Knowledge

Nanowire

Source 📝

563: 873:(meaning the electrons can travel freely from one electrode to the other), nanowire conductivity is strongly influenced by edge effects. The edge effects come from atoms that lay at the nanowire surface and are not fully bonded to neighboring atoms like the atoms within the bulk of the nanowire. The unbonded atoms are often a source of defects within the nanowire, and may cause the nanowire to conduct electricity more poorly than the bulk material. As a nanowire shrinks in size, the surface atoms become more numerous compared to the atoms within the nanowire, and edge effects become more important. 1034: 1348: 1500:
biological species to the surface of the sensor can lead to the depletion or accumulation of charge carriers in the "bulk" of the nanometer diameter nanowire i.e. (small cross section available for conduction channels). Moreover, the wire, which serves as a tunable conducting channel, is in close contact with the sensing environment of the target, leading to a short response time, along with orders of magnitude increase in the sensitivity of the device as a result of the huge S/V ratio of the nanowires.
5205: 1625: 5180: 995: 5217: 1639: 219: 1522:(SiNW) sensing devices include the ultra sensitive, real-time sensing of biomarker proteins for cancer, detection of single virus particles, and the detection of nitro-aromatic explosive materials such as 2,4,6-tri-nitrotoluene (TNT) in sensitives superior to these of canines. Silicon nanowires could also be used in their twisted form, as electromechanical devices, to measure intermolecular forces with great precision. 1472: 1009:(AFM), and associated technologies which have enabled direct study of the response of the nanowire to an applied load. Specifically, a nanowire can be clamped from one end, and the free end displaced by an AFM tip. In this cantilever geometry, the height of the AFM is precisely known, and the force applied is precisely known. This allows for construction of a force vs. displacement curve, which can be converted to a 762: 5192: 854: 365: 67: 25: 880:, each having a different electronic wavefunction normal to the wire. The thinner the wire is, the smaller the number of channels available to the transport of electrons. As a result, wires that are only one or a few atoms wide exhibit quantization of the conductance: i.e. the conductance can assume only discrete values that are multiples of the 1463:
circuit when using the conventional and manual pick-and-place approach, leading to a very limited throughput. Recent developments in the nanowire synthesis methods now allow for parallel production of single nanowire devices with useful applications in electrochemistry, photonics, and gas- and biosensing.
978:. Nanowire welds were also demonstrated between gold and silver, and silver nanowires (with diameters ≈ 5–15 nm) at near room temperature, indicating that this technique may be generally applicable for ultrathin metallic nanowires. Combined with other nano- and microfabrication technologies, 865:
Several physical reasons predict that the conductivity of a nanowire will be much less than that of the corresponding bulk material. First, there is scattering from the wire boundaries, whose effect will be very significant whenever the wire width is below the free electron mean free path of the bulk
682:
The source enters these nanoclusters and begins to saturate them. On reaching supersaturation, the source solidifies and grows outward from the nanocluster. Simply turning off the source can adjust the final length of the nanowire. Switching sources while still in the growth phase can create compound
1325:
in the solid. Without dislocation motion, a 'dislocation-starvation' mechanism is in operation. The material can accordingly experience huge stresses before dislocation motion is possible, and then begins to strain-harden. For these reasons, nanowires (historically described as 'whiskers') have been
1316:
where the volume of the solid is reduced. As a nanowire is shrunk to a single line of atoms, the strength should theoretically increase all the way to the molecular tensile strength. Gold nanowires have been described as 'ultrahigh strength' due to the extreme increase in yield strength, approaching
769:
The vast majority of nanowire-formation mechanisms are explained through the use of catalytic nanoparticles, which drive the nanowire growth and are either added intentionally or generated during the growth. However, nanowires can be also grown without the help of catalysts, which gives an advantage
744:
results in degradation of the precursor, allowing release of Si or Ge, and dissolution into the metal nanocrystals. As more of the semiconductor solute is added from the supercritical phase (due to a concentration gradient), a solid crystallite precipitates, and a nanowire grows uniaxially from the
1539:
must be carefully selected for nanowire FET measurements. One approach of overcoming this limitation employs fragmentation of the antibody-capturing units and control over surface receptor density, allowing more intimate binding to the nanowire of the target protein. This approach proved useful for
1486:
with potential as optical interconnects and optical data communication on chip. Nanowire lasers are built from III–V semiconductor heterostructures, the high refractive index allows for low optical loss in the nanowire core. Nanowire lasers are subwavelength lasers of only a few hundred nanometers.
830:
An emerging field is to use DNA strands as scaffolds for metallic nanowire synthesis. This method is investigated both for the synthesis of metallic nanowires in electronic components and for biosensing applications, in which they allow the transduction of a DNA strand into a metallic nanowire that
1495:
In an analogous way to FET devices in which the modulation of conductance (flow of electrons/holes) in the semiconductor, between the input (source) and the output (drain) terminals, is controlled by electrostatic potential variation (gate-electrode) of the charge carriers in the device conduction
839:
A simple method to produce nanowires with defined geometries has been recently reported using conventional optical lithography. In this approach, optical lithography is used to generate nanogaps using controlled crack formation. These nanogaps are then used as shadow mask for generating individual
1380:
Due to their one-dimensional structure with unusual optical properties, the nanowire are of interest for photovoltaic devices. Compared with its bulk counterparts, the nanowire solar cells are less sensitive to impurities due to bulk recombination, and thus silicon wafers with lower purity can be
1299:
In contrast, Si solid nanowires have been studied, and shown to have a decreasing modulus with diameter The authors of that work report a Si modulus which is half that of the bulk value, and they suggest that the density of point defects, and or loss of chemical stoichiometry may account for this
973:
measurements reveal that the welds are nearly perfect, with the same crystal orientation, strength and electrical conductivity as the rest of the nanowire. The high quality of the welds is attributed to the nanoscale sample dimensions, oriented-attachment mechanisms and mechanically assisted fast
718:
Similar to VLS synthesis, VSS (vapor-solid-solid) synthesis of nanowires (NWs) proceeds through thermolytic decomposition of a silicon precursor (typically phenylsilane). Unlike VLS, the catalytic seed remains in solid state when subjected to high temperature annealing of the substrate. This such
1462:
The high aspect ratio of nanowires makes this nanostructures suitable for electrochemical sensing with the potential for ultimate sensitivity. One of the challenge for the use of nanowires in commercial products is related to the isolation, handling, and integration of nanowires in an electrical
1376:
is shrinking smaller and smaller into nanoscale. One of the key challenges of building future nanoscale MOS transistors is ensuring good gate control over the channel. In general, having a wider gate relative to the total transistor length affords greater gate control. Therefore, the high aspect
1596:
corn-like nanowires were first prepared by a surface modification concept using surface tension stress mechanism through a two consecutive hydrothermal operation, and showed an increase of 12% in dye-sensitized solar cell efficiency the light scattering layer. CdSe corn-like nanowires grown by
1295:
was applied to study the modulus of silver nanowires, and again the modulus was found to be 88 GPa, very similar to the modulus of bulk Silver (85 GPa) These works demonstrated that the analytically determined modulus dependence seems to be suppressed in nanowire samples where the crystalline
960:
For nanowires with diameters less than 10 nm, existing welding techniques, which require precise control of the heating mechanism and which may introduce the possibility of damage, will not be practical. Recently scientists discovered that single-crystalline ultrathin gold nanowires with
1534:
Generally, the charges on dissolved molecules and macromolecules are screened by dissolved counterions, since in most cases molecules bound to the devices are separated from the sensor surface by approximately 2–12 nm (the size of the receptor proteins or DNA linkers bound to the sensor
1499:
This change in the surface potential influences the Chem-FET device exactly as a 'gate' voltage does, leading to a detectable and measurable change in the device conduction. When these devices are fabricated using semiconductor nanowires as the transistor element the binding of a chemical or
922:). This quantization has been observed by measuring the conductance of a nanowire suspended between two electrodes while pulling it progressively longer: as its diameter reduces, its conductivity decreases in a stepwise fashion and the plateaus correspond approximately to multiples of 553:
There are many applications where nanowires may become important in electronic, opto-electronic and nanoelectromechanical devices, as additives in advanced composites, for metallic interconnects in nanoscale quantum devices, as field-emitters and as leads for biomolecular nanosensors.
4049: 1579:
The main advantages of this method include a significant reduction of sample preparation time (quick welding and cutting of nanowire at low beam current), and minimization of stress-induced bending, Pt contamination, and ion beam damage. This technique is particularly suitable for
652:(VLS), which was first reported by Wagner and Ellis in 1964 for silicon whiskers with diameters ranging from hundreds of nm to hundreds of μm. This process can produce high-quality crystalline nanowires of many semiconductor materials, for example, VLS–grown single crystalline 376:
Typical nanowires exhibit aspect ratios (length-to-width ratio) of 1000 or more. As such they are often referred to as one-dimensional (1-D) materials. Nanowires have many interesting properties that are not seen in bulk or 3-D (three-dimensional) materials. This is because
1041:
The elastic component of the stress-strain curve described by the Young's Modulus, has been reported for nanowires, however the modulus depends very strongly on the microstructure. Thus a complete description of the modulus dependence on diameter is lacking. Analytically,
735:
The supercritical fluid-liquid-solid growth method can be used to synthesize semiconductor nanowires, e.g., Si and Ge. By using metal nanocrystals as seeds, Si and Ge organometallic precursors are fed into a reactor filled with a supercritical organic solvent, such as
727:
Solution-phase synthesis refers to techniques that grow nanowires in solution. They can produce nanowires of many types of materials. Solution-phase synthesis has the advantage that it can produce very large quantities, compared to other methods. In one technique, the
1436:
Conducting nanowires offer the possibility of connecting molecular-scale entities in a molecular computer. Dispersions of conducting nanowires in different polymers are being investigated for use as transparent electrodes for flexible flat-screen displays.
1418:
It is possible that semiconductor nanowire crossings will be important to the future of digital computing. Though there are other uses for nanowires beyond these, the only ones that actually take advantage of physics in the nanometer regime are electronic.
1487:
Nanowire lasers are Fabry–Perot resonator cavities defined by the end facets of the wire with high-reflectivity, recent developments have demonstrated repetition rates greater than 200 GHz offering possibilities for optical chip level communications.
866:
material. In copper, for example, the mean free path is 40 nm. Copper nanowires less than 40 nm wide will shorten the mean free path to the wire width. Silver nanowires have very different electrical and thermal conductivity from bulk silver.
4633:
Elnathan, Roey; Kwiat, M.; Pevzner, A.; Engel, Y.; Burstein, L.; Khatchtourints, A.; Lichtenstein, A.; Kantaev, R.; Patolsky, F. (10 September 2012). "Biorecognition Layer Engineering: Overcoming Screening Limitations of Nanowire-Based FET Devices".
812:) substrates which are covered with a sub-monolayer of a rare earth metal and subsequently annealed. The lateral dimensions of the nanowires confine the electrons in such a way that the system resembles a (quasi-)one-dimensional metal. Metallic RESi 1444:, their use in mechanically enhancing composites is being investigated. Because nanowires appear in bundles, they may be used as tribological additives to improve friction characteristics and reliability of electronic transducers and actuators. 932:
The quantization of conductivity is more pronounced in semiconductors like Si or GaAs than in metals, because of their lower electron density and lower effective mass. It can be observed in 25 nm wide silicon fins, and results in increased
1326:
used extensively in composites for increasing the overall strength of a material. Moreover, nanowires continue to be actively studied, with research aiming to translate enhanced mechanical properties to novel devices in the fields of
1496:
channel, the methodology of a Bio/Chem-FET is based on the detection of the local change in charge density, or so-called "field effect", that characterizes the recognition event between a target molecule and the surface receptor.
1287:
is the diameter. This equation implies that the modulus increases as the diameter decreases. However, various computational methods such as molecular dynamics have predicted that modulus should decrease as diameter decreases.
