715: 712: 711: 687: 683: 681: 678: 677: 659:transverse wave 634: 630: 628: 625: 624: 597: 593: 591: 588: 587: 546: 542: 540: 537: 536: 519: 515: 513: 510: 509: 478: 474: 472: 469: 468: 448: 444: 442: 439: 438: 413: 410: 409: 383: 378: 365: 361: 360: 354: 349: 343: 331: 327: 277: 274: 273: 255: 231:Robert G. Sachs 226: 207: 203: 197: 193: 191: 180: 175: 165: 160: 154: 152: 149: 148: 128: 124: 122: 119: 118: 101: 97: 95: 92: 91: 74: 70: 68: 65: 64: 43: 39: 37: 34: 33: 12: 11: 5: 1881: 1871: 1870: 1856: 1855: 1824: 1806:(2): 663–673. 1795: 1777:(8): 673–676. 1766: 1727: 1724: 1723: 1722: 1717:978-0080859880 1716: 1701: 1696:978-0199573370 1695: 1685:(2 ed.). 1676: 1670: 1655: 1650:978-0030839931 1649: 1639:(1 ed.). 1630: 1625:978-0471415268 1624: 1604: 1601: 1599: 1596: 1593: 1592: 1580: 1568: 1566:, p. 280. 1556: 1544: 1542:, p. 277. 1532: 1520: 1505: 1503:, p. 551. 1493: 1491:, p. 363. 1481: 1479:, p. 414. 1469: 1467:, p. 209. 1457: 1455:, p. 548. 1442: 1430: 1417: 1416: 1414: 1411: 1410: 1409: 1402: 1399: 1395:Raman spectrum 1387:Brillouin zone 1374: 1371: 1368: 1338: 1311: 1298: 1295: 1293: 1290: 1289: 1288: 1287: 1286: 1285: 1284: 1272: 1269: 1260: 1256: 1249: 1245: 1240: 1230: 1224: 1215: 1187: 1161: 1140: 1137: 1132: 1128: 1107: 1104: 1095: 1078: 1075: 1048: 1021: 1005:Main article: 1002: 999: 980: 976: 972: 963: 946: 943: 922: 918: 908: 902: 894: 889: 878: 873: 865: 860: 849: 844: 830: 821: 818: 809: 808: 805: 802: 782: 779: 776: 767: 763: 760: 745: 744: 743: 742: 720: 704: 686: 674: 663: 662: 654: 653: 652: 651: 633: 621: 615: 614: 596: 545: 518: 477: 454: 451: 447: 426: 423: 420: 417: 406: 405: 394: 386: 377: 373: 368: 364: 357: 348: 342: 337: 334: 330: 326: 323: 320: 317: 314: 311: 308: 305: 302: 299: 296: 293: 290: 287: 284: 281: 254: 251: 210: 206: 196: 190: 183: 174: 168: 159: 146: 131: 127: 100: 73: 42: 9: 6: 4: 3: 2: 1880: 1869: 1866: 1865: 1863: 1852: 1848: 1843: 1838: 1834: 1830: 1825: 1821: 1817: 1813: 1809: 1805: 1801: 1796: 1792: 1788: 1784: 1780: 1776: 1772: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1735: 1730: 1729: 1719: 1713: 1709: 1708: 1702: 1698: 1692: 1688: 1684: 1683: 1677: 1673: 1667: 1663: 1662: 1656: 1652: 1646: 1642: 1638: 1637: 1631: 1627: 1621: 1617: 1616: 1611: 1607: 1606: 1589: 1584: 1577: 1572: 1565: 1560: 1553: 1548: 1541: 1536: 1529: 1524: 1517: 1512: 1510: 1502: 1497: 1490: 1489:Robinson 1973 1485: 1478: 1473: 1466: 1461: 1454: 1449: 1447: 1439: 1434: 1428:, p. 86. 1427: 1422: 1418: 1408: 1405: 1404: 1398: 1396: 1392: 1388: 1372: 1369: 1366: 1358: 1336: 1309: 1270: 1267: 1258: 1254: 1243: 1238: 1228: 1222: 1213: 1205: 1204: 1203: 1202: 1201: 1200: 1199: 1185: 1159: 1138: 1135: 1126: 1105: 1102: 1093: 1084: 1074: 1072: 1068: 1046: 1019: 1008: 998: 996: 974: 970: 961: 952: 942: 937: 916: 906: 900: 892: 876: 863: 847: 829: 827: 817: 815: 806: 803: 800: 799: 798: 794: 780: 777: 765: 758: 750: 740: 718: 709: 705: 684: 675: 672: 667: 666: 665: 664: 660: 656: 655: 631: 622: 619: 618: 617: 616: 594: 585: 581: 580: 579: 577: 573: 569: 543: 516: 507: 503: 499: 495: 475: 452: 449: 445: 415: 392: 384: 375: 371: 366: 362: 355: 346: 335: 332: 328: 324: 312: 306: 294: 291: 285: 279: 272: 271: 270: 268: 264: 260: 247: 242: 238: 236: 235:Edward Teller 232: 225: 204: 194: 188: 181: 172: 166: 157: 145: 125: 98: 71: 62: 61:ionic crystal 40: 31: 27: 23: 19: 1832: 1828: 1803: 1799: 1774: 1770: 1740:(1): 85–95. 