Knowledge

Phonon polariton

Source đź“ť

665: 2843:. Phonons are the main source of heat conductivity in materials, where optical phonons contribute far less than acoustic phonons. This is because of the relatively low group velocity of optical phonons. When the thickness of the material decreases, the conductivity of via acoustic also decreases, since surface scattering increases. This microelectronics are getting smaller and smaller, reductions is getting more problematic. Although optical phonons themselves do not have a high thermal conductivity, SPhPs do seem to have this. So they may be an alternative means of cooling these electronic devices. 42: 678: 2080: 787: 2888:(CW) of polariton, or with an ultrafast pulse, producing a polariton with a very high temporal footprint. In both cases the polaritons are detected by the tip of the AFM, this signal is then used to calculate the energy of the polariton. One can also perform these experiments near the edge of the sample. This will result in the polaritons being 2343: 1532: 2413:
Towards the right of the crossing point, the upper branch behaves like a photon. The physical interpretation of this effect is that the frequency becomes too high for the ions to partake in the vibration, causing them to be essentially static. This results in a dispersion relation resembling one of a
2380:
The solution of this dispersion relation has two branches, an upper branch and a lower branch (see also the figure). If the slope of the curve is low, the particle is said to behave "phononlike", and if the slope is high the particle behaves "photonlike", owing these names to the slopes of the
847:
A phonon polariton is a type of quasiparticle that can form in some crystals due to the coupling of photons and lattice vibrations. They have properties of both light and sound waves, and can travel at very slow speeds in the material. They are useful for manipulating electromagnetic fields at
1389: 2584: 1076:. The difference lies in the magnitudes of their speeds, the speed of photons is many times larger than the speed for the acoustic phonons. The dispersion relations will therefore never cross each other, resulting in a lack of coupling. The dispersion relations touch at 2718: 2182: 1751:
in matter. Since, macroscopically, the crystal is uncharged and there is no current, the equations can be simplified. A phonon polariton must abide all of these six equations. To find solutions to this set of equations, we write the following trial
2074: 1990: 1906: 2883:
The induction of polaritons is very similar to that in Raman experiments, with a few differences. With the extremely high special resolution of SNOM, one can induce polaritons very locally in the sample. This can be done continuously, producing a
1135:
and have a negative slope, which is also much smaller in magnitude to that of photons. This will result in the crossing of the optical phonon branch and the photon dispersion, leading to their coupling and the forming of a phonon polariton.
2405:
The dispersion relation describes the behaviour of the coupling. The coupling of the phonon and the photon is the most promininent in the region where the original transverse disperion relations would have crossed. In the limit of large
2831:
Surface phonon polariton(SPhPs) are a specific kind of phonon polariton. They are formed by the coupling of optical surface phonon, instead of normal phonons, and light, resulting in an electromagnetic surface wave. They are similar to
1395: 1257: 1199: 2465: 2930:. In this field phonon polaritons are used for high speed signal processing and terahertz spectroscopy. The real-space imaging of phonon polaritons was made possible by projecting them onto a CCD camera. 3058:
Ambrosio, Antonio; Jauregui, Luis A.; Dai, Siyuan; Chaudhary, Kundan; Tamagnone, Michele; Fogler, Michael M.; Basov, Dimitri N.; Capasso, Federico; Kim, Philip; Wilson, William L. (2017-09-26).
1144:
The behavior of the phonon polaritons can be described by the dispersion relation. This dispersion relation is most easily derived for diatomic ion crystals with optical isotropy, for example
934: 2176:. Solving the resulting equations for ω and k, the magnitude of the wave vector, yields the following dispersion relation, and furthermore an expression for the optical dielectric constant: 852:
of the phonon and photon and their interaction. Photons consist of electromagnetic waves, which are always transverse. Therefore, they can only couple with transverse phonons in crystals.
2629: 2821: 1569: 2338:{\displaystyle {\frac {k^{2}c^{2}}{\omega ^{2}}}=\epsilon _{\infty }+{\frac {\epsilon _{0}-\epsilon _{\infty }}{{\omega _{0}}^{2}-\omega ^{2}}}{\omega _{0}}^{2}=\epsilon (\omega )} 1066: 1655: 2896:
will be created, which will again be detected by the AFM tip. In the case of the polaritons created by the ultrafast laser, no standing wave will be created. The wave can still
2637: 2375: 2087:. Red curves are the uncoupled phonon and photon dispersion relations, black curves are the result of coupling (from top to bottom: upper polariton, LO phonon, lower polariton). 998: 1996: 1912: 1828: 1133: 1102: 881: 1621: 2133: 2111: 1820: 1798: 1776: 1741: 1712: 1591: 1227: 1028: 966: 2775: 2748: 2457: 1686: 2170: 1527:{\displaystyle \mathbf {P} =({\frac {\epsilon _{0}-\epsilon _{\infty }}{4\pi }})^{1/2}\omega _{0}\mathbf {w} +({\frac {\epsilon _{\infty }-1}{4\pi }})\mathbf {E} } 848:
nanoscale and enhancing optical phenomena. Phonon polaritons only result from coupling of transverse optical phonons, this is due to the particular form of the
1152:. Since the atoms in the crystal are charged, any lattice vibration which changes the relative distance between the two atoms in the unit cell will change the 2900:
with itself the moment it is reflected of the edge. Whether one is observing on the bulk surface or close to an edge, the signal is in temporal form. One can
2836:, although studied to a far lesser extent. The applications are far ranging from materials with negative index of refraction to high-density IR data storage. 1384:{\displaystyle {\ddot {\mathbf {w} }}=-{\omega _{0}}^{2}\mathbf {w} +({\frac {\epsilon _{0}-\epsilon _{\infty }}{4\pi }})^{1/2}\omega _{0}\mathbf {E} } 883:
the dispersion relation of an acoustic phonon can be approximated as being linear, with a particular gradient giving a dispersion relation of the form
709: 2410:, the solid lines of both branches approach the dotted lines, meaning, the coupling does not have a large impact on the behaviour of the vibrations. 2459:
is defined by the zero of the equation for the dielectric constant. Writing the equation for the dielectric constant in a different way yields:
2851:
Most observations of phonon polaritons are made of surface phonon polaritons, since these can be easily probed by Raman spectroscopy or AFM.
2579:{\displaystyle \epsilon (\omega )={\frac {{\omega _{0}}^{2}\epsilon _{0}-\omega ^{2}\epsilon _{\infty }}{{\omega _{0}}^{2}-\omega ^{2}}}} 1162: 3532:
Wu, Y.; Ordonez-Miranda, J.; Gluchko, S.; Anufriev, R.; Meneses, D. De Sousa; Del Campo, L.; Volz, S.; Nomura, M. (2020-10-02).