1707:
Carter, Robin; Suyetin, Mikhail; Lister, Samantha; Dyson, M. Adam; Trewhitt, Harrison; Goel, Sanam; Liu, Zheng; Suenaga, Kazu; Giusca, Cristina; Kashtiban, Reza J.; Hutchison, John L.; Dore, John C.; Bell, Gavin R.;
2525:
Rackauskas, S.; Nasibulin, A. G.; Jiang, H.; Tian, Y.; Kleshch, V. I.; Sainio, J.; Obraztsova, E. D.; Bokova, S. N.; Obraztsov, A. N.; Kauppinen, E. I. (2010). "A Novel Method for Metal Oxide Nanowire Synthesis".
2990:
Teschome, Bezu; Facsko, Stefan; Schönherr, Tommy; Kerbusch, Jochen; Keller, Adrian; Erbe, Artur (2016). "Temperature-Dependent Charge Transport through Individually Contacted DNA Origami-Based Au Nanowires".
1754: 1351:
Atomistic simulation result for formation of inversion channel (electron density) and attainment of threshold voltage (IV) in a nanowire MOSFET. Note that the threshold voltage for this device lies around
602:, often involving a form of self-limiting oxidation, to fine tune the size and aspect ratio of the structures. After the bottom-up synthesis, nanowires can be integrated using pick-and-place techniques. 831:
can be electrically detected. Typically, ssDNA strands are stretched, whereafter they are decorated with metallic nanoparticles that have been functionalised with short complementary ssDNA strands.
457: 2398:
Gustafsson, L.; Jansson, R.; Hedhammar, M.; van der Wijngaart, W. (2018). "Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces".
1535:
surface). As a result of the screening, the electrostatic potential that arises from charges on the analyte molecule decays exponentially toward zero with distance. Thus, for optimal sensing, the
840:
nanowires with precise lengths and widths. This technique allows to produce individual nanowires below 20 nm in width in a scalable way out of several metallic and metal oxide materials.
683:
nanowires with super-lattices of alternating materials. For example, a method termed ENGRAVE (Encoded Nanowire GRowth and Appearance through VLS and Etching) developed by the Cahoon Lab at
1451:
manipulation, which offers a low-cost, bottom-up approach to integrating suspended dielectric metal oxide nanowires in electronic devices such as UV, water vapor, and ethanol sensors.
542:), which can have a diameter of 0.9 nm and be hundreds of micrometers long. Other important examples are based on semiconductors such as InP, Si, GaN, etc., dielectrics (e.g. SiO 3983:
Mongillo, Massimo; Spathis, Panayotis; Katsaros, Georgios; Gentile, Pascal; De Franceschi, Silvano (2012). "Multifunctional Devices and Logic Gates with Undoped Silicon Nanowires".
2757:
Rackauskas, S.; Jiang, H.; Wagner, J. B.; Shandakov, S. D.; Hansen, T. W.; Kauppinen, E. I.; Nasibulin, A. G. (2014). "In Situ Study of Noncatalytic Metal Oxide Nanowire Growth".
961:
diameters ≈ 3–10 nm can be "cold-welded" together within seconds by mechanical contact alone, and under remarkably low applied pressures (unlike macro- and micro-scale
3026:
Rakitin, A; Aich, P; Papadopoulos, C; Kobzar, Yu; Vedeneev, A. S; Lee, J. S; Xu, J. M (2001). "Metallic Conduction through Engineered DNA: DNA Nanoelectronic Building Blocks".
396:. Such discrete values arise from a quantum mechanical constraint on the number electronic transport channels at the nanometer scale, and they are often approximately equal to 1407:
from undoped silicon nanowires. This avoids the problem of how to achieve precision doping of complementary nanocircuits, which is unsolved. They were able to control the
272:
with the diameter of the order of a nanometre (10 m). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of
3296:
Yanson, A. I.; Bollinger, G. Rubio; van den Brom, H. E.; Agraït, N.; van Ruitenbeek, J. M. (1998). "Formation and manipulation of a metallic wire of single gold atoms".
869:
Nanowires also show other peculiar electrical properties due to their size. Unlike single wall carbon nanotubes, whose motion of electrons can fall under the regime of
1186: 719:
type of synthesis is widely used to synthesise metal silicide/germanide nanowires through VSS alloying between a copper substrate and a silicon/germanium precursor.
1240: 1213: 732:
synthesis, ethylene glycol is both solvent and reducing agent. This technique is particularly versatile at producing nanowires of gold, lead, platinum, and silver.
1265: 4755:
Gubur, H. M.; Septekin, F.; Alpdogan, S.; Sahan, B.; Zeyrek, B. K. (2016). "Structural properties of CdSe corn-like nanowires grown by chemical bath deposition".
2449:
Gustafsson, L.; Kvick, M.; Åstrand, C.; Ponsteen, N.; Dorka, N.; Hegrová, V.; Svanberg, S.; Horák, J.; Jansson, R.; Hedhammar, M.; van der Wijngaart, W. (2023).
2902:
Appelfeller, Stephan; Holtgrewe, Kris; Franz, Martin; Freter, Lars; Hassenstein, Christian; Jirschik, Hans-Ferdinand; Sanna, Simone; Dähne, Mario (2020-09-24).
1285: 1037:
Stress-strain curve provides all the relevant mechanical properties including; tensile modulus, yield strength, ultimate tensile strength, and fracture strength
46: 4677:
Gorji, Saleh; Kashiwar, Ankush; Mantha, Lakshmi S; Kruk, Robert; Witte, Ralf; Marek, Peter; Hahn, Horst; Kübel, Christian; Scherer, Torsten (December 2020).
2328:
Heitsch, Andrew T.; Akhavan, Vahid A.; Korgel, Brian A. (2011). "Rapid SFLS Synthesis of Si Nanowires Using Trisilane with in situ Alkyl-Amine Passivation".
770:
of pure nanowires and minimizes the number of technological steps. The mechanisms for catalyst-free growth of nanowires (or whiskers) were known from 1950s.
822:) as well. This system permits tuning the dimensionality between two-dimensional and one-dimensional by the coverage and the tilt angle of the substrate. 1515:, ZnO, etc.) have been used for the preparation of nanowires, Si is usually the material of choice when fabricating nanowire FET-based chemo/biosensors. 3069:
Ongaro, A; Griffin, F; Nagle, L; Iacopino, D; Eritja, R; Fitzmaurice, D (2004). "DNA-Templated Assembly of a Protein-Functionalized Nanogap Electrode".
2054:
Ali, Utku Emre; Yang, He; Khayrudinov, Vladislav; Modi, Gaurav; Cheng, Zengguang; Agarwal, Ritesh; Lipsanen, Harri; Bhaskaran, Harish (September 2022).
2258:
Yin, Xi; Wu, Jianbo; Li, Panpan; Shi, Miao; Yang, Hong (January 2016). "Self-Heating Approach to the Fast Production of Uniform Metal Nanostructures".
1592:
Corn-like nanowire is a one-dimensional nanowire with interconnected nanoparticles on the surface, providing a large percentage of reactive facets. TiO
4894: 4885: 385:
confined laterally and thus occupy energy levels that are different from the traditional continuum of energy levels or bands found in bulk materials.
2355:
Hanrath, T.; Korgel, B.A. (2003). "Supercritical Fluid–Liquid–Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals".
1997: 1933: 1714:"Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals" 2285:
Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. (2000). "Control of thickness and orientation of solution-grown silicon nanowires".
1868: 625:
A suspended nanowire is a wire produced in a high-vacuum chamber held at the longitudinal extremities. Suspended nanowires can be produced by:
4724:
Bakhshayesh, A. M.; Mohammadi, M. R.; Dadar, H.; Fray, D. J. (2013). "Improved efficiency of dye-sensitized solar cells aided by corn-like TiO
3349:
Rodrigues, Varlei; Fuhrer, Tobias; Ugarte, Daniel (2000-11-06). "Signature of Atomic Structure in the Quantum Conductance of Gold Nanowires".
2655:
Morin, S. A.; Bierman, M. J.; Tong, J.; Jin, S. (2010). "Mechanism and Kinetics of Spontaneous Nanotube Growth Driven by Screw Dislocations".
3400:
Tilke, A. T.; Simmel, F. C.; Lorenz, H.; Blick, R. H.; Kotthaus, J. P. (2003). "Quantum interference in a one-dimensional silicon nanowire".
941:
with such nanoscale silicon fins, when used in digital applications, will need a higher gate (control) voltage to switch the transistor on.
3792:
Wang, Zhong Lin; Dai, Zu Rong; Gao, Ruiping; Gole, James L. (2002-03-27). "Measuring the Young's modulus of solid nanowires byin situTEM".
656:
with smooth surfaces could have excellent properties, such as ultra-large elasticity. This method uses a source material from either laser
1820:"Raman Spectroscopy of Optical Transitions and Vibrational Energies of ≈1 nm HgTe Extreme Nanowires within Single Walled Carbon Nanotubes" 949:
To incorporate nanowire technology into industrial applications, researchers in 2008 developed a method of welding nanowires together: a
753:
Protein nanowires in spider silk have been formed by rolling a droplet of spider silk solution over a superhydrophobic pillar structure.
684: 4249:
Coradini, Diego S. R.; Tunes, Matheus A.; Kremmer, Thomas M.; Schön, Claudio G.; Uggowitzer, Peter J.; Pogatscher, Stefan (2020-11-05).
1818:
Spencer, Joseph; Nesbitt, John; Trewhitt, Harrison; Kashtiban, Reza; Bell, Gavin; Ivanov, Victor; Faulques, Eric; Smith, David (2014).
605:
Nanowire production uses several common laboratory techniques, including suspension, electrochemical deposition, vapor deposition, and
613:
enables growing homogeneous and segmented nanowires down to 8 nm diameter. As nanowire oxidation rate is controlled by diameter,
33: 4936: 247: 2706:
Bierman, M. J.; Lau, Y. K. A.; Kvit, A. V; Schmitt, A. L.; Jin, S. (2008). "Dislocation-Driven Nanowire Growth and Eshelby Twist".
610: 372:
extreme nanowire embedded down the central pore of a SWCNT. The image is also accompanied by a simulation of the crystal structure
773:
The simplest methods to obtain metal oxide nanowires use ordinary heating of the metals, e.g. metal wire heated with battery, by
4904: 1291:
Experimentally, gold nanowires have been shown to have a Young's modulus which is effectively diameter independent. Similarly,
793:
were demonstrated. The picture on the right shows a single atomic layer growth on the tip of CuO nanowire, observed by in situ
4910:
One atom thick, hundreds of nanometers long Pt-nanowires are one of the best examples of self-assembly. (University of Twente)
4145: 4523: 4580:
Garcia, J. C.; Justo, J. F. (2014). "Twisted ultrathin silicon nanowires: A possible torsion electromechanical nanodevice".
983: 410: 4966: 2612:
Burton, W. K.; Cabrera, N.; Frank, F. C. (1951). "The Growth of Crystals and the Equilibrium Structure of Their Surfaces".
1889:
Shkondin, E.; Takayama, O., Aryaee Panah, M. E.; Liu, P., Larsen, P. V.; Mar, M. D., Jensen, F.; Lavrinenko, A. V. (2017).
173: 4895:
Original article on the Quantum Hall Effect: K. v. Klitzing, G. Dorda, and M. Pepper; Phys. Rev. Lett. 45, 494–497 (1980).
3690:
Wu, Bin; Heidelberg, Andreas; Boland, John J. (2005-06-05). "Mechanical properties of ultrahigh-strength gold nanowires".
1388:. By connecting several p-n junctions together, researchers have been able to create the basis of all logic circuits: the 599: 4176: 2201:
Christesen, Joseph D.; Pinion, Christopher W.; Grumstrup, Erik M.; Papanikolas, John M.; Cahoon, James F. (2013-12-11).
3749:
Li, Xiaodong; Gao, Hongsheng; Murphy, Catherine J.; Caswell, K. K. (Nov 2003). "Nanoindentation of Silver Nanowires".