1737: 1733: 1706: 1681: 1660: 1635: 1613: 1583: 1571: 1559: 1547: 1535: 1523: 1496: 1484: 1472: 1460: 1433: 1421: 1391:Stokes shift 1300: 1080: 1070: 1066: 1010: 948: 939: 831: 823: 814:complex zero 810: 795: 749:permittivity 746: 707: 565: 407: 267:permittivity 256: 227: 147: 26:LST relation 25: 21: 15: 1477:Kittel 2004 1355:is through 953:, and thus 1842:2103.10262 1835:: 165401. 1598:References 1071:reststrahl 951:degenerate 826:anharmonic 576:wavevector 1762:0370-1972 1603:Textbooks 1413:Citations 1385:) of the 1337:ω 1310:ω 1259:ν 1255:× 1248:∞ 1244:ε 1229:ε 1214:ν 1160:ν 1131:∞ 1127:ε 1094:ε 1047:ω 1020:ω 979:∞ 975:ε 962:ε 921:∞ 917:ε 907:ε 877:ω 848:ω 766:ω 759:ε 719:ω 685:ω 632:ω 595:ω 544:ω 517:ω 476:ω 446:ε 422:∞ 416:ε 376:ω 372:− 363:ω 347:ω 329:ε 325:− 319:∞ 313:ε 301:∞ 295:ε 286:ω 280:ε 209:∞ 205:ε 195:ε 173:ω 158:ω 130:∞ 126:ε 99:ε 72:ω 41:ω 1862:Category 1726:Articles 1612:(2004). 1576:Fox 2010 1564:Fox 2010 1552:Fox 2010 1540:Fox 2010 1465:Fox 2010 1401:See also 59:) of an 1808:Bibcode 1779:Bibcode 1742:Bibcode 30:phonons 1760:  1714:  1693:  1668:  1647:  1622:  408:where 233:, and 20:, the 1837:arXiv 708:upper 671:light 1758:ISSN 1712:ISBN 1691:ISBN 1666:ISBN 1645:ISBN 1620:ISBN 1328:and 1139:2.25 1118:and 1085:are 1083:NaCl 1038:and 657:two 246:GaAs 24:(or 1847:doi 1816:doi 1787:doi 1750:doi 1738:195 1283:THz 1271:7.9 1186:4.9 1178:is 1106:5.9 562:). 506:GaP 32:) ( 16:In 1864:: 1845:. 1833:33 1831:. 1814:. 1804:28 1802:. 1785:. 1775:59 1773:. 1756:. 1748:. 1736:. 1689:. 1643:. 1508:^ 1445:^ 1341:LO 1314:TO 1263:TO 1233:st 1218:LO 1164:TO 1098:st 1051:LO 1024:TO 966:st 911:st 881:TO 852:LO 770:LO 723:LO 689:TO 636:LO 599:LO 582:a 548:LO 521:TO 480:TO 380:TO 351:TO 237:. 199:st 177:TO 162:LO 144:. 103:st 76:TO 45:LO 1853:. 1849:: 1839:: 1822:. 1818:: 1810:: 1793:. 1789:: 1781:: 1764:. 1752:: 1744:: 1720:. 1699:. 1674:. 1653:. 1628:. 1530:. 1518:. 1440:. 1373:0 1370:= 1367:k 1268:= 1239:/ 1223:= 1136:= 1103:= 971:= 901:= 893:2 888:| 872:| 864:2 859:| 843:| 781:0 778:= 775:) 762:( 613:. 453:t 450:s 425:) 419:( 393:, 385:2 367:2 356:2 341:) 336:t 333:s 322:) 316:( 310:( 307:+ 304:) 298:( 292:= 289:) 283:( 189:= 182:2 167:2

Index

condensed matter physics
phonons
ionic crystal
Robert G. Sachs
Edward Teller

GaAs
polarization density
electromagnetic fields
permittivity

Dispersion relation
GaP
Maxwell's equations
phonon polaritons
wavevector
longitudinal wave
transverse wave
light
electrodynamic retardation
permittivity
complex zero
anharmonic
degenerate
group IV elements
Reststrahlen effect
NaCl
Raman spectroscopy
Brillouin zone
Stokes shift

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.