754:. Phonon polaritons occur in the region where the wavelength and energy of phonons and photons are similar, as to adhere to the 766: 702: 3305: 2778: 2427: 2875:
and the known laser energy, one can calculate the polariton energy, with which one can construct the dispersion relation.
1251:
Using this parameter, the behavior of the lattice vibrations for long waves can be described by the following equations:
886: 3644:
Feurer, T.; Stoyanov, Nikolay S.; Ward, David W.; Vaughan, Joshua C.; Statz, Eric R.; Nelson, Keith A. (2007-08-01).
3260: 834: 808: 695: 682: 17: 816: 664: 812: 447: 2592: 2784: 1156:
of the material. To describe these vibrations, it is useful to introduce the parameter w, which is given by:
2904:
this signal, converting the signal into frequency domain, which can used to obtain the dispersion relation.
1543: 2713:{\displaystyle {\frac {{\omega _{L}}^{2}}{{\omega _{0}}^{2}}}={\frac {\epsilon _{0}}{\epsilon _{\infty }}}} 622: 102: 1033: 2069:{\displaystyle \mathbf {E} =\mathbf {E_{0}} e^{i(\mathbf {k} \cdot \mathbf {x} -\omega t)}+{\text{c.c.}}} 1985:{\displaystyle \mathbf {P} =\mathbf {P_{0}} e^{i(\mathbf {k} \cdot \mathbf {x} -\omega t)}+{\text{c.c.}}} 1901:{\displaystyle \mathbf {w} =\mathbf {w_{0}} e^{i(\mathbf {k} \cdot \mathbf {x} -\omega t)}+{\text{c.c.}}} 1633: 2351: 971: 627: 252: 2949: 2833: 517: 192: 1110: 1079: 858: 3284:
Borstel, G.; Falge, H. J.; Otto, A. (1974), Bauer, G.; Borstel, G.; Falge, H. J.; Otto, A. (eds.),
2381:
regular dispersion curves for phonons and photons. The phonon polariton behaves phononlike for low
1599: 797: 723: 512: 507: 33: 2116: 2094: 1803: 1781: 1759: 1724: 1695: 1574: 1210: 1011: 939: 597: 3768: 3598: 2753: 2726: 2435: 1664: 1153: 801: 770: 202: 2146: 607: 2872: 1748: 592: 532: 502: 452: 172: 62: 3645: 3422:"Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation" 3060:"Mechanical Detection and Imaging of Hyperbolic Phonon Polaritons in Hexagonal Boron Nitride" 632: 247: 232: 3669: 2867:
is chosen, this laser can induce the formation of a polariton on the sample. Looking at the
3712: 3657: 3545: 3496: 3433: 3386: 3339: 3160: 3032: 2982: 2889: 2414:
regular photon in a crystal. The lower branch in this region behaves, because of their low
222: 112: 8: 1624: 849: 462: 272: 122: 3716: 3661: 3549: 3500: 3437: 3390: 3343: 3164: 3036: 2986: 3744: 3681: 3626: 3574: 3465: 3184: 3105: 3071: 2971:"Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals" 762: 642: 602: 577: 325: 316: 3020: 3736: 3728: 3673: 3630: 3618: 3579: 3561: 3514: 3457: 3449: 3402: 3355: 3301: 3292:, Springer Tracts in Modern Physics, Berlin, Heidelberg: Springer, pp. 107–148, 3266: 3256: 3228: 3176: 3097: 3089: 2998: 2901: 2897: 2084: 1001: 572: 417: 307: 227: 3748: 3685: 3469: 3188: 3720: 3665: 3610: 3597:
Yao, Ziheng; Xu, Suheng; Hu, Debo; Chen, Xinzhong; Dai, Qing; Liu, Mengkun (2020).
3569: 3553: 3504: 3441: 3394: 3347: 3293: 3218: 3168: 3109: 3081: 3040: 2990: 2840: 2723:
This equation gives the ratio of the frequency of the longitudonal optical phonon (
755: 277: 242: 237: 197: 167: 137: 97: 57: 2885: 1145: 587: 537: 407: 162: 74: 3374: 3398: 3044: 2415: 2173: 1715: 1073: 669: 637: 617: 612: 567: 487: 422: 320: 207: 52: 3223: 3206: 2970: 3762: 3732: 3700: 3677: 3622: 3565: 3518: 3453: 3406: 3359: 3232: 3180: 3093: 3002: 2994: 2893: 731: 348: 329: 311: 212: 132: 3724: 3533: 3375:"Photonic approach to making a material with a negative index of refraction" 3286:"Surface and bulk phonon-polaritons observed by attenuated total reflection" 3270: 3085: 1030:. The dispersion relation of photons is also linear, being also of the form 773:(AFM) have made it possible to observe the polaritons in a more direct way. 542: 3740: 3614: 3583: 3557: 3484: 3461: 3101: 2919: 2913: 2868: 2389:
in the lower branch. Conversely, the polariton behaves photonlike for high
1238: 1149: 562: 552: 522: 482: 477: 457: 302: 282: 142: 3599:"Nanoimaging and Nanospectroscopy of Polaritons with Time Resolved s-SNOM" 3509: 3123: 3059: 1747:
For the full coupling between the phonon and the photon, we need the four
3328:"Near-field imaging of mid-infrared surface phonon polariton propagation" 3250: 2927: 647: 582: 557: 527: 472: 467: 399: 41: 3327: 3297: 2864: 1753: 1229:
is the displacement of the positive atom relative to the negative atom;
492: 334: 127: 3421: 3351: 3148: 3445: 3285: 3172: 2939: 2923: 747: 547: 497: 370: 217: 117: 3485:"Thermal Conductivity of Amorphous Vs Crystalline Ge and GeTe Films" 3326:
Huber, A.; Ocelic, N.; Kazantsev, D.; Hillenbrand, R. (2005-08-22).
2079: 786: 3076: 2418:
compared to the photons, as regular transverse lattice vibrations.
1107:
Optical phonons, by contrast, have a non-zero angular frequency at
107: 1194:{\displaystyle \mathbf {w} =\mathbf {q} {\sqrt {\frac {\mu }{V}}}} 735: 427: 412: 375: 366: 361: 3531: 3699:
Feurer, T.; Vaughan, Joshua C.; Nelson, Keith A. (2003-01-17).
3325: 2944: 761:
Phonon polariton spectra have traditionally been studied using
743: 739: 380: 356: 87: 3701:"Spatiotemporal Coherent Control of Lattice Vibrational Waves" 3207:"Dynamical Theory of Crystal Lattices by M. Born and K. Huang" 1104:, but since the waves have no energy, no coupling will occur. 2860: 2823:
can be found using inelastic neutron scattering experiments.