1312:. The strength of a material is increased by decreasing the number of defects in the solid, which occurs naturally in 276:
or less and an unconstrained length. At these scales, quantum mechanical effects are important—which coined the term "
5056: 3886: 3556: 1949:"Fabrication of hollow coaxial Al2O3/ZnAl2O4 high aspect ratio freestanding nanotubes based on the Kirkendall effect" 957:); then an electric current is applied, which fuses the wire ends. The technique fuses wires as small as 10 nm. 649: 606: 598:. Most synthesis techniques use a bottom-up approach. Initial synthesis via either method may often be followed by a 2904:"Continuous crossover from two-dimensional to one-dimensional electronic properties for metallic silicide nanowires" 1454:
Due to their large surface-to-volume ratio, physico-chemical reactions are facilitated on the surface of nanowires.
1557: 966: 794: 168: 3454:
Lu, Yang; Huang, Jian Yu; Wang, Chao; Sun, Shouheng; Lou, Jun (2010). "Cold welding of ultrathin gold nanowires".
1308:
The plastic component of the stress strain curve (or more accurately the onset of plasticity) is described by the
5196: 1426:/quantum effect well photon logic arrays. Photons travel inside the tube, electrons travel on the outside shell. 777:
in air can be easily done at home. Spontaneous nanowire formation by non-catalytic methods were explained by the
4218:
Vizcaíno, J. L. P.; Núñez, C. G. A. (2013). "Fast, effective manipulation of nanowires for electronic devices".
5252: 4990: 1327: 579: 575: 5137: 4929: 4308:
Koblmüller, Gregor; et al. (2017). "GaAs–AlGaAs core–shell nanowire lasers on silicon: invited review".
1331: 636: 240: 148: 1013:
curve if the nanowire dimensions are known. From the stress-strain curve, the elastic constant known as the
5013: 4882: 954: 858: 567: 4905:
Penn Engineers Design Electronic Computer Memory in Nanoscale Form That Retrieves Data 1,000 Times Faster.
5257: 5109: 1581: 1422:
In addition, nanowires are also being studied for use as photon ballistic waveguides as interconnects in
284: 105: 4909: 1819: 4539:
Engel, Yoni; Elnathan, Roey; Pevzner, Alexander; Davidi, Guy; Flaxer, Eli; Patolsky, Fernando (2010).
4431:"Long-term mutual phase locking of picosecond pulse pairs generated by a semiconductor nanowire laser" 1242:
is the thickness of a shell layer in which the modulus is surface dependent and varies from the bulk,
800:
Atomic-scale nanowires can also form completely self-organised without need for defects. For example,
694:
A single-step vapour phase reaction at elevated temperature synthesises inorganic nanowires such as Mo
5124: 4976: 4971: 4961: 4953: 3902:
Yu, Peng; Wu, Jiang; Liu, Shenting; Xiong, Jie; Jagadish, Chennupati; Wang, Zhiming M. (2016-12-01).
1787: 4175:
Grange, R.; Choi, J.W.; Hsieh, C.L.; Pu, Y.; Magrez, A.; Smajda, R.; Forro, L.; Psaltis, D. (2009).
5247: 5147: 5091: 5076: 4986: 4922: 3935:"Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells" 1890: 1361: 233: 582:. A top-down approach reduces a large piece of material to small pieces, by various means such as 5184: 5132: 5081: 5068: 3849: 3845: 1368:
are used widely as fundamental building elements in today's electronic circuits. As predicted by
1010: 1006: 38: 4096: 2847:
Holtgrewe, Kris; Appelfeller, Stephan; Franz, Martin; Dähne, Mario; Sanna, Simone (2019-06-10).
1948: 953:
nanowire is placed adjacent to the ends of the pieces to be joined (using the manipulators of a
562: 3117:"Scalable Manufacturing of Single Nanowire Devices Using Crack-Defined Shadow Mask Lithography" 667:
VLS synthesis requires a catalyst. For nanowires, the best catalysts are liquid metal (such as
401: 393: 4899: 4394:
Mayer, B.; et al. (2015). "Monolithically integrated high-β nanowire lasers on silicon".
3872: 2109:
Wagner, R. S.; Ellis, W. C. (1964). "Vapor-liquid-solid mechanism of single crystal growth".
2055: 1991: 1927: 1049: 741: 463: 3498: 1891:"Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials" 5008: 4819: 4643: 4599: 4452: 4360: 4317: 4188: 4111: 4061: 4002: 3949: 3758: 3699: 3571: 3513: 3463: 3409: 3358: 3315: 3244: 3179: 3078: 3035: 2915: 2860: 2813: 2766: 2715: 2664: 2621: 2535: 2407: 2397: 2364: 2294: 2214: 2157: 2118: 2013:"Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires" 1963: 1905: 1766: 1613:
photocatalysts induced by magnetic dipole interactions have been also reported previously.
1218: 1191: 110: 4505: 3934: 3167: 1503:
While several inorganic semiconducting materials such as Si, Ge, and metal oxides (e.g. In
1245: 8: 5155: 5044: 2547: 1677: 1652: 1561: 1381:
used to achieve acceptable efficiency, leading to the reduction on material consumption.
1309: 1043: 918: 881: 870: 507: 389: 332: 4823: 4647: 4603: 4456: 4364: 4321: 4192: 4115: 4065: 4006: 3953: 3762: 3703: 3575: 3517: 3467: 3413: 3362: 3319: 3248: 3183: 3082: 3039: 2919: 2864: 2817: 2770: 2719: 2668: 2625: 2539: 2411: 2368: 2298: 2218: 2161: 2122: 1967: 1909: 1770: 5086: 4855: 4842: 4791: 4772: 4706: 4615: 4589: 4486: 4473: 4442: 4430: 4376: 4333: 4290: 4231: 4127: 4077: 4026: 3992: 3817: 3805: 3731: 3664: 3639: 3613: 3600: 3537: 3305: 3273: 3234: 3223:"Temperature Dependence of Electrical and Thermal Conduction in Single Silver Nanowire" 3222: 3203: 3143: 3116: 3094: 2939: 2903: 2884: 2849:"Structure and one-dimensional metallicity of rare-earth silicide nanowires on Si(001)" 2739: 2688: 2637: 2594: 2559: 2480: 2431: 2380: 2178: 2145: 2091: 2024: 1979: 1800: 1429:
When two nanowires acting as photon waveguides cross each other the juncture acts as a
1270: 1014: 801: 503: 223: 4123: 2848: 808:) nanowires of few nm width and height and several 100 nm length form on silicon( 5242: 5221: 4847: 4776: 4710: 4698: 4678: 4659: 4619: 4562: 4519: 4478: 4411: 4294: 4282: 4235: 4018: 3965: 3882: 3809: 3774: 3723: 3715: 3669: 3605: 3529: 3479: 3382: 3374: 3331: 3278: 3260: 3207: 3195: 3148: 3051: 3008: 2943: 2931: 2888: 2876: 2829: 2782: 2731: 2680: 2641: 2551: 2511: 2484: 2472: 2435: 2423: 2384: 2310: 2240: 2232: 2183: 2095: 2083: 2075: 2012: 1983: 1842: 1804: 1792: 1735: 1644: 1448: 1441: 975: 950: 934: 905: 786: 614: 591: 4741: 4611: 4337: 4030: 3821: 3735: 3541: 3098: 2800:
Preinesberger, C.; Becker, S. K.; Vandré, S.; Kalka, T.; Dähne, M. (February 2002).
2743: 2692: 2598: 570:
image of epitaxial nanowire heterostructures grown from catalytic gold nanoparticles
5165: 4859: 4837: 4827: 4764: 4737: 4694: 4690: 4651: 4607: 4552: 4511: 4490: 4468: 4460: 4403: 4380: 4368: 4325: 4272: 4262: 4223: 4196: 4153: 4131: 4119: 4069: 4010: 3957: 3915: 3801: 3766: 3707: 3659: 3651: 3595: 3587: 3579: 3521: 3471: 3417: 3366: 3323: 3268: 3252: 3187: 3138: 3128: 3086: 3043: 3000: 2970: 2923: 2868: 2821: 2774: 2723: 2672: 2629: 2586: 2563: 2543: 2507: 2462: 2415: 2372: 2337: 2302: 2267: 2222: 2173: 2165: 2126: 2067: 2034: 1971: 1913: 1834: 1782: 1774: 1725: 1682: 1672: 1573: 1569: 1527: 1519: 1408: 1022: 876:
The conductance in a nanowire is described as the sum of the transport by separate
653: 323: 308: 304: 163: 4081: 3617: 2306: 1548:) detection directly from serum for the diagnosis of acute myocardial infarction. 1490: 1384:
After p-n junctions were built with nanowires, the next logical step was to build
1347: 5114: 5101: 5039: 4889: 4790:
Wang, F.; Li, M.; Yu, L.; Sun, F.; Wang, Z.; Zhang, L.; Zeng, H.; Xu, X. (2017).
4407: 3919: 3004: 2801: 1947:
Shkondin, E.; Alimadadi, H., Takayama, O.; Jensen, F., Lavrinenko, A. V. (2020).
1568:, and other mechanically and beam sensitive samples), when transferring inside a 1479: 1292: 1033: 913: 316: 312: 143: 90: 75: 3370: 3047: 2927: 1860: 5209: 5003: 4945: 4900:
Strongest theoretical nanowire produced at Australia's University of Melbourne.
4832: 4329: 4277: 4267: 4250: 4204: 3421: 2872: 2039: 1657: 1630: 1541: 1369: 1365: 158: 115: 4768: 3835: 2975: 2958: 2448: 5236: 5023: 4372: 4286: 4227: 4073: 3969: 3813: 3778: 3719: 3555:
Huo, F.; Zheng, Z.; Zheng, G.; Giam, L. R.; Zhang, H.; Mirkin, C. A. (2008).
3378: 3335: 3264: 2935: 2880: 2833: 2236: 2079: 1313: 790: 785:. More recently, after microscopy advancement, the nanowire growth driven by 774: 265: 201: 196: 133: 3583: 3525: 2727: 2676: 1778: 5160: 5051: 4998: 4851: 4702: 4663: 4566: 4557: 4540: 4482: 4415: 4177:"Lithium niobate nanowires: synthesis, optical properties and manipulation" 4022: 3904:"Design and fabrication of silicon nanowires towards efficient solar cells" 3727: 3673: 3655: 3609: 3533: 3483: 3386: 3282: 3199: 3191: 3152: 3133: 3090: 3055: 3012: 2786: 2735: 2684: 2633: 2555: 2476: 2467: 2450: 2427: 2419: 2376: 2314: 2271: 2244: 2187: 2169: 2087: 2071: 1846: 1796: 1739: 1709: 1536: 1525: 979: 962: 818: 809: 778: 462:
This conductance is twice the reciprocal of the resistance unit called the
277: 71: 4515: 4351:
Yan, Ruoxue; Gargas, Daniel; Yang, Peidong (2009). "Nanowire photonics".
3499:"Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems" 3475: 3310: 2590: 1918: 1888: 1755:"In Situ TEM Observation of a Microcrucible Mechanism of Nanowire Growth" 1662: 1475:
Nanowire lasers for ultrafast transmission of information in light pulses
1430: 1423: 1385: 1373: 1322: 672: 594:. A bottom-up approach synthesizes the nanowire by combining constituent 583: 283:
Many different types of nanowires exist, including superconducting (e.g.
4464: 3221:
Cheng, Zhe; Liu, Longju; Xu, Shen; Lu, Meng; Wang, Xinwei (2015-06-02).
2577:
Frank, F. C. (1949). "The influence of dislocations on crystal growth".
1572:(FIB), flexible metallic nanowires can be attached to a typically rigid 1321:/10. This huge increase in yield is determined to be due to the lack of 639:
in the surface of a metal near its melting point, and then retracting it
4045: 3591: 1730: 1713: 1687: 1565: 1457: 191: 153: 5204: 4883:
Stanford's nanowire battery holds 10 times the charge of existing ones
4655: 4200: 4014: 3961: 3903: 3770: 3256: 2825: 2778: 2341: 2227: 2202: 2130: 1975: 1838: 1624: 1551: 994: 632:
The bombardment of a larger wire, typically with highly energetic ions
5031: 4632: 4174: 3933:
Kayes, Brendan M.; Atwater, Harry A.; Lewis, Nathan S. (2005-05-23).