2400: 751: 385: 82: 3057: 3534:"Enhanced thermal conduction by surface phonon-polaritons" 3643: 2863:
is pointed at the material being studied. If the correct
92: 3149:"Lattice Vibrations and Optical Waves in Ionic Crystals" 2777:) in diatomic cubic ionic crystals, and is known as the 2907: 2750:), to the frequency of the transverse optical phonon ( 2172:
should be perpendicular to the electric field and the
2787: 2756: 2729: 2640: 2595: 2468: 2438: 2354: 2185: 2149: 2119: 2097: 1999: 1915: 1831: 1806: 1784: 1762: 1727: 1698: 1667: 1636: 1602: 1577: 1546: 1398: 1260: 1213: 1165: 1113: 1082: 1036: 1014: 974: 942: 889: 861: 3698: 2815: 2769: 2742: 2712: 2623: 2578: 2451: 2369: 2337: 2164: 2127: 2105: 2068: 1984: 1900: 1814: 1792: 1770: 1735: 1706: 1680: 1649: 1615: 1585: 1563: 1526: 1383: 1221: 1193: 1127: 1096: 1060: 1022: 992: 960: 928: 875: 3419: 3760: 3283: 2918:Phonon polaritons also find use in the field of 2421: 929:{\displaystyle \omega _{\rm {ac}}=v_{\rm {ac}}k} 2143:the angular frequency. Notice that wave vector 27:Quasiparticle form phonon and photon coupling 3018: 703: 3019:Henry, C. H.; Hopfield, J. J. (1965-12-20). 2083:Dispersion relation of phonon polaritons in 3596: 2846: 2839:One other application is in the cooling of 2826: 2113:denotes the wave vector of the plane wave, 815:. Unsourced material may be challenged and 765:. The recent advances in (scattering-type) 3482: 3420:Ocelic, N.; Hillenbrand, R. (2004-08-01). 2432:The longitudonal optical phonon frequency 2401:Limit behaviour of the dispersion relation 710: 696: 40: 3573: 3508: 3222: 3075: 1657:is the high-frequency dielectric constant 835:Learn how and when to remove this message 3483:Nath, Prem; Chopra, K. L. (1974-01-01). 2968: 2624:{\displaystyle \epsilon (\omega _{L})=0} 2078: 3670:10.1146/annurev.matsci.37.052506.084327 2816:{\displaystyle \omega _{L}/\omega _{0}} 14: 3761: 3372: 3248: 3204: 1571:denotes the double time derivative of 1564:{\displaystyle {\ddot {\mathbf {w} }}} 1139: 1008:the absolute value of the wave vector 767:scanning near-field optical microscopy 3146: 2854: 3255:(8th ed.). Hoboken, NJ: Wiley. 3244: 3242: 3200: 3198: 3014: 3012: 1688:is the infrared dispersion frequency 1061:{\displaystyle \omega _{\rm {p}}=ck} 813:adding citations to reliable sources 780: 3650:Annual Review of Materials Research 3489:Japanese Journal of Applied Physics 3252:Introduction to solid state physics 2908:Polaritonics and real-space imaging 2871:emitted radiation and by using the 1650:{\displaystyle \epsilon _{\infty }} 24: 3124:"Phonon-polaritons | Nelson Group" 2703: 2534: 2385:in the upper branch, and for high 2370:{\displaystyle \epsilon (\omega )} 2259: 2230: 1642: 1494: 1431: 1332: 1043: 993:{\displaystyle \omega _{\rm {ac}}} 984: 981: 952: 949: 917: 914: 899: 896: 734:that can form in a diatomic ionic 25: 3780: 3239: 3195: 3009: 2377:the optical dielectric constant. 3021:"Raman Scattering by Polaritons" 2892:. In the case of CW polaritons, 2859:As with any Raman experiment, a 2121: 2099: 2040: 2032: 2014: 2010: 2001: 1956: 1948: 1930: 1926: 1917: 1872: 1864: 1846: 1842: 1833: 1808: 1786: 1764: 1729: 1700: 1579: 1551: 1520: 1476: 1400: 1377: 1301: 1265: 1215: 1175: 1167: 1115: 1084: 1016: 863: 785: 677: 676: 663: 3692: 3637: 3590: 3525: 3476: 3413: 3366: 3205:Wilson, A. J. C. (1955-07-01). 2878: 1743:is the dielectric polarization. 1247:is the volume of the unit cell. 3373:Shvets, Gennady (2003-01-16). 3319: 3277: 3140: 3116: 3051: 2969:Hopfield, J. J. (1958-12-01). 2962: 2612: 2599: 2478: 2472: 2364: 2358: 2332: 2326: 2156: 2053: 2028: 1969: 1944: 1885: 1860: 1516: 1483: 1448: 1407: 1349: 1308: 1128:{\displaystyle \mathbf {k} =0} 1097:{\displaystyle \mathbf {k} =0} 876:{\displaystyle \mathbf {k} =0} 746:. They are particular type of 13: 1: 2955: 2779:Lyddane-Sachs-Teller relation 2428:Lyddane–Sachs–Teller relation 2422:Lyddane–Sachs–Teller relation 1616:{\displaystyle \epsilon _{0}} 2128:{\displaystyle \mathbf {x} } 2106:{\displaystyle \mathbf {k} } 1815:{\displaystyle \mathbf {P} } 1793:{\displaystyle \mathbf {E} } 1771:{\displaystyle \mathbf {w} } 1736:{\displaystyle \mathbf {P} } 1707:{\displaystyle \mathbf {E} } 1586:{\displaystyle \mathbf {w} } 1222:{\displaystyle \mathbf {q} } 1023:{\displaystyle \mathbf {k} } 961:{\displaystyle v_{\rm {ac}}} 7: 3147:HUANG, KUN (May 12, 1951). 2933: 2770:{\displaystyle \omega _{0}} 2743:{\displaystyle \omega _{L}} 2452:{\displaystyle \omega _{L}} 1681:{\displaystyle \omega _{0}} 10: 3785: 3603:Advanced Optical Materials 3399:10.1103/physrevb.67.035109 3045:10.1103/PhysRevLett.15.964 2911: 2834:surface plasmon polaritons 2425: 2165:{\displaystyle {\vec {k}}} 756:avoided crossing principle 740:transverse optical phonons 253:Spin gapless semiconductor 3224:10.1107/s0365110x5500279x 2950:Surface plasmon polariton 2855:Raman spectroscopy   2393:in the upper branch, low 776: 193:Electronic band structure 3646:"Terahertz Polaritonics" 3249:Kittel, Charles (2005). 2995:10.1103/physrev.112.1555 2847:Experimental observation 2827:Surface phonon polariton 1074:speed of light in vacuum 724:condensed matter physics 103:Bose–Einstein condensate 34:Condensed matter physics 3725:10.1126/science.1078726 3332:Applied Physics Letters 3086:10.1021/acsnano.7b02323 3025:Physical Review Letters 1154:dielectric polarization 968:the speed of the wave, 771:atomic force microscopy 3615:10.1002/adom.201901042 3558:10.1126/sciadv.abb4461 3211:Acta Crystallographica 2873:conservation of energy 2817: 2771: 2744: 2714: 2625: 2580: 2453: 2371: 2339: 2166: 2129: 2107: 2088: 2070: 1986: 1902: 1816: 1794: 1772: 1737: 1708: 1682: 1651: 1617: 1587: 1565: 1528: 1385: 1223: 1195: 1129: 1098: 1062: 1024: 994: 962: 930: 877: 3510:10.7567/jjaps.2s1.781 2818: 2772: 2745: 2715: 2626: 2589:Solving the equation 2581: 2454: 2397:in the lower branch. 2372: 2340: 2167: 2130: 2108: 2082: 2071: 1987: 1903: 1817: 1795: 1773: 1738: 1709: 1683: 1652: 1618: 1588: 1566: 1529: 1386: 1224: 1196: 1130: 1099: 1063: 1025: 995: 963: 931: 878: 248:Topological insulator 2785: 2754: 2727: 2638: 2593: 2466: 2436: 2352: 2183: 2147: 2117: 2095: 1997: 1913: 1829: 1804: 1782: 1760: 1725: 1696: 1665: 1634: 1600: 1575: 1544: 1396: 1258: 1211: 1163: 1111: 1080: 1034: 1012: 972: 940: 887: 859: 809:improve this section 750:, which behave like 266:Electronic phenomena 113:Fermionic condensate 3717:2003Sci...299..374F 3662:2007AnRMS..37..317F 3550:2020SciA....6.4461W 3501:1974JJAPS..13..781N 3438:2004NatMa...3..606O 3391:2003PhRvB..67c5109S 3344:2005ApPhL..87h1103H 3290:Solid-State Physics 3165:1951Natur.167..779H 3037:1965PhRvL..15..964H 2987:1958PhRv..112.1555H 1749:Maxwell's equations 1625:dielectric constant 1140:Dispersion relation 850:dispersion relation 738:due to coupling of 273:Quantum Hall effect 3298:10.1007/bfb0041387 2922:, a field between 2813: 2767: 2740: 2710: 2621: 2576: 2449: 2367: 2335: 2162: 2125: 2103: 2089: 2066: 1982: 1898: 1812: 1790: 1768: 1733: 1704: 1678: 1647: 1613: 1583: 1561: 1524: 1381: 1219: 1191: 1125: 1094: 1058: 1020: 990: 958: 926: 873: 763:Raman spectroscopy 670:Physics portal 3711:(5605): 374–377. 3379:Physical Review B 3352:10.1063/1.2032595 3307:978-3-540-37868-6 3159:(4254): 779–780. 2902:Fourier transform 2708: 2681: 2574: 2299: 2220: 2159: 2064: 1980: 1896: 1558: 1514: 1445: 1346: 1272: 1241:of the two atoms; 1189: 1188: 1002:angular frequency 845: 844: 837: 720: 719: 418:Granular material 186:Electronic phases 18:Phonon polaritons 16:(Redirected from 3776: 3753: 3752: 3696: 3690: 3689: 3641: 3635: 3634: 3594: 3588: 3587: 3577: 3538:Science Advances 3529: 3523: 3522: 3512: 3480: 3474: 3473: 3446:10.1038/nmat1194 3426:Nature Materials 3417: 3411: 3410: 3370: 3364: 3363: 3323: 3317: 3316: 3315: 3314: 3281: 3275: 3274: 3246: 3237: 3236: 3226: 3202: 3193: 3192: 3173:10.1038/167779b0 3144: 3138: 3137: 3135: 3134: 3120: 3114: 3113: 3079: 3070:(9): 8741–8746. 3055: 3049: 3048: 3016: 3007: 3006: 2981:(5): 1555–1567. 2966: 2841:microelectronics 2822: 2820: 2819: 2814: 2812: 2811: 2802: 2797: 2796: 2776: 2774: 2773: 2768: 2766: 2765: 2749: 2747: 2746: 2741: 2739: 2738: 2719: 2717: 2716: 2711: 2709: 2707: 2706: 2697: 2696: 2687: 2682: 2680: 2679: 2674: 2673: 2672: 2661: 2660: 2655: 2654: 2653: 2642: 2630: 2628: 2627: 2622: 2611: 2610: 2585: 2583: 2582: 2577: 2575: 2573: 2572: 2571: 2559: 2558: 2553: 2552: 2551: 2539: 2538: 2537: 2528: 2527: 2515: 2514: 2505: 2504: 2499: 2498: 2497: 2485: 2458: 2456: 2455: 2450: 2448: 2447: 2376: 2374: 2373: 2368: 2344: 2342: 2341: 2336: 2319: 2318: 2313: 2312: 2311: 2300: 2298: 2297: 2296: 2284: 2283: 2278: 2277: 2276: 2264: 2263: 2262: 2250: 2249: 2239: 2234: 2233: 2221: 2219: 2218: 2209: 2208: 2207: 2198: 2197: 2187: 2171: 2169: 2168: 2163: 