3878: 3711: 2451:"Scalable Production of Monodisperse Bioactive Spider Silk Nanowires" 1404: 1018: 676: 587: 273: 2200: 1753:
Boston, R.; Schnepp, Z.; Nemoto, Y.; Sakka, Y.; Hall, S. R. (2014).
1046:
has been applied to estimate the dependence of modulus on diameter:
4541:"Supersensitive Detection of Explosives by Silicon Nanowire Arrays" 4447: 3497:
Zhong, Z.; Wang, D; Cui, Y; Bockrath, M. W.; Lieber, C. M. (2003).
2959:"Efficient DNA-assisted synthesis of trans-membrane gold nanowires" 2029: 1946: 1545: 1412: 1397: 1389: 1005:
The study of nanowire mechanics has boomed since the advent of the
999: 781:
present in specific directions or the growth anisotropy of various
657: 378: 292: 218: 5216: 4594: 4251:"Degradation of Cu nanowires in a low-reactive plasma environment" 3997: 3327: 3239: 1638: 761: 4914: 4679:"Nanowire facilitated transfer of sensitive TEM samples in a FIB" 4510:. Smart Materials Series. Cambridge: Royal Society of Chemistry. 3840: 3295: 2146:"Approaching the ideal elastic strain limit in silicon nanowires" 1667: 1471: 1447:
Because of their high aspect ratio, nanowires are also suited to
1400:
gates have all been built from semiconductor nanowire crossings.
1393: 970: 782: 737: 712: 397: 382: 24: 2989: 2901: 2498:
Sears, G.W. (1955). "A Growth Mechanism for Mercury Whiskers".
1817: 1491:
Sensing of proteins and chemicals using semiconductor nanowires
1483: 1357: 938: 853: 729: 679:, or purchased in colloidal form and deposited on a substrate. 661: 595: 513:
Examples of nanowires include inorganic molecular nanowires (Mo
335:
are composed of repeating molecular units either organic (e.g.
300: 288: 3982: 2846: 2799: 2756: 2203:"Synthetically Encoding 10 nm Morphology in Silicon Nanowires" 4723: 4097:"Dielectrophoretic reconfiguration of nanowire interconnects" 3025: 1377:
ratio of nanowires potentially allows for good gate control.
364: 66: 4876: 2524: 1403:
In August 2012, researchers reported constructing the first
982:
is anticipated to have potential applications in the future
825: 687:
allows for nanometer-scale morphological control via rapid
668: 369: 296: 269: 4879:
several images of nanowires are included in the galleries.
4754: 4538: 3068: 711:. From another point of view, such nanowires are cluster 574:
There are two basic approaches to synthesizing nanowires:
4248: 4043: 675:, which can either be self-assembled from a thin film by 392:
in nanowires is that they exhibit discrete values of the
336: 3435:
Halford, Bethany (2008). "Wee Welding with Nanosolder".
3110: 3108: 2284: 1752: 1706: 834: 4676: 4307: 3638:
Wang, Shiliang; Shan, Zhiwei; Huang, Han (2017-01-03).
1865:
The NIST Reference on Constants, Units, and Uncertainty
4808:
Photocatalyst Induced by Magnetic Dipole Interactions"
4757:
Journal of Materials Science: Materials in Electronics
4044:
Appenzeller, Joerg; Knoch, Joachim; Bjork, Mikael T.;
3399: 2053: 748: 452:{\displaystyle {\frac {2e^{2}}{h}}\simeq 77.41\;\mu S} 3348: 3105: 2705: 1273: 1248: 1221: 1194: 1052: 986:
assembly of metallic one-dimensional nanostructures.
413: 4094: 3496: 2327: 1620: 1556:
For a minimal introduction of stress and bending to
1458:
Single nanowire devices for gas and chemical sensing
1296:
structure highly resembles that of the bulk system.
2654: 2056:"A Universal Pick-and-Place Assembly for Nanowires" 1552:
Nanowire assisted transfer of sensitive TEM samples
4393: 3748: 3689: 2611: 2108: 1279: 1259: 1234: 1207: 1180: 617:steps are often applied to tune their morphology. 451: 4428: 3932: 3554: 5234: 3434: 1411:to achieve low-resistance contacts by placing a 797:during the non-catalytic synthesis of nanowire. 3791: 3453: 3342: 1811: 648:A common technique for creating a nanowire is 4930: 4350: 4217: 3874:The Silicon Web: Physics for the Internet Age 3637: 2354: 241: 3901: 3220: 1996:: CS1 maint: multiple names: authors list ( 1956:Journal of Vacuum Science & Technology A 1932:: CS1 maint: multiple names: authors list ( 4789: 4579: 3289: 1853: 1597:chemical bath deposition and corn-like γ-Fe 722: 4937: 4923: 4728:nanowires as the light scattering layer". 2257: 1861:"2022 CODATA Value: von Klitzing constant" 1540:dramatically enhancing the sensitivity of 765:In situ observation of CuO nanowire growth 442: 248: 234: 4841: 4831: 4593: 4556: 4472: 4446: 4276: 4266: 3996: 3663: 3599: 3309: 3272: 3238: 3142: 3132: 2974: 2802:"Structure of DySi2 nanowires on Si(001)" 2466: 2226: 2177: 2038: 2028: 2017:Theoretical and Applied Mechanics Letters 1917: 1788:1983/8f23c618-23f8-46e1-a1d9-960a0b491b1f 1786: 1729: 937:. In practical terms, this means that a 826:DNA-templated metallic nanowire synthesis 3640:"The Mechanical Properties of Nanowires" 1470: 1356:Nanowires have been proposed for use as 1346: 1337: 1032: 993: 989: 852: 760: 561: 363: 65: 49:of all important aspects of the article. 4545:Angewandte Chemie International Edition 4503: 4048:; Schmid, Heinz; Riess, Walter (2008). 3828: 2011:Liu, M.; Peng, J.; et al. (2016). 2010: 756: 5235: 3870: 3864: 3165: 3114: 1587: 1415:layer in the metal-silicon interface. 45:Please consider expanding the lead to 16:Wire with a diameter in the nanometres 4918: 4054:IEEE Transactions on Electron Devices 3685: 3683: 3633: 3631: 3629: 3627: 2576: 2497: 2143: 1342: 835:Crack-Defined Shadow Mask Lithography 629:The chemical etching of a larger wire 5191: 4310:Semiconductor Science and Technology 861:image of a 15 micrometer nickel wire 174:List of semiconductor scale examples 74:nanowire grown inside a single-wall 18: 4877:Nanohedron.com | Nano Image Gallery 3168:"Crack-Defined Electronic Nanogaps" 2956: 1700: 749:Liquid Bridge Induced Self-assembly 13: 4944: 4504:Lu, Wei; Xiang, Jie, eds. (2015). 4152:. October 19, 2006. Archived from 3680: 3624: 2963:Microsystems & Nanoengineering 2579:Discussions of the Faraday Society 2004: 1466: 1028: 368:A noise-filtered HRTEM image of a 359: 14: 5269: 4870: 1303: 5215: 5203: 5190: 5179: 5178: 3806:10.1093/jmicro/51.Supplement.S79 1637: 1623: 1558:transmission electron microscopy 967:transmission electron microscopy 660:particles or a feed gas such as 217: 169:Semiconductor device fabrication 23: 4783: 4748: 4742:10.1016/j.electacta.2012.12.065 4717: 4670: 4626: 4573: 4532: 4497: 4429:Mayer, B.; et al. (2017). 4422: 4387: 4344: 4301: 4242: 4211: 4168: 4138: 4088: 4037: 3976: 3926: 3895: 3852:from the original on 2021-12-11 3836:"Triumph of the MOS Transistor" 3785: 3742: 3548: 3490: 3447: 3437:Chemical & Engineering News 3428: 3393: 3214: 3159: 3062: 3019: 2983: 2950: 2895: 2840: 2793: 2750: 2699: 2648: 2605: 2570: 2518: 2491: 2442: 2391: 2348: 2321: 2278: 2251: 2194: 2144:Zhang, H.; et al. (2016). 2137: 1518:Several examples of the use of 1017:can be derived, as well as the 848: 600:nanowire thermal treatment step 85:Part of a series of articles on 37:may be too short to adequately 4695:10.1016/j.ultramic.2020.113075 3794:Journal of Electron Microscopy 2614:Philos. Trans. R. Soc. Lond. A 2548:10.1088/0957-4484/20/16/165603 2102: 2047: 1940: 1882: 1746: 1175: 1172: 1118: 1115: 1081: 1069: 47:provide an accessible overview 1: 5138:Scanning tunneling microscope 4095:Wissner-Gross, A. D. (2006). 4050:"Toward nanowire electronics" 2307:10.1126/science.287.5457.1471 1693: 643: 620: 4792:"Corn-like, Recoverable γ-Fe 4408:10.1021/acs.nanolett.5b03404 4146:"Nanowires get reconfigured" 3920:10.1016/j.nantod.2016.10.001 3166:Dubois; et al. (2016). 3115:Enrico; et al. (2019). 3005:10.1021/acs.langmuir.6b01961 2512:10.1016/0001-6160(55)90041-9 1526:Limitations of sensing with 1267:is the surface modulus, and 955:scanning electron microscope 557: 550:), or metals (e.g. Ni, Pt). 7: 5110:Molecular scale electronics 4612:10.1209/0295-5075/108/36006 4124:10.1088/0957-4484/17/19/035 3871:Raymer, Michael G. (2009). 3371:10.1103/PhysRevLett.85.4124 3121:ACS Appl. Mater. Interfaces 3048:10.1103/PhysRevLett.86.3670 2928:10.1103/PhysRevB.102.115433 1616: 1582:in situ electron microscopy 508:integer quantum Hall effect 125:Solid-state nanoelectronics 106:Molecular scale electronics 97:Single-molecule electronics 10: 5274: 4833:10.1038/s41598-017-07417-z 4268:10.1038/s41529-020-00137-2 3942:Journal of Applied Physics 3422:10.1103/PhysRevB.68.075311 2873:10.1103/PhysRevB.99.214104 2806:Journal of Applied Physics 2040:10.1016/j.taml.2016.08.002 965:process). High-resolution 944: 843: 816:nanowires form on silicon( 5174: 5146: 5125:Scanning probe microscopy 5123: 5100: 5067: 5022: 4985: 4952: 4769:10.1007/s10854-016-4748-2 4255:npj Materials Degradation 3557:"Polymer Pen Lithography" 2976:10.1038/micronano.2017.84 2957:Guo; et al. (2018). 