2161: 2160: 2152: 2134: 2132: 2131: 2126: 2124: 2112: 2110: 2109: 2104: 2102: 2075: 2073: 2072: 2067: 2065: 2062: 2057: 2056: 2043: 2035: 2019: 2018: 2017: 2004: 1991: 1989: 1988: 1983: 1981: 1978: 1973: 1972: 1959: 1951: 1935: 1934: 1933: 1920: 1907: 1905: 1904: 1899: 1897: 1894: 1889: 1888: 1875: 1867: 1851: 1850: 1849: 1836: 1821: 1819: 1818: 1813: 1811: 1799: 1797: 1796: 1791: 1789: 1777: 1775: 1774: 1769: 1767: 1742: 1740: 1739: 1734: 1732: 1713: 1711: 1710: 1705: 1703: 1687: 1685: 1684: 1679: 1677: 1676: 1656: 1654: 1653: 1648: 1646: 1645: 1622: 1620: 1619: 1614: 1612: 1611: 1592: 1590: 1589: 1584: 1582: 1570: 1568: 1567: 1562: 1560: 1559: 1554: 1549: 1533: 1531: 1530: 1525: 1523: 1515: 1513: 1505: 1498: 1497: 1487: 1479: 1474: 1473: 1464: 1463: 1459: 1446: 1444: 1436: 1435: 1434: 1422: 1421: 1411: 1403: 1390: 1388: 1387: 1382: 1380: 1375: 1374: 1365: 1364: 1360: 1347: 1345: 1337: 1336: 1335: 1323: 1322: 1312: 1304: 1299: 1298: 1293: 1292: 1291: 1274: 1273: 1268: 1263: 1228: 1226: 1225: 1220: 1218: 1200: 1198: 1197: 1192: 1190: 1181: 1180: 1178: 1170: 1134: 1132: 1131: 1126: 1118: 1103: 1101: 1100: 1095: 1087: 1067: 1065: 1064: 1059: 1048: 1047: 1046: 1029: 1027: 1026: 1021: 1019: 999: 997: 996: 991: 989: 988: 987: 967: 965: 964: 959: 957: 956: 955: 935: 933: 932: 927: 922: 921: 920: 904: 903: 902: 882: 880: 879: 874: 866: 840: 833: 829: 826: 820: 789: 781: 728:phonon polariton 712: 705: 698: 685: 680: 679: 672: 668: 667: 278:Spin Hall effect 168:Phase transition 138:Luttinger liquid 75:States of matter 58:Phase transition 44: 30: 29: 21: 3784: 3783: 3779: 3778: 3777: 3775: 3774: 3773: 3759: 3758: 3757: 3756: 3697: 3693: 3642: 3638: 3595: 3591: 3530: 3526: 3481: 3477: 3418: 3414: 3371: 3367: 3324: 3320: 3312: 3310: 3308: 3282: 3278: 3263: 3247: 3240: 3203: 3196: 3145: 3141: 3132: 3130: 3122: 3121: 3117: 3056: 3052: 3031:(25): 964–966. 3017: 3010: 2975:Physical Review 2967: 2963: 2958: 2936: 2916: 2910: 2886:continuous wave 2881: 2857: 2849: 2829: 2807: 2803: 2798: 2792: 2788: 2786: 2783: 2782: 2761: 2757: 2755: 2752: 2751: 2734: 2730: 2728: 2725: 2724: 2702: 2698: 2692: 2688: 2686: 2675: 2668: 2664: 2663: 2662: 2656: 2649: 2645: 2644: 2643: 2641: 2639: 2636: 2635: 2606: 2602: 2594: 2591: 2590: 2567: 2563: 2554: 2547: 2543: 2542: 2541: 2540: 2533: 2529: 2523: 2519: 2510: 2506: 2500: 2493: 2489: 2488: 2487: 2486: 2484: 2467: 2464: 2463: 2443: 2439: 2437: 2434: 2433: 2430: 2424: 2403: 2353: 2350: 2349: 2314: 2307: 2303: 2302: 2301: 2292: 2288: 2279: 2272: 2268: 2267: 2266: 2265: 2258: 2254: 2245: 2241: 2240: 2238: 2229: 2225: 2214: 2210: 2203: 2199: 2193: 2189: 2188: 2186: 2184: 2181: 2180: 2151: 2150: 2148: 2145: 2144: 2120: 2118: 2115: 2114: 2098: 2096: 2093: 2092: 2061: 2039: 2031: 2024: 2020: 2013: 2009: 2008: 2000: 1998: 1995: 1994: 1977: 1955: 1947: 1940: 1936: 1929: 1925: 1924: 1916: 1914: 1911: 1910: 1893: 1871: 1863: 1856: 1852: 1845: 1841: 1840: 1832: 1830: 1827: 1826: 1807: 1805: 1802: 1801: 1785: 1783: 1780: 1779: 1763: 1761: 1758: 1757: 1728: 1726: 1723: 1722: 1699: 1697: 1694: 1693: 1672: 1668: 1666: 1663: 1662: 1641: 1637: 1635: 1632: 1631: 1607: 1603: 1601: 1598: 1597: 1578: 1576: 1573: 1572: 1550: 1548: 1547: 1545: 1542: 1541: 1519: 1506: 1493: 1489: 1488: 1486: 1475: 1469: 1465: 1455: 1451: 1447: 1437: 1430: 1426: 1417: 1413: 1412: 1410: 1399: 1397: 1394: 1393: 1376: 1370: 1366: 1356: 1352: 1348: 1338: 1331: 1327: 1318: 1314: 1313: 1311: 1300: 1294: 1287: 1283: 1282: 1281: 1264: 1262: 1261: 1259: 1256: 1255: 1214: 1212: 1209: 1208: 1179: 1174: 1166: 1164: 1161: 1160: 1146:sodium chloride 1142: 1114: 1112: 1109: 1108: 1083: 1081: 1078: 1077: 1042: 1041: 1037: 1035: 1032: 1031: 1015: 1013: 1010: 1009: 980: 979: 975: 973: 970: 969: 948: 947: 943: 941: 938: 937: 913: 912: 908: 895: 894: 890: 888: 885: 884: 862: 860: 857: 856: 841: 830: 824: 821: 806: 790: 779: 769:((s-)SNOM) and 716: 675: 662: 661: 654: 653: 652: 442: 434: 433: 432: 408:Amorphous solid 402: 392: 391: 390: 369: 351: 341: 340: 339: 328: 326:Antiferromagnet 319: 317:Superparamagnet 310: 297: 296:Magnetic phases 289: 288: 287: 267: 259: 258: 257: 187: 179: 178: 177: 163:Order parameter 157: 156:Phase phenomena 149: 148: 147: 77: 67: 28: 23: 22: 15: 12: 11: 5: 3782: 3772: 3771: 3769:Quasiparticles 3755: 3754: 3691: 3656:(1): 317–350. 3636: 3609:(5): 1901042. 3589: 3524: 3475: 3432:(9): 606–609. 