2455:Macromolecular Bioscience 1898:Optical Materials Express 1317:the theoretical value of 998:Simulation of a nanowire 654:silicon nanowires (SiNWs) 650:vapor–liquid–solid method 305:silicon nanowires (SiNWs) 5148:Molecular nanotechnology 5092:Solid lipid nanoparticle 5077:Self-assembled monolayer 4373:10.1038/nphoton.2009.184 4330:10.1088/1361-6641/aa5e45 4228:10.1117/2.1201312.005260 4074:10.1109/TED.2008.2008011 3948:(11): 114302–114302–11. 1712:; Sloan, Jeremy (2014). 1362:field-effect transistors 723:Solution-phase synthesis 506:, the discoverer of the 303:), semiconducting (e.g. 5133:Atomic force microscope 5082:Supramolecular assembly 5069:Molecular self-assembly 4507:Semiconductor Nanowires 4181:Applied Physics Letters 3846:Computer History Museum 3584:10.1126/science.1162193 3526:10.1126/science.1090899 3028:Physical Review Letters 2728:10.1126/science.1157131 2677:10.1126/science.1182977 1779:10.1126/science.1251594 1372:, the dimension of MOS 1181:{\displaystyle E=E_{0}} 1007:atomic force microscope 635:Indenting the tip of a 339:) or inorganic (e.g. Mo 315:) and insulating (e.g. 4558:10.1002/anie.201000847 3656:10.1002/advs.201600332 3192:10.1002/adma.201504569 3134:10.1021/acsami.8b19410 3091:10.1002/adma.200400244 2634:10.1098/rsta.1951.0006 2468:10.1002/mabi.202200450 2420:10.1002/adma.201704325 2377:10.1002/adma.200390101 2330:Chemistry of Materials 2272:10.1002/cnma.201500123 2170:10.1126/sciadv.1501382 2072:10.1002/smll.202201968 1476: 1440:Because of their high 1353: 1281: 1261: 1236: 1209: 1182: 1038: 1002: 862: 766: 571: 453: 402:quantum of conductance 394:electrical conductance 388:A consequence of this 373: 224:Electronics portal 79: 78:(tube diameter ≈1 nm). 5253:Electrical connectors 5222:Technology portal 4516:10.1039/9781782626947 4435:Nature Communications 3456:Nature Nanotechnology 1474: 1350: 1338:Possible applications 1282: 1262: 1237: 1235:{\displaystyle r_{s}} 1215:is the bulk modulus, 1210: 1208:{\displaystyle E_{0}} 1183: 1036: 997: 990:Mechanical properties 856: 764: 565: 464:von Klitzing constant 454: 367: 70:Crystalline 2×2-atom 69: 5009:Green nanotechnology 3800:(suppl 1): S79–S85. 3476:10.1038/nnano.2010.4 3178:(11): 2172178–2182. 2591:10.1039/df9490500048 1919:10.1364/OME.7.001606 1584:sample preparation. 1271: 1260:{\displaystyle E{s}} 1246: 1219: 1192: 1050: 757:Non-catalytic growth 611:Ion track technology 411: 111:Molecular logic gate 5156:Molecular assembler 4824:2017NatSR...7.6960W 4730:Electrochimica Acta 4648:2012NanoL..12.5245E 4604:2014EL....10836006G 4465:10.1038/ncomms15521 4457:2017NatCo...815521M 4365:2009NaPho...3..569Y 4322:2017SeScT..32e3001K 4278:20.500.11850/454060 4193:2009ApPhL..95n3105G 4116:2006Nanot..17.4986W 4066:2008ITED...55.2827A 4007:2012NanoL..12.3074M 3954:2005JAP....97k4302K 3763:2003NanoL...3.1495L 3704:2005NatMa...4..525W 3576:2008Sci...321.1658H 3518:2003Sci...302.1377Z 3468:2010NatNa...5..218L 3414:2003PhRvB..68g5311T 3363:2000PhRvL..85.4124R 3320:1998Natur.395..783Y 3249:2015NatSR...510718C 3184:2016AdM....28.2178D 3083:2004AdM....16.1799O 3040:2001PhRvL..86.3670R 2999:(40): 10159–10165. 2920:2020PhRvB.102k5433A 2865:2019PhRvB..99u4104H 2818:2002JAP....91.1695P 2771:2014NanoL..14.5810R 2720:2008Sci...320.1060B 2714:(5879): 1060–1063. 2669:2010Sci...328..476M 2626:1951RSPTA.243..299B 2540:2009Nanot..20p5603R 2412:2018AdM....3004325G 2369:2003AdM....15..437H 2299:2000Sci...287.1471H 2219:2013NanoL..13.6281C 2162:2016SciA....2E1382Z 2123:1964ApPhL...4...89W 1968:2020JVSTA..38a3402S 1910:2017OMExp...7.1606S 1771:2014Sci...344..623B 1710:Bichoutskaia, Elena 1678:Non-carbon nanotube 1653:Bacterial nanowires 1588:Corn-like nanowires 1156: 1044:continuum mechanics 919:Quantum Hall effect 882:conductance quantum 871:ballistic transport 691:dopant modulation. 390:quantum confinement 333:Molecular nanowires 5258:Mesoscopic physics 5210:Science portal 5087:DNA nanotechnology 4888:2010-01-07 at the 3227:Scientific Reports 3172:Advanced Materials 3071:Advanced Materials 2400:Advanced Materials 2357:Advanced Materials 1731:10.1039/C4DT00185K 1542:cardiac biomarkers 1477: 1354: 1343:Electronic devices 1277: 1257: 1232: 1205: 1188:in tension, where 1178: 1142: 1039: 1003: 863: 787:screw dislocations 767: 745:nanocrystal seed. 572: 504:Klaus von Klitzing 449: 374: 287:), metallic (e.g. 183:Related approaches 80: 5230: 5229: 4656:10.1021/nl302434w 4642:(10): 5245–5254. 4551:(38): 6830–6835. 4525:978-1-84973-826-2 4201:10.1063/1.3236777 4110:(19): 4986–4990. 4060:(11): 2827–2845. 4015:10.1021/nl300930m 3962:10.1063/1.1901835 3848:. 6 August 2010. 3771:10.1021/nl034525b 3757:(11): 1495–1498. 3570:(5896): 1658–60. 3402:Physical Review B 3357:(19): 4124–4127. 3304:(6704): 783–785. 3257:10.1038/srep10718 3077:(20): 1799–1803. 2908:Physical Review B 2853:Physical Review B 2826:10.1063/1.1430540 2779:10.1021/nl502687s 2765:(10): 5810–5813. 2663:(5977): 476–480. 2342:10.1021/cm2007704 2336:(11): 2697–2699. 2228:10.1021/nl403909r 2213:(12): 6281–6286. 2131:10.1063/1.1753975 1976:10.1116/1.5130176 1839:10.1021/nn5023632 1645:Technology portal 1449:dielectrophoretic 1280:{\displaystyle D} 1011:stress vs. strain 976:surface diffusion 951:sacrificial metal 935:threshold voltage 906:elementary charge 615:thermal oxidation 592:thermal oxidation 473: =  434: 400:multiples of the 381:in nanowires are 268:in the form of a 258: 257: 64: 63: 5265: 5220: 5219: 5208: 5207: 5194: 5193: 5182: 5181: 5166:Mechanosynthesis 5057:characterization 4939: 4932: 4925: 4916: 4915: 4864: 4863: 4845: 4835: 4787: 4781: 4780: 4763:(7): 7640–7645. 4752: 4746: 4745: 4721: 4715: 4714: 4674: 4668: 4667: 4630: 4624: 4623: 4597: 4577: 4571: 4570: 4560: 4536: 4530: 4529: 4501: 4495: 4494: 4476: 4450: 4426: 4420: 4419: 4391: 4385: 4384: 4353:Nature Photonics 4348: 4342: 4341: 4305: 4299: 4298: 4280: 4270: 4246: 4240: 4239: 4215: 4209: 4208: 4203:. Archived from 4172: 4166: 4165: 4163: 4161: 4142: 4136: 4135: 4101: 4092: 4086: 4085: 4041: 4035: 4034: 4000: 3980: 3974: 3973: 3939: 3930: 3924: 3923: 3899: 3893: 3892: 3868: 3862: 3861: 3859: 3857: 3832: 3826: 3825: 3789: 3783: 3782: 3746: 3740: 3739: 3712:10.1038/nmat1403 3692:Nature Materials 3687: 3678: 3677: 3667: 3644:Advanced Science 3635: 3622: 3621: 3603: 3561: 3552: 3546: 3545: 3512:(5649): 1377–9. 3503: 3494: 3488: 3487: 3451: 3445: 3444: 3432: 3426: 3425: 3397: 3391: 3390: 3346: 3340: 3339: 3313: 3311:cond-mat/9811093 3293: 3287: 3286: 3276: 3242: 3218: 3212: 3211: 3163: 3157: 3156: 3146: 3136: 3127:(8): 8217–8226. 3112: 3103: 3102: 3066: 3060: 3059: 3023: 3017: 3016: 2987: 2981: 2980: 2978: 2954: 2948: 2947: 2899: 2893: 2892: 2844: 2838: 2837: 2812:(3): 1695–1697. 2797: 2791: 2790: 2754: 2748: 2747: 2703: 2697: 2696: 2652: 2646: 2645: 2620:(866): 299–358. 2609: 2603: 2602: 2574: 2568: 2567: 2522: 2516: 2515: 2495: 2489: 2488: 2470: 2446: 2440: 2439: 2395: 2389: 2388: 2352: 2346: 2345: 2325: 2319: 2318: 2293:(5457): 1471–3. 2282: 2276: 2275: 2255: 2249: 2248: 2230: 2198: 2192: 2191: 2181: 2150:Science Advances 2141: 2135: 2134: 2111:Appl. Phys. Lett 2106: 2100: 2099: 2051: 2045: 2044: 2042: 2032: 2008: 2002: 2001: 1995: 1987: 1962:(1): 1606–1627. 1953: 1944: 1938: 1937: 1931: 1923: 1921: 1904:(5): 1606–1627. 1895: 1886: 1880: 1879: 1877: 1876: 1857: 1851: 1850: 1824: 1815: 1809: 1808: 1790: 1750: 1744: 1743: 1733: 1704: 1683:Silicon nanowire 1673:Nanowire battery 1647: 1642: 1641: 1633: 1628: 1627: 1574:micromanipulator 1570:focused ion beam 1528:silicon nanowire 1520:silicon nanowire 1482:are nano-scaled 1409:Schottky barrier 1293:nano-indentation 1286: 1284: 1283: 1278: 1266: 1264: 1263: 1258: 1256: 1241: 1239: 1238: 1233: 1231: 1230: 1214: 1212: 1211: 1206: 1204: 1203: 1187: 1185: 1184: 1179: 1171: 1170: 1161: 1155: 1150: 1135: 1130: 1129: 1108: 1107: 1098: 1093: 1092: 1068: 1067: 1023:strain-hardening 1021:, and degree of 899: 501: 484: 482: 478: 458: 456: 455: 450: 435: 430: 429: 428: 415: 250: 243: 236: 222: 221: 164:Multigate device 82: 81: 59: 56: 50: 27: 19: 5273: 5272: 5268: 5267: 5266: 5264: 5263: 5262: 5248:Nanoelectronics 5233: 5232: 5231: 5226: 5214: 5202: 5170: 5142: 5119: 5115:Nanolithography 5102:Nanoelectronics 5096: 5063: 5018: 4981: 4972:Popular culture 4948: 4943: 4890:Wayback Machine 4873: 4868: 4867: 4807: 4803: 4799: 4795: 4788: 4784: 4753: 4749: 4736:(15): 302–308. 4727: 4722: 4718: 4683:Ultramicroscopy 4675: 4671: 4631: 4627: 4578: 4574: 4537: 4533: 4526: 4502: 4498: 4427: 4423: 4392: 4388: 4359:(10): 569–576. 4349: 4345: 4306: 4302: 4247: 4243: 4216: 4212: 4173: 4169: 4159: 4157: 4156:on May 22, 2007 4150:nanotechweb.org 4144: 4143: 4139: 4099: 4093: 4089: 4042: 4038: 3981: 3977: 3937: 3931: 3927: 3900: 3896: 3889: 3881:. p. 365. 3869: 3865: 3855: 3853: 3834: 3833: 3829: 3790: 3786: 3747: 3743: 3688: 3681: 3636: 3625: 3559: 3553: 3549: 3501: 3495: 3491: 3452: 3448: 3433: 3429: 3398: 3394: 3351:Phys. Rev. Lett 3347: 3343: 3294: 3290: 3219: 3215: 3164: 3160: 3113: 3106: 3067: 3063: 3024: 3020: 2988: 2984: 2955: 2951: 2900: 2896: 2845: 2841: 2798: 2794: 2755: 2751: 2704: 2700: 2653: 2649: 2610: 2606: 2575: 2571: 2523: 2519: 2496: 2492: 2461:(4): e2200450. 2447: 2443: 2396: 2392: 2353: 2349: 2326: 2322: 2283: 2279: 2256: 2252: 2199: 2195: 2156:(8): e1501382. 2142: 2138: 2107: 2103: 2066:(38): 2201968. 2052: 2048: 2009: 2005: 1989: 1988: 1951: 1945: 1941: 1925: 1924: 1893: 1887: 1883: 1874: 1872: 1859: 1858: 1854: 1822: 1816: 1812: 1765:(6184): 623–6. 1751: 1747: 1705: 1701: 1696: 1643: 1636: 1629: 1622: 1619: 1612: 1608: 1604: 1600: 1595: 1590: 1560:(TEM) samples ( 1554: 1532: 1514: 1510: 1506: 1493: 1480:Nanowire lasers 1469: 1467:Nanowire lasers 1460: 1366:MOS transistors 1345: 1340: 1306: 1272: 1269: 1268: 1252: 1247: 1244: 1243: 1226: 1222: 1220: 1217: 1216: 1199: 1195: 1193: 1190: 1189: 1166: 1162: 1157: 1151: 1146: 1131: 1125: 1121: 1103: 1099: 1094: 1088: 1084: 1063: 1059: 1051: 1048: 1047: 1031: 1029:Young's modulus 1015:Young's Modulus 992: 947: 928: 914:Planck constant 890: 884: 851: 846: 837: 828: 815: 807: 791:twin boundaries 759: 751: 725: 710: 704: 697: 685:UNC-Chapel Hill 646: 623: 560: 549: 545: 541: 537: 533: 529: 523: 516: 492: 486: 480: 476: 474: 472: 424: 420: 416: 414: 412: 409: 408: 362: 360:Characteristics 355: 349: 342: 327: 320: 254: 216: 206: 178: 144:Nanolithography 120: 116:Molecular wires 91:Nanoelectronics 76:carbon nanotube 60: 54: 51: 44: 32:This article's 28: 17: 12: 11: 5: 5271: 5261: 5260: 5255: 5250: 5245: 5228: 5227: 5225: 5224: 5212: 5200: 5188: 5175: 5172: 5171: 5169: 5168: 5163: 5158: 5152: 5150: 5144: 5143: 5141: 5140: 5135: 5129: 5127: 5121: 5120: 5118: 5117: 5112: 5106: 5104: 5098: 5097: 5095: 5094: 5089: 5084: 5079: 5073: 5071: 5065: 5064: 5062: 5061: 5060: 5059: 5049: 5048: 5047: 5042: 5034: 5028: 5026: 5020: 5019: 5017: 5016: 5011: 5006: 5004:Nanotoxicology 5001: 4995: 4993: 4983: 4982: 4980: 4979: 4974: 4969: 4964: 4958: 4956: 4950: 4949: 4946:Nanotechnology 4942: 4941: 4934: 4927: 4919: 4913: 4912: 4907: 4902: 4897: 4892: 4880: 4872: 4871:External links 4869: 4866: 4865: 4805: 4801: 4797: 4793: 4782: 4747: 4725: 4716: 4669: 4625: 4582:Europhys. Lett 4572: 4531: 4524: 4496: 4421: 4402:(1): 152–156. 4386: 4343: 4300: 4241: 4210: 4207:on 2016-05-14. 4187:(14): 143105. 4167: 4137: 4104:Nanotechnology 4087: 4036: 3975: 3925: 3914:(6): 704–737. 3894: 3887: 3863: 3827: 3784: 3741: 3698:(7): 525–529. 3679: 3650:(4): 1600332. 3623: 3547: 3489: 3446: 3427: 3392: 3341: 3288: 3213: 3158: 3104: 3061: 3034:(16): 3670–3. 3018: 2982: 2949: 2914:(11): 115433. 2894: 2859:(21): 214104. 2839: 2792: 2749: 2698: 2647: 2604: 2569: 2534:(16): 165603. 2528:Nanotechnology 2517: 2506:(4): 361–366. 2490: 2441: 2390: 2363:(5): 437–440. 2347: 2320: 2277: 2250: 2193: 2136: 2101: 2046: 2023:(5): 195–199. 2003: 1939: 1881: 1852: 1833:(9): 9044–52. 1810: 1745: 1724:(20): 7391–9. 1698: 1697: 1695: 1692: 1691: 1690: 1685: 1680: 1675: 1670: 1665: 1660: 1658:Molecular wire 1655: 1649: 1648: 1634: 1631:Science portal 1618: 1615: 1610: 1606: 1602: 1598: 1593: 1589: 1586: 1553: 1550: 1531: 1524: 1512: 1508: 1504: 1492: 1489: 1468: 1465: 1459: 1456: 1442:Young's moduli 1344: 1341: 1339: 1336: 1310:yield strength 1305: 1304:Yield strength 1302: 1276: 1255: 1251: 1229: 1225: 1202: 1198: 1177: 1174: 1169: 1165: 1160: 1154: 1149: 1145: 1141: 1138: 1134: 1128: 1124: 1120: 1117: 1114: 1111: 1106: 1102: 1097: 1091: 1087: 1083: 1080: 1077: 1074: 1071: 1066: 1062: 1058: 1055: 1030: 1027: 991: 988: 946: 943: 926: 888: 850: 847: 845: 842: 836: 833: 827: 824: 813: 805: 804:silicide (RESi 795:TEM microscopy 758: 755: 750: 747: 724: 721: 706: 699: 695: 645: 642: 641: 640: 633: 630: 622: 619: 559: 556: 547: 543: 539: 535: 531: 525: 518: 514: 502:and named for 490: 470: 460: 459: 448: 445: 441: 438: 433: 427: 423: 419: 361: 358: 351: 344: 340: 325: 318: 256: 255: 253: 252: 245: 238: 230: 227: 226: 213: 212: 208: 207: 205: 204: 199: 194: 188: 185: 184: 180: 179: 177: 176: 171: 166: 161: 156: 151: 146: 141: 136: 130: 127: 126: 122: 121: 119: 118: 113: 108: 102: 99: 98: 94: 93: 87: 86: 62: 61: 41:the key points 31: 29: 22: 15: 9: 6: 4: 3: 2: 5270: 5259: 5256: 5254: 5251: 5249: 5246: 5244: 5241: 5240: 5238: 5223: 5218: 5213: 5211: 5206: 5201: 5199: 5198: 5189: 5187: 5186: 5177: 5176: 5173: 5167: 5164: 5162: 5159: 5157: 5154: 5153: 5151: 5149: 5145: 5139: 5136: 5134: 5131: 5130: 5128: 5126: 5122: 5116: 5113: 5111: 5108: 5107: 5105: 5103: 5099: 5093: 5090: 5088: 5085: 5083: 5080: 5078: 5075: 5074: 5072: 5070: 5066: 5058: 5055: 5054: 5053: 5052:Nanoparticles 5050: 5046: 5043: 5041: 5038: 5037: 5035: 5033: 5030: 5029: 5027: 5025: 5024:Nanomaterials 5021: 5015: 5012: 5010: 5007: 5005: 5002: 5000: 4997: 4996: 4994: 4992: 4988: 4984: 4978: 4975: 4973: 4970: 4968: 4967:Organizations 4965: 4963: 4960: 4959: 4957: 4955: 4951: 4947: 4940: 4935: 4933: 4928: 4926: 4921: 4920: 4917: 4911: 4908: 4906: 4903: 4901: 4898: 4896: 4893: 4891: 4887: 4884: 4881: 4878: 4875: 4874: 4861: 4857: 4853: 4849: 4844: 4839: 4834: 4829: 4825: 4821: 4817: 4813: 4809: 4786: 4778: 4774: 4770: 4766: 4762: 4758: 4751: 4743: 4739: 4735: 4731: 4720: 4712: 4708: 4704: 4700: 4696: 4692: 4688: 4684: 4680: 4673: 4665: 4661: 4657: 4653: 4649: 4645: 4641: 4637: 4629: 4621: 4617: 4613: 4609: 4605: 4601: 4596: 4591: 4587: 4583: 4576: 4568: 4564: 4559: 4554: 4550: 4546: 4542: 4535: 4527: 4521: 4517: 4513: 4509: 4508: 4500: 4492: 4488: 4484: 4480: 4475: 4470: 4466: 4462: 4458: 4454: 4449: 4444: 4440: 4436: 4432: 4425: 4417: 4413: 4409: 4405: 4401: 4397: 4390: 4382: 4378: 4374: 4370: 4366: 4362: 4358: 4354: 4347: 4339: 4335: 4331: 4327: 4323: 4319: 4316:(5). 053001. 4315: 4311: 4304: 4296: 4292: 4288: 4284: 4279: 4274: 4269: 4264: 4260: 4256: 4252: 4245: 4237: 4233: 4229: 4225: 4221: 4220:SPIE Newsroom 4214: 4206: 4202: 4198: 4194: 4190: 4186: 4182: 4178: 4171: 4155: 4151: 4147: 4141: 4133: 4129: 4125: 4121: 4117: 4113: 4109: 4105: 4098: 4091: 4083: 4079: 4075: 4071: 4067: 4063: 4059: 4055: 4051: 4047: 4040: 4032: 4028: 4024: 4020: 4016: 4012: 4008: 4004: 3999: 3994: 3991:(6): 3074–9. 3990: 3986: 3979: 3971: 3967: 3963: 3959: 3955: 3951: 3947: 3943: 3936: 3929: 3921: 3917: 3913: 3909: 3905: 3898: 3890: 3888:9781439803127 3884: 3880: 3876: 3875: 3867: 3851: 3847: 3843: 3842: 3837: 3831: 3823: 3819: 3815: 3811: 3807: 3803: 3799: 3795: 3788: 3780: 3776: 3772: 3768: 3764: 3760: 3756: 3752: 3745: 3737: 3733: 3729: 3725: 3721: 3717: 3713: 3709: 3705: 3701: 3697: 3693: 3686: 3684: 3675: 3671: 3666: 3661: 3657: 3653: 3649: 3645: 3641: 3634: 3632: 3630: 3628: 3619: 3615: 3611: 3607: 3602: 3597: 3593: 3589: 3585: 3581: 3577: 3573: 3569: 3565: 3558: 3551: 3543: 3539: 3535: 3531: 3527: 3523: 3519: 3515: 3511: 3507: 3500: 3493: 3485: 3481: 3477: 3473: 3469: 3465: 3462:(3): 218–24. 3461: 3457: 3450: 3442: 3438: 3431: 3423: 3419: 3415: 3411: 3408:(7): 075311. 