3412: 3365: 3318: 3306: 3276: 3261: 3238: 3194: 3139: 3128:nelson.mit.edu 3115: 3050: 3008: 2960: 2959: 2957: 2954: 2953: 2952: 2947: 2942: 2935: 2932: 2912:Main article: 2909: 2906: 2894:standing waves 2880: 2877: 2869:Stokes shifted 2856: 2853: 2848: 2845: 2828: 2825: 2810: 2806: 2801: 2795: 2791: 2764: 2760: 2737: 2733: 2721: 2720: 2705: 2701: 2695: 2691: 2685: 2678: 2671: 2667: 2659: 2652: 2648: 2620: 2617: 2614: 2609: 2605: 2601: 2598: 2587: 2586: 2570: 2566: 2562: 2557: 2550: 2546: 2536: 2532: 2526: 2522: 2518: 2513: 2509: 2503: 2496: 2492: 2483: 2480: 2477: 2474: 2471: 2446: 2442: 2426:Main article: 2423: 2420: 2416:phase velocity 2402: 2399: 2366: 2363: 2360: 2357: 2346: 2345: 2334: 2331: 2328: 2325: 2322: 2317: 2310: 2306: 2295: 2291: 2287: 2282: 2275: 2271: 2261: 2257: 2253: 2248: 2244: 2237: 2232: 2228: 2224: 2217: 2213: 2206: 2202: 2196: 2192: 2174:magnetic field 2158: 2155: 2139:the time, and 2135:the position, 2123: 2101: 2077: 2076: 2060: 2055: 2052: 2049: 2046: 2042: 2038: 2034: 2030: 2027: 2023: 2016: 2012: 2007: 2003: 1992: 1976: 1971: 1968: 1965: 1962: 1958: 1954: 1950: 1946: 1943: 1939: 1932: 1928: 1923: 1919: 1908: 1892: 1887: 1884: 1881: 1878: 1874: 1870: 1866: 1862: 1859: 1855: 1848: 1844: 1839: 1835: 1810: 1788: 1766: 1756:solutions for 1745: 1744: 1731: 1719: 1718: 1716:electric field 1702: 1690: 1689: 1675: 1671: 1659: 1658: 1644: 1640: 1628: 1627: 1623:is the static 1610: 1606: 1594: 1593: 1581: 1557: 1553: 1535: 1534: 1522: 1518: 1512: 1509: 1504: 1501: 1496: 1492: 1485: 1482: 1478: 1472: 1468: 1462: 1458: 1454: 1450: 1443: 1440: 1433: 1429: 1425: 1420: 1416: 1409: 1406: 1402: 1391: 1379: 1373: 1369: 1363: 1359: 1355: 1351: 1344: 1341: 1334: 1330: 1326: 1321: 1317: 1310: 1307: 1303: 1297: 1290: 1286: 1280: 1277: 1271: 1267: 1249: 1248: 1242: 1231: 1230: 1217: 1202: 1201: 1187: 1184: 1177: 1173: 1169: 1141: 1138: 1124: 1121: 1117: 1093: 1090: 1086: 1057: 1054: 1051: 1045: 1040: 1018: 986: 983: 978: 954: 951: 946: 925: 919: 916: 911: 907: 901: 898: 893: 872: 869: 865: 843: 842: 793: 791: 784: 778: 775: 718: 717: 715: 714: 707: 700: 692: 689: 688: 687: 686: 673: 656: 655: 651: 650: 645: 640: 635: 630: 625: 620: 615: 610: 605: 600: 595: 590: 585: 580: 575: 570: 565: 560: 555: 550: 545: 540: 535: 530: 525: 520: 515: 510: 505: 500: 495: 490: 485: 480: 475: 470: 465: 460: 455: 450: 444: 443: 440: 439: 436: 435: 431: 430: 425: 423:Liquid crystal 420: 415: 410: 404: 403: 398: 397: 394: 393: 389: 388: 383: 378: 373: 364: 359: 353: 352: 349:Quasiparticles 347: 346: 343: 342: 338: 337: 332: 323: 314: 308:Superdiamagnet 305: 299: 298: 295: 294: 291: 290: 286: 285: 280: 275: 269: 268: 265: 264: 261: 260: 256: 255: 250: 245: 240: 235: 233:Thermoelectric 230: 228:Superconductor 225: 220: 215: 210: 208:Mott insulator 205: 200: 195: 189: 188: 185: 184: 181: 180: 176: 175: 170: 165: 159: 158: 155: 154: 151: 150: 146: 145: 140: 135: 130: 125: 120: 115: 110: 105: 100: 95: 90: 85: 79: 78: 73: 72: 69: 68: 66: 65: 60: 55: 49: 46: 45: 37: 36: 26: 9: 6: 4: 3: 2: 3781: 3770: 3767: 3766: 3764: 3750: 3746: 3742: 3738: 3734: 3730: 3726: 3722: 3718: 3714: 3710: 3706: 3702: 3695: 3687: 3683: 3679: 3675: 3671: 3667: 3663: 3659: 3655: 3651: 3647: 3640: 3632: 3628: 3624: 3620: 3616: 3612: 3608: 3604: 3600: 3593: 3585: 3581: 3576: 3571: 3567: 3563: 3559: 3555: 3551: 3547: 3543: 3539: 3535: 3528: 3520: 3516: 3511: 3506: 3502: 3498: 3494: 3490: 3486: 3479: 3471: 3467: 3463: 3459: 3455: 3451: 3447: 3443: 3439: 3435: 3431: 3427: 3423: 3416: 3408: 3404: 3400: 3396: 3392: 3388: 3385:(3): 035109. 3384: 3380: 3376: 3369: 3361: 3357: 3353: 3349: 3345: 3341: 3338:(8): 081103. 3337: 3333: 3329: 3322: 3309: 3303: 3299: 3295: 3291: 3287: 3280: 3272: 3268: 3264: 3262:0-471-41526-X 3258: 3254: 3253: 3245: 3243: 3234: 3230: 3225: 3220: 3216: 3212: 3208: 3201: 3199: 3190: 3186: 3182: 3178: 3174: 3170: 3166: 3162: 3158: 3154: 3150: 3143: 3129: 3125: 3119: 3111: 3107: 3103: 3099: 3095: 3091: 3087: 3083: 3078: 3073: 3069: 3065: 3061: 3054: 3046: 3042: 3038: 3034: 3030: 3026: 3022: 3015: 3013: 3004: 3000: 2996: 2992: 2988: 2984: 2980: 2976: 2972: 2965: 2961: 2951: 2948: 2946: 2943: 2941: 2938: 2937: 2931: 2929: 2925: 2921: 2915: 2905: 2903: 2899: 2895: 2891: 2887: 2876: 2874: 2870: 2866: 2862: 2852: 2844: 2842: 2837: 2835: 2824: 2808: 2804: 2799: 2793: 2789: 2780: 2762: 2758: 2735: 2731: 2699: 2693: 2689: 2683: 2676: 2669: 2665: 2657: 2650: 2646: 2634: 2633: 2632: 2618: 2615: 2607: 2603: 2596: 2568: 2564: 2560: 2555: 2548: 2544: 2530: 2524: 2520: 2516: 2511: 2507: 2501: 2494: 2490: 2481: 2475: 2469: 2462: 2461: 2460: 2444: 2440: 2429: 2419: 2417: 2411: 2409: 2398: 2396: 2392: 2388: 2384: 2378: 2361: 2355: 2329: 2323: 2320: 2315: 2308: 2304: 2293: 2289: 2285: 2280: 2273: 2269: 2255: 2251: 2246: 2242: 2235: 2226: 2222: 2215: 2211: 2204: 2200: 2194: 2190: 2179: 2178: 2177: 2175: 2153: 2142: 2138: 2086: 2081: 2058: 2050: 2047: 2044: 2036: 2025: 2021: 2005: 1993: 1974: 1966: 1963: 1960: 1952: 1941: 1937: 1921: 1909: 1890: 1882: 1879: 1876: 1868: 1857: 1853: 1837: 1825: 1824: 1823: 1755: 1750: 1721: 1720: 1717: 1692: 1691: 1673: 1669: 1661: 1660: 1638: 1630: 1629: 1626: 1608: 1604: 1596: 1595: 1555: 1540: 1539: 1538: 1510: 1507: 1502: 1499: 1490: 1480: 1470: 1466: 1460: 1456: 1452: 1441: 1438: 1427: 1423: 1418: 1414: 1404: 1392: 1371: 1367: 1361: 1357: 1353: 1342: 1339: 1328: 1324: 1319: 1315: 1305: 1295: 1288: 1284: 1278: 1275: 1269: 1254: 1253: 1252: 1246: 1243: 1240: 1236: 1233: 1232: 1207: 1206: 1205: 1185: 1182: 1171: 1159: 1158: 1157: 1155: 1151: 1147: 1137: 1122: 1119: 1105: 1091: 1088: 1075: 1071: 1055: 1052: 1049: 1038: 1007: 1003: 976: 944: 923: 909: 905: 891: 870: 867: 853: 851: 839: 836: 828: 818: 814: 810: 804: 803: 799: 794:This section 792: 788: 783: 782: 774: 772: 768: 764: 759: 757: 753: 749: 745: 741: 737: 733: 732:quasiparticle 730:is a type of 729: 725: 713: 708: 706: 701: 699: 694: 693: 691: 690: 684: 674: 671: 666: 660: 659: 658: 657: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 589: 586: 584: 581: 579: 576: 574: 571: 569: 566: 564: 561: 559: 556: 554: 551: 549: 546: 544: 541: 539: 536: 534: 531: 529: 526: 524: 521: 519: 516: 514: 511: 509: 506: 504: 501: 499: 496: 494: 491: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 448:Van der Waals 446: 445: 438: 437: 429: 426: 424: 421: 419: 416: 414: 411: 409: 406: 405: 401: 396: 395: 387: 384: 382: 379: 377: 374: 372: 368: 365: 363: 360: 358: 355: 354: 350: 345: 344: 336: 333: 331: 327: 324: 322: 318: 315: 313: 309: 306: 304: 301: 300: 293: 292: 284: 281: 279: 276: 274: 271: 270: 263: 262: 254: 251: 249: 246: 244: 243:Ferroelectric 241: 239: 238:Piezoelectric 236: 234: 231: 229: 226: 224: 221: 219: 216: 214: 213:Semiconductor 211: 209: 206: 204: 201: 199: 196: 194: 191: 190: 183: 182: 174: 171: 169: 166: 164: 161: 160: 153: 152: 144: 141: 139: 136: 134: 133:Superfluidity 131: 129: 126: 124: 121: 119: 116: 114: 111: 109: 106: 104: 101: 99: 96: 94: 91: 89: 86: 84: 81: 80: 76: 71: 70: 64: 61: 59: 56: 54: 51: 50: 48: 47: 43: 39: 38: 35: 32: 31: 19: 3708: 3704: 3694: 3653: 3649: 3639: 3606: 3602: 3592: 3541: 3537: 3527: 3492: 3488: 3478: 3429: 3425: 3415: 3382: 3378: 3368: 3335: 3331: 3321: 3311:, retrieved 3289: 3279: 3251: 3214: 3210: 3156: 3152: 3142: 3131:. Retrieved 3127: 3118: 3067: 3063: 3053: 3028: 3024: 2978: 2974: 2964: 2920:polaritonics 2917: 2914:Polaritonics 2882: 2879:SNOM and AFM 2858: 2850: 2838: 2830: 2781:. The ratio 2722: 2588: 2431: 2412: 2407: 2404: 2394: 2390: 2386: 2382: 2379: 2347: 2140: 2136: 2090: 1746: 1536: 1250: 1244: 1239:reduced mass 1234: 1203: 1150:zinc sulfide 1143: 1106: 1069: 1005: 854: 846: 831: 822: 807:Please help 795: 760: 727: 721: 578:von Klitzing 283:Kondo effect 143:Time crystal 123:Fermi liquid 3495:(S1): 781. 2928:electronics 400:Soft matter 321:Ferromagnet 3313:2023-07-27 3217:(7): 444. 3133:2024-01-30 3077:1704.01834 2956:References 2865:wavelength 1754:plane wave 1072:being the 825:April 2022 543:Louis NĂ©el 533:Schrieffer 441:Scientists 335:Spin glass 330:Metamagnet 312:Paramagnet 128:Supersolid 3733:0036-8075 3678:1531-7331 3631:203134796 3623:2195-1071 3566:2375-2548 3519:0021-4922 3454:1476-1122 3407:0163-1829 3360:0003-6951 3233:0365-110X 3181:0028-0836 3094:1936-0851 3003:0031-899X 2940:Polariton 2924:photonics 2898:interfere 2890:reflected 2805:ω 2790:ω 2759:ω 2732:ω 2704:∞ 2700:ϵ 2690:ϵ 2666:ω 2647:ω 2604:ω 2597:ϵ 2565:ω 2561:− 2545:ω 2535:∞ 2531:ϵ 2521:ω 2517:− 2508:ϵ 2491:ω 2476:ω 2470:ϵ 2441:ω 2362:ω 2356:ϵ 2330:ω 2324:ϵ 2305:ω 2290:ω 2286:− 2270:ω 2260:∞ 2256:ϵ 2252:− 2243:ϵ 2231:∞ 2227:ϵ 2212:ω 2157:→ 2048:ω 2045:− 2037:⋅ 1964:ω 1961:− 1953:⋅ 1880:ω 1877:− 1869:⋅ 1670:ω 1643:∞ 1639:ϵ 1605:ϵ 1556:¨ 1511:π 1500:− 1495:∞ 1491:ϵ 1467:ω 1442:π 1432:∞ 1428:ϵ 