3407: 3403: 3396: 3388: 3384: 3380: 3376: 3372: 3368: 3364: 3360: 3356: 3352: 3345: 3337: 3333: 3329: 3328:10.1038/27405 3325: 3321: 3317: 3312: 3307: 3303: 3299: 3292: 3284: 3280: 3275: 3270: 3266: 3262: 3258: 3254: 3250: 3246: 3241: 3236: 3232: 3228: 3224: 3217: 3209: 3205: 3201: 3197: 3193: 3189: 3185: 3181: 3177: 3173: 3169: 3162: 3154: 3150: 3145: 3140: 3135: 3130: 3126: 3122: 3118: 3111: 3109: 3100: 3096: 3092: 3088: 3084: 3080: 3076: 3072: 3065: 3057: 3053: 3049: 3045: 3041: 3037: 3033: 3029: 3022: 3014: 3010: 3006: 3002: 2998: 2994: 2986: 2977: 2972: 2968: 2964: 2960: 2953: 2945: 2941: 2937: 2933: 2929: 2925: 2921: 2917: 2913: 2909: 2905: 2898: 2890: 2886: 2882: 2878: 2874: 2870: 2866: 2862: 2858: 2854: 2850: 2843: 2835: 2831: 2827: 2823: 2819: 2815: 2811: 2807: 2803: 2796: 2788: 2784: 2780: 2776: 2772: 2768: 2764: 2760: 2753: 2745: 2741: 2737: 2733: 2729: 2725: 2721: 2717: 2713: 2709: 2702: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2651: 2643: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2608: 2600: 2596: 2592: 2588: 2584: 2580: 2573: 2565: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2521: 2513: 2509: 2505: 2501: 2494: 2486: 2482: 2478: 2474: 2469: 2464: 2460: 2456: 2452: 2445: 2437: 2433: 2429: 2425: 2421: 2417: 2413: 2409: 2405: 2401: 2394: 2386: 2382: 2378: 2374: 2370: 2366: 2362: 2358: 2351: 2343: 2339: 2335: 2331: 2324: 2316: 2312: 2308: 2304: 2300: 2296: 2292: 2288: 2281: 2273: 2269: 2265: 2261: 2254: 2246: 2242: 2238: 2234: 2229: 2224: 2220: 2216: 2212: 2208: 2204: 2197: 2189: 2185: 2180: 2175: 2171: 2167: 2163: 2159: 2155: 2151: 2147: 2140: 2132: 2128: 2124: 2120: 2116: 2112: 2105: 2097: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2050: 2041: 2036: 2031: 2026: 2022: 2018: 2014: 2007: 1999: 1993: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1950: 1943: 1935: 1929: 1920: 1915: 1911: 1907: 1903: 1899: 1892: 1885: 1870: 1866: 1862: 1856: 1848: 1844: 1840: 1836: 1832: 1828: 1821: 1814: 1806: 1802: 1798: 1794: 1789: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1749: 1741: 1737: 1732: 1727: 1723: 1719: 1715: 1711: 1703: 1699: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1650: 1646: 1640: 1635: 1632: 1626: 1621: 1614: 1585: 1583: 1577: 1575: 1571: 1567: 1563: 1559: 1549: 1547: 1543: 1538: 1529: 1523: 1521: 1516: 1501: 1497: 1488: 1485: 1481: 1473: 1464: 1455: 1452: 1450: 1445: 1443: 1438: 1434: 1432: 1427: 1425: 1420: 1416: 1414: 1410: 1406: 1401: 1399: 1395: 1391: 1387: 1382: 1378: 1375: 1371: 1367: 1363: 1359: 1349: 1335: 1333: 1329: 1324: 1320: 1315: 1314:nanomaterials 1311: 1301: 1297: 1294: 1289: 1274: 1253: 1249: 1227: 1223: 1200: 1196: 1167: 1163: 1158: 1152: 1147: 1143: 1139: 1136: 1132: 1126: 1122: 1112: 1109: 1104: 1100: 1095: 1089: 1085: 1078: 1075: 1072: 1064: 1060: 1056: 1053: 1045: 1035: 1026: 1024: 1020: 1016: 1012: 1008: 1001: 996: 987: 985: 981: 977: 972: 968: 964: 958: 956: 952: 942: 940: 936: 930: 925: 921: 920: 915: 911: 907: 903: 898: 894: 887: 883: 879: 874: 872: 867: 860: 855: 841: 832: 823: 821: 820: 811: 803: 798: 796: 792: 788: 784: 783:crystal faces 780: 776: 775:Joule heating 771: 763: 754: 746: 743: 739: 733: 731: 720: 716: 714: 709: 703: 692: 690: 686: 680: 678: 674: 670: 665: 663: 659: 655: 651: 638: 634: 631: 628: 627: 626: 618: 616: 612: 608: 603: 601: 597: 593: 589: 585: 581: 577: 569: 564: 555: 551: 528: 522: 511: 509: 505: 500: 496: 489: 485:, defined as 469: 465: 446: 443: 439: 436: 431: 425: 421: 417: 407: 406: 405: 403: 399: 395: 391: 386: 384: 380: 371: 366: 357: 354: 348: 338: 334: 330: 328: 321: 314: 310: 306: 302: 298: 294: 290: 286: 281: 279: 278:quantum wires 275: 271: 267: 266:nanostructure 263: 251: 246: 244: 239: 237: 232: 231: 229: 228: 225: 220: 215: 214: 210: 209: 203: 202:Nanomechanics 200: 198: 197:Nanophotonics 195: 193: 190: 189: 187: 186: 182: 181: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 150: 147: 145: 142: 140: 137: 135: 134:Nanocircuitry 132: 131: 129: 128: 124: 123: 117: 114: 112: 109: 107: 104: 103: 101: 100: 96: 95: 92: 89: 88: 84: 83: 77: 73: 68: 58: 55:February 2022 48: 42: 40: 35: 30: 26: 21: 20: 5195: 5183: 5161:Nanorobotics 4999:Nanomedicine 4991:applications 4815: 4811: 4785: 4760: 4756: 4750: 4733: 4729: 4719: 4686: 4682: 4672: 4639: 4636:Nano Letters 4635: 4628: 4588:(3): 36006. 4585: 4581: 4575: 4548: 4544: 4534: 4506: 4499: 4438: 4434: 4424: 4399: 4396:Nano Letters 4395: 4389: 4356: 4352: 4346: 4313: 4309: 4303: 4258: 4254: 4244: 4219: 4213: 4205:the original 4184: 4180: 4170: 4158:. Retrieved 4154:the original 4149: 4140: 4107: 4103: 4090: 4057: 4053: 4039: 3988: 3985:Nano Letters 3984: 3978: 3945: 3941: 3928: 3911: 3907: 3897: 3873: 3866: 3854:. Retrieved 3839: 3830: 3797: 3793: 3787: 3754: 3751:Nano Letters 3750: 3744: 3695: 3691: 3647: 3643: 3567: 3563: 3550: 3509: 3505: 3492: 3459: 3455: 3449: 3440: 3436: 3430: 3405: 3401: 3395: 3354: 3350: 3344: 3301: 3297: 3291: 3233:(1): 10718. 3230: 3226: 3216: 3175: 3171: 3161: 3124: 3120: 3074: 3070: 3064: 3031: 3027: 3021: 2996: 2992: 2985: 2966: 2962: 2952: 2911: 2907: 2897: 2856: 2852: 2842: 2809: 2805: 2795: 2762: 2758: 2752: 2711: 2707: 2701: 2660: 2656: 2650: 2617: 2613: 2607: 2582: 2578: 2572: 2531: 2527: 2520: 2503: 2499: 2493: 2458: 2454: 2444: 2403: 2399: 2393: 2360: 2356: 2350: 2333: 2329: 2323: 2290: 2286: 2280: 2266:(1): 37–41. 2263: 2259: 2253: 2210: 2207:Nano Letters 2206: 2196: 2153: 2149: 2139: 2114: 2110: 2104: 2063: 2059: 2049: 2020: 2016: 2006: 1992:cite journal 1959: 1955: 1942: 1928:cite journal 1901: 1897: 1884: 1873:. Retrieved 1864: 1855: 1830: 1826: 1813: 1762: 1758: 1748: 1721: 1718:Dalton Trans 1717: 1702: 1591: 1578: 1555: 1537:Debye length 1533: 1517: 1502: 1498: 1494: 1478: 1461: 1453: 1446: 1439: 1435: 1428: 1421: 1417: 1402: 1383: 1379: 1355: 1323:dislocations 1318: 1307: 1300:difference. 1298: 1290: 1040: 1004: 980:cold welding 963:cold welding 959: 948: 931: 923: 917: 916:) (see also 909: 901: 896: 892: 885: 877: 875: 868: 864: 849:Conductivity 838: 829: 817: 799: 772: 768: 752: 734: 726: 717: 707: 701: 693: 688: 681: 673:nanoclusters 666: 647: 624: 604: 573: 552: 526: 520: 512: 498: 494: 487: 467: 461: 387: 375: 352: 346: 331: 282: 261: 259: 138: 72:tin selenide 52: 36: 34:lead section 4818:(1). 6960. 4160:January 18, 4046:Riel, Heike 3592:10356/94822 2500:Acta Metall 2260:ChemNanoMat 1663:Nanoantenna 1530:FET devices 1431:quantum dot 1424:quantum dot 1386:logic gates 1374:transistors 1370:Moore's law 779:dislocation 742:Thermolysis 584:lithography 159:Moore's law 5237:Categories 5045:Non-carbon 5036:Nanotubes 5032:Fullerenes 5014:Regulation 4689:: 113075. 4448:1603.02169 4261:(1): 1–8. 3908:Nano Today 2030:1911.08908 1875:2024-05-18 1871:. May 2024 1694:References 1688:Solar cell 1566:thin films 1000:fracturing 802:rare-earth 644:VLS growth 621:Suspension 483:... Ω 274:nanometers 192:Nanoionics 154:Nanosensor 4777:137884561 4711:222255773 4620:118792981 4595:1411.0375 4441:. 15521. 4295:226248533 4287:2397-2106 4236:124474608 3998:1208.1465 3970:0021-8979 3879:CRC Press 3814:0022-0744 3779:1530-6984 3720:1476-1122 3443:(51): 35. 3379:0031-9007 3336:0028-0836 3265:2045-2322 3240:1411.7659 3208:205265220 2969:: 17084. 2944:224924918 2936:2469-9950 2889:197525473 2881:2469-9950 2834:0021-8979 2759:Nano Lett 2642:119643095 2485:256032679 2436:205283504 2385:137573988 2237:1530-6984 2117:(5): 89. 2096:251399932 2080:1613-6810 1984:209898658 1805:206555658 1405:NAND gate 1140:− 1110:− 1019:toughness 984:bottom-up 677:dewetting 580:bottom-up 558:Synthesis 444:μ 437:≃ 379:electrons 139:Nanowires 39:summarize 5243:Nanowire 5185:Category 4954:Overview 4886:Archived 4852:28761085 4812:Sci. Rep 4703:33035837 4664:22963381 4567:20715224 4483:28534489 4416:26618638 4338:99074531 4031:22112655 4023:22594644 3850:Archived 3822:53588258 3736:34828518 3728:15937490 3674:28435775 3610:18703709 3542:35084433 3534:14631034 3484:20154688 3387:11056640 3283:26035288 3200:26784270 3153:30698940 3099:97905129 3056:11328050 3013:27626925 2993:Langmuir 2787:25233273 2744:20919593 2736:18451264 2693:30955349 2685:20413496 2599:53512926 2556:19420573 2477:36662774 2428:29205540 2315:10688792 2245:24274858 2188:27540586 2088:35938750 1847:25163005 1827:ACS Nano 1797:24812400 1740:24637546 1617:See also 1562:lamellae 1546:Troponin 1413:silicide 878:channels 713:polymers 609:growth. 