1424:− 1415:ϵ 1368:ω 1343:π 1333:∞ 1329:ϵ 1325:− 1316:ϵ 1285:ω 1279:− 1270:¨ 1183:μ 1039:ω 977:ω 892:ω 796:does not 748:polariton 643:Wetterich 623:Abrikosov 538:Josephson 508:Van Vleck 498:Luttinger 371:Polariton 303:Diamagnet 223:Conductor 218:Semimetal 203:Insulator 118:Fermi gas 3763:Category 3749:19627306 3741:12532012 3686:33353438 3584:32998899 3470:21116893 3462:15286756 3271:55228781 3189:30926099 3102:28858472 3064:ACS Nano 2934:See also 2631:yields: 683:Category 628:Ginzburg 603:Laughlin 563:Kadanoff 518:Shockley 503:Anderson 458:von Laue 108:Bose gas 3713:Bibcode 3705:Science 3658:Bibcode 3575:7527230 3546:Bibcode 3497:Bibcode 3434:Bibcode 3387:Bibcode 3340:Bibcode 3161:Bibcode 3110:8262624 3033:Bibcode 2983:Bibcode 1714:is the 1237:is the 1068:, with 936:, with 817:removed 802:sources 744:photons 736:crystal 633:Leggett 608:Störmer 593:Bednorz 553:Giaever 523:Bardeen 513:Hubbard 488:Peierls 478:Onsager 428:Polymer 413:Colloid 376:Polaron 367:Plasmon 362:Exciton 3747:  3739:  3731:  3684:  3676:  3629:  3621:  3582:  3572:  3564:  3544:(40). 3517:  3468:  3460:  3452:  3405:  3358:  3304:  3269:  3259:  3231:  3187:  3179:  3153:Nature 3108:  3100:  3092:  3001:  2945:Phonon 2091:Where 1537:Where 1204:Where 777:Theory 752:bosons 681:  648:Perdew 638:Parisi 598:MĂĽller 588:Rohrer 583:Binnig 573:Wilson 568:Fisher 528:Cooper 493:Landau 381:Magnon 357:Phonon 198:Plasma 98:Plasma 88:Liquid 53:Phases 3745:S2CID 3682:S2CID 3627:S2CID 3466:S2CID 3185:S2CID 3106:S2CID 3072:arXiv 2861:laser 2348:With 855:Near 548:Esaki 473:Bloch 468:Debye 463:Bragg 453:Onnes 386:Roton 83:Solid 3737:PMID 3729:ISSN 3674:ISSN 3619:ISSN 3580:PMID 3562:ISSN 3515:ISSN 3458:PMID 3450:ISSN 3403:ISSN 3356:ISSN 3302:ISBN 3267:OCLC 3257:ISBN 3229:ISSN 3177:ISSN 3098:PMID 3090:ISSN 2999:ISSN 2926:and 2063:c.c. 1979:c.c. 1895:c.c. 1800:and 1148:and 1004:and 1000:the 800:any 798:cite 742:and 726:, a 618:Tsui 613:Yang 558:Kohn 483:Mott 3721:doi 3709:299 3666:doi 3611:doi 3570:PMC 3554:doi 3505:doi 3442:doi 3395:doi 3348:doi 3294:doi 3219:doi 3169:doi 3157:167 3082:doi 3041:doi 2991:doi 2979:112 2085:GaP 811:by 722:In 173:QCP 93:Gas 63:QCP 3765:: 3743:. 3735:. 3727:. 3719:. 3707:. 3703:. 3680:. 3672:. 3664:. 3654:37 3652:. 3648:. 3625:. 3617:. 3605:. 3601:. 3578:. 3568:. 3560:. 3552:. 3540:. 3536:. 3513:. 3503:. 3493:13 3491:. 3487:. 3464:. 3456:. 3448:. 3440:. 3428:. 3424:. 3401:. 3393:. 3383:67 3381:. 3377:. 3354:. 3346:. 3336:87 3334:. 3330:. 3300:, 3288:, 3265:. 3241:^ 3227:. 3213:. 3209:. 3197:^ 3183:. 3175:. 3167:. 3155:. 3151:. 3126:. 3104:. 3096:. 3088:. 3080:. 3068:11 3066:. 3062:. 3039:. 3029:15 3027:. 3023:. 3011:^ 2997:. 2989:. 2977:. 2973:. 1822:: 1778:, 758:. 3751:. 3723:: 3715:: 3688:. 3668:: 3660:: 3633:. 3613:: 3607:8 3586:. 3556:: 3548:: 3542:6 3521:. 3507:: 3499:: 3472:. 3444:: 3436:: 3430:3 3409:. 3397:: 3389:: 3362:. 3350:: 3342:: 3296:: 3273:. 3235:. 3221:: 3215:8 3191:. 3171:: 3163:: 3136:. 3112:. 3084:: 3074:: 3047:. 3043:: 3035:: 3005:. 2993:: 2985:: 2809:0 2800:/ 2794:L 2763:0 2736:L 2694:0 2684:= 2677:2 2670:0 2658:2 2651:L 2619:0 2616:= 2613:) 2608:L 2600:( 2569:2 2556:2 2549:0 2525:2 2512:0 2502:2 2495:0 2482:= 2479:) 2473:( 2445:L 2408:k 2395:k 2391:k 2387:k 2383:k 2365:) 2359:( 2333:) 2327:( 2321:= 2316:2 2309:0 2294:2 2281:2 2274:0 2247:0 2236:+ 2223:= 2216:2 2205:2 2201:c 2195:2 2191:k 2154:k 2141:ω 2137:t 2122:x 2100:k 2059:+ 2054:) 2051:t 2041:x 2033:k 2029:( 2026:i 2022:e 2015:0 2011:E 2006:= 2002:E 1975:+ 1970:) 1967:t 1957:x 1949:k 1945:( 1942:i 1938:e 1931:0 1927:P 1922:= 1918:P 1891:+ 1886:) 1883:t 1873:x 1865:k 1861:( 1858:i 1854:e 1847:0 1843:w 1838:= 1834:w 1809:P 1787:E 1765:w 1730:P 1701:E 1674:0 1609:0 1580:w 1552:w 1521:E 1517:) 1508:4 1503:1 1484:( 1481:+ 1477:w 1471:0 1461:2 1457:/ 1453:1 1449:) 1439:4 1419:0 1408:( 1405:= 1401:P 1378:E 1372:0 1362:2 1358:/ 1354:1 1350:) 1340:4 1320:0 1309:( 1306:+ 1302:w 1296:2 1289:0 1276:= 1266:w 1245:V 1235:ÎĽ 1216:q 1186:V 1176:q 1172:= 1168:w 1123:0 1120:= 1116:k 1092:0 1089:= 1085:k 1070:c 1056:k 1053:c 1050:= 1044:p 1017:k 1006:k 985:c 982:a 953:c 950:a 945:v 924:k 918:c 915:a 910:v 906:= 900:c 897:a 871:0 868:= 864:k 838:) 832:( 827:) 823:( 819:. 805:. 711:e 704:t 697:v 20:)

Index

Phonon polaritons
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal
Conductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