576:top-down 262:nanowire 5197:Commons 4977:Outline 4962:History 4860:6058050 4843:5537353 4820:Bibcode 4644:Bibcode 4600:Bibcode 4491:1099474 4474:5457509 4453:Bibcode 4381:2481816 4361:Bibcode 4318:Bibcode 4189:Bibcode 4132:4590982 4112:Bibcode 4062:Bibcode 4003:Bibcode 3950:Bibcode 3856:21 July 3841:YouTube 3759:Bibcode 3700:Bibcode 3665:5396167 3601:8247121 3572:Bibcode 3564:Science 3514:Bibcode 3506:Science 3464:Bibcode 3410:Bibcode 3359:Bibcode 3316:Bibcode 3274:4451791 3245:Bibcode 3180:Bibcode 3144:6426283 3079:Bibcode 3036:Bibcode 2916:Bibcode 2861:Bibcode 2814:Bibcode 2767:Bibcode 2716:Bibcode 2708:Science 2665:Bibcode 2657:Science 2622:Bibcode 2564:3529748 2536:Bibcode 2408:Bibcode 2365:Bibcode 2295:Bibcode 2287:Science 2215:Bibcode 2179:4988777 2158:Bibcode 2119:Bibcode 1964:Bibcode 1906:Bibcode 1767:Bibcode 1759:Science 1668:Nanorod 1358:MOSFETs 971:in situ 945:Welding 912:is the 904:is the 900:(where 844:Physics 738:toluene 689:in situ 658:ablated 596:adatoms 588:milling 398:integer 383:quantum 211:Portals 5040:Carbon 4987:Impact 4858:  4850:  4840:  4775:  4709:  4701:  4662:  4618:  4565:  4522:  4489:  4481:  4471:  4414:  4379:  4336:  4293:  4285:  4234:  4130:  4082:703393 4080:  4029:  4021:  3968:  3885:  3820:  3812:  3777:  3734:  3726:  3718:  3672:  3662:  3618:354452 3616:  3608:  3598:  3540:  3532:  3482:  3385:  3377:  3334:  3298:Nature 3281:  3271:  3263:  3206:  3198:  3151:  3141:  3097:  3054:  3011:  2942:  2934:  2887:  2879:  2832:  2785:  2742:  2734:  2691:  2683:  2640:  2597:  2585:: 48. 2562:  2554:  2483:  2475:  2434:  2426:  2383:  2313:  2243:  2235:  2186:  2176:  2094:  2086:  2078:  1982:  1845:  1803:  1795:  1738:  1544:(e.g. 1484:lasers 1396:, and 939:MOSFET 730:polyol 662:silane 4856:S2CID 4773:S2CID 4707:S2CID 4616:S2CID 4590:arXiv 4487:S2CID 4443:arXiv 4377:S2CID 4334:S2CID 4291:S2CID 4232:S2CID 4128:S2CID 4100:(PDF) 4078:S2CID 4027:S2CID 3993:arXiv 3938:(PDF) 3818:S2CID 3732:S2CID 3614:S2CID 3560:(PDF) 3538:S2CID 3502:(PDF) 3306:arXiv 3235:arXiv 3204:S2CID 3095:S2CID 2940:S2CID 2885:S2CID 2740:S2CID 2689:S2CID 2638:S2CID 2595:S2CID 2560:S2CID 2481:S2CID 2432:S2CID 2406:(3). 2381:S2CID 2092:S2CID 2060:Small 2025:arXiv 1980:S2CID 1952:(PDF) 1894:(PDF) 1823:(PDF) 1801:S2CID 1511:, SnO 1360:(MOS 1352:0.45V 440:77.41 264:is a 4989:and 4848:PMID 4804:@TiO 4800:@SiO 4699:PMID 4660:PMID 4563:PMID 4520:ISBN 4479:PMID 4412:PMID 4283:ISSN 4162:2007 4019:PMID 3966:ISSN 3883:ISBN 3858:2019 3810:ISSN 3775:ISSN 3724:PMID 3716:ISSN 3670:PMID 3606:PMID 3530:PMID 3480:PMID 3383:PMID 3375:ISSN 3332:ISSN 3279:PMID 3261:ISSN 3196:PMID 3149:PMID 3052:PMID 3009:PMID 2932:ISSN 2877:ISSN 2830:ISSN 2783:PMID 2732:PMID 2681:PMID 2552:PMID 2473:PMID 2424:PMID 2311:PMID 2241:PMID 2233:ISSN 2184:PMID 2084:PMID 2076:ISSN 1998:link 1934:link 1869:NIST 1843:PMID 1793:PMID 1736:PMID 1609:@TiO 1605:@SiO 1332:NEMS 1328:MEMS 969:and 908:and 669:gold 578:and 546:,TiO 530:, Li 479:.807 370:HgTe 285:YBCO 270:wire 149:NEMS 4838:PMC 4828:doi 4765:doi 4738:doi 4691:doi 4687:219 4652:doi 4608:doi 4586:108 4553:doi 4512:doi 4469:PMC 4461:doi 4404:doi 4369:doi 4326:doi 4273:hdl 4263:doi 4224:doi 4197:doi 4120:doi 4070:doi 4011:doi 3958:doi 3916:doi 3802:doi 3767:doi 3708:doi 3660:PMC 3652:doi 3596:PMC 3588:hdl 3580:doi 3568:321 3522:doi 3510:302 3472:doi 3418:doi 3367:doi 3324:doi 3302:395 3269:PMC 3253:doi 3188:doi 3139:PMC 3129:doi 3087:doi 3044:doi 3001:doi 2971:doi 2924:doi 2912:102 2869:doi 2822:doi 2775:doi 2724:doi 2712:320 2673:doi 2661:328 2630:doi 2618:243 2587:doi 2544:doi 2508:doi 2463:doi 2416:doi 2373:doi 2338:doi 2303:doi 2291:287 2268:doi 2223:doi 2174:PMC 2166:doi 2127:doi 2068:doi 2035:doi 1972:doi 1914:doi 1835:doi 1783:hdl 1775:doi 1763:344 1726:doi 1398:NOT 1390:AND 1364:). 1330:or 891:= 2 859:SEM 857:An 819:hhk 810:001 789:or 637:STM 607:VLS 590:or 568:SEM 566:An 477:812 356:). 337:DNA 329:). 324:TiO 317:SiO 313:GaN 309:InP 280:". 5239:: 4854:. 4846:. 4836:. 4826:. 4814:. 4810:. 4771:. 4761:27 4759:. 4734:90 4732:. 4705:. 4697:. 4685:. 4681:. 4658:. 4650:. 4640:12 4638:. 4614:. 4606:. 4598:. 4584:. 4561:. 4549:49 4547:. 4543:. 4518:. 4485:. 4477:. 4467:. 4459:. 4451:. 4437:. 4433:. 4410:. 4400:16 4398:. 4375:. 4367:. 4355:. 4332:. 4324:. 4314:32 4312:. 4289:. 4281:. 4271:. 4257:. 4253:. 4230:. 4222:. 4195:. 4185:95 4183:. 4179:. 4148:. 4126:. 4118:. 4108:17 4106:. 4102:. 4076:. 4068:. 4058:55 4056:. 4052:. 4025:. 4017:. 4009:. 4001:. 3989:12 3987:. 3964:. 3956:. 3946:97 3944:. 3940:. 3912:11 3910:. 3906:. 3877:. 3844:. 3838:. 3816:. 3808:. 3798:51 3796:. 3773:. 3765:. 3753:. 3730:. 3722:. 3714:. 3706:. 3694:. 3682:^ 3668:. 3658:. 3646:. 3642:. 3626:^ 3612:. 3604:. 3594:. 3586:. 3578:. 3566:. 3562:. 3536:. 3528:. 3520:. 3508:. 3504:. 3478:. 3470:. 3458:. 3441:86 3439:. 3416:. 3406:68 3404:. 3381:. 3373:. 3365:. 3355:85 3353:. 3330:. 3322:. 3314:. 3300:. 3277:. 3267:. 3259:. 3251:. 3243:. 3229:. 3225:. 3202:. 3194:. 3186:. 3176:28 3174:. 3170:. 3147:. 3137:. 3125:11 3123:. 3119:. 3107:^ 3093:. 3085:. 3075:16 3073:. 3050:. 3042:. 3032:86 3030:. 3007:. 2997:32 2995:. 2965:. 2961:. 2938:. 2930:. 2922:. 2910:. 2906:. 2883:. 2875:. 2867:. 2857:99 2855:. 2851:. 2828:. 2820:. 2810:91 2808:. 2804:. 2781:. 2773:. 2763:14 2761:. 2738:. 2730:. 2722:. 2710:. 2687:. 2679:. 2671:. 2659:. 2636:. 2628:. 2616:. 2593:. 2581:. 2558:. 2550:. 2542:. 2532:20 2530:. 2502:. 2479:. 2471:. 2459:23 2457:. 2453:. 2430:. 2422:. 2414:. 2404:30 2402:. 2379:. 2371:. 2361:15 2359:. 2334:23 2332:. 2309:. 2301:. 2289:. 2262:. 2239:. 2231:. 2221:. 2211:13 2209:. 2205:. 2182:. 2172:. 2164:. 2152:. 2148:. 2125:. 2113:. 2090:. 2082:. 2074:. 2064:18 2062:. 2058:. 2033:. 2019:. 2015:. 1994:}} 1990:{{ 1978:. 1970:. 1960:38 1958:. 1954:. 1930:}} 1926:{{ 1912:. 1900:. 1896:. 1867:. 1863:. 1841:. 1829:. 1825:. 1799:. 1791:. 1781:. 1773:. 1761:. 1757:. 1734:. 1722:43 1720:. 1716:. 1576:. 1564:, 1433:. 1394:OR 1392:, 1334:. 1025:. 929:. 740:. 715:. 700:9− 671:) 664:. 586:, 538:Se 534:Mo 519:9− 510:. 493:= 481:45 475:25 466:, 404:: 345:9− 322:, 311:, 307:, 301:Ag 299:, 297:Au 295:, 293:Pt 291:, 289:Ni 260:A 4938:e 4931:t 4924:v 4862:. 4830:: 4822:: 4816:7 4806:2 4802:2 4798:3 4796:O 4794:2 4779:. 4767:: 4744:. 4740:: 4726:2 4713:. 4693:: 4666:. 4654:: 4646:: 4622:. 4610:: 4602:: 4592:: 4569:. 4555:: 4528:. 4514:: 4493:. 4463:: 4455:: 4445:: 4439:8 4418:. 4406:: 4383:. 4371:: 4363:: 4357:3 4340:. 4328:: 4320:: 4297:. 4275:: 4265:: 4259:4 4238:. 4226:: 4199:: 4191:: 4164:. 4134:. 4122:: 4114:: 4084:. 4072:: 4064:: 4033:. 4013:: 4005:: 3995:: 3972:. 3960:: 3952:: 3922:. 3918:: 3891:. 3860:. 3824:. 3804:: 3781:. 3769:: 3761:: 3755:3 3738:. 3710:: 3702:: 3696:4 3676:. 3654:: 3648:4 3620:. 3590:: 3582:: 3574:: 3544:. 3524:: 3516:: 3486:. 3474:: 3466:: 3460:5 3424:. 3420:: 3412:: 3389:. 3369:: 3361:: 3338:. 3326:: 3318:: 3308:: 3285:. 3255:: 3247:: 3237:: 3231:5 3210:. 3190:: 3182:: 3155:. 3131:: 3101:. 3089:: 3081:: 3058:. 3046:: 3038:: 3015:. 3003:: 2979:. 2973:: 2967:4 2946:. 2926:: 2918:: 2891:. 2871:: 2863:: 2836:. 2824:: 2816:: 2789:. 2777:: 2769:: 2746:. 2726:: 2718:: 2695:. 2675:: 2667:: 2644:. 2632:: 2624:: 2601:. 2589:: 2583:5 2566:. 2546:: 2538:: 2514:. 2510:: 2504:3 2487:. 2465:: 2438:. 2418:: 2410:: 2387:. 2375:: 2367:: 2344:. 2340:: 2317:. 2305:: 2297:: 2274:. 2270:: 2264:2 2247:. 2225:: 2217:: 2190:. 2168:: 2160:: 2154:2 2133:. 2129:: 2121:: 2115:4 2098:. 2070:: 2043:. 2037:: 2027:: 2021:6 2000:) 1986:. 1974:: 1966:: 1936:) 1922:. 1916:: 1908:: 1902:7 1878:. 1849:. 1837:: 1831:8 1807:. 1785:: 1777:: 1769:: 1742:. 1728:: 1611:2 1607:2 1603:3 1601:O 1599:2 1594:2 1513:2 1509:3 1507:O 1505:2 1319:E 1275:D 1254:s 1250:E 1228:s 1224:r 1201:0 1197:E 1176:] 1173:) 1168:2 1164:D 1159:/ 1153:2 1148:s 1144:r 1137:D 1133:/ 1127:s 1123:r 1119:( 1116:) 1113:1 1105:s 1101:E 1096:/ 1090:0 1086:E 1082:( 1079:4 1076:+ 1073:1 1070:[ 1065:0 1061:E 1057:= 1054:E 927:0 924:G 910:h 902:e 897:h 895:/ 893:e 889:0 886:G 814:2 806:2 708:x 705:I 702:x 698:S 696:6 548:2 544:2 540:6 536:6 532:2 527:x 524:I 521:x 517:S 515:6 499:e 497:/ 495:h 491:K 488:R 471:K 468:R 447:S 432:h 426:2 422:e 418:2 353:x 350:I 347:x 343:S 341:6 326:2 319:2 249:e 242:t 235:v 57:) 53:( 43:.

Index


lead section
summarize
provide an accessible overview

tin selenide
carbon nanotube
Nanoelectronics
Molecular scale electronics
Molecular logic gate
Molecular wires
Nanocircuitry
Nanowires
Nanolithography
NEMS
Nanosensor
Moore's law
Multigate device
Semiconductor device fabrication
List of semiconductor scale examples
Nanoionics
Nanophotonics
Nanomechanics
icon
Electronics portal
v
t
e
nanostructure
wire

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.