Knowledge

Protein structure

Source 📝

942:
a set of theoretical parameters for each conformation based on the structure. Conformational subsets from this pool whose average theoretical parameters closely match known experimental data for this protein are selected. The alternative molecular dynamics approach takes multiple random conformations at a time and subjects all of them to experimental data. Here the experimental data is serving as limitations to be placed on the conformations (e.g. known distances between atoms). Only conformations that manage to remain within the limits set by the experimental data are accepted. This approach often applies large amounts of experimental data to the conformations which is a very computationally demanding task.
124: 893: 1080: 1069: 135: 981: 322: 27: 656: 3185: 445: 643:. Hundreds of proteins have been identified as being assembled into homomers in human cells. The process of assembly is often initiated by the interaction of the N-terminal region of polypeptide chains. Evidence that numerous gene products form homomers (multimers) in a variety of organisms based on 941:
that fall into two general methodologies – pool and molecular dynamics (MD) approaches (diagrammed in the figure). The pool based approach uses the protein's amino acid sequence to create a massive pool of random conformations. This pool is then subjected to more computational processing that creates
1176:
protein structures. The aim of most protein structure databases is to organize and annotate the protein structures, providing the biological community access to the experimental data in a useful way. Data included in protein structure databases often includes 3D coordinates as well as experimental
1181:
determined structures. Though most instances, in this case either proteins or a specific structure determinations of a protein, also contain sequence information and some databases even provide means for performing sequence based queries, the primary attribute of a structure database is structural
932:
files are a representation of a protein that can be considered to have a flexible structure. Creating these files requires determining which of the various theoretically possible protein conformations actually exist. One approach is to apply computational algorithms to the protein data in order to
1257:
is much easier than the determination of a protein structure. However, the structure of a protein gives much more insight in the function of the protein than its sequence. Therefore, a number of methods for the computational prediction of protein structure from its sequence have been developed.
1059:
may result in loss of function, and loss of native state. The free energy of stabilization of soluble globular proteins typically does not exceed 50 kJ/mol. Taking into consideration the large number of hydrogen bonds that take place for the stabilization of secondary structures, and the
607:, such as a 2-fold axis in a dimer. Multimers made up of identical subunits are referred to with a prefix of "homo-" and those made up of different subunits are referred to with a prefix of "hetero-", for example, a heterotetramer, such as the two alpha and two beta chains of 1119:
can determine protein structures. The resolution is typically lower than that of X-ray crystallography, or NMR, but the maximum resolution is steadily increasing. This technique is still a particularly valuable for very large protein complexes such as
485:. Both the α-helix and the β-sheet represent a way of saturating all the hydrogen bond donors and acceptors in the peptide backbone. Some parts of the protein are ordered but do not form any regular structures. They should not be confused with 1218:
database provide two different structural classifications of proteins. When the structural similarity is large the two proteins have possibly diverged from a common ancestor, and shared structure between proteins is considered evidence of
404:, establishing that proteins have defining amino acid sequences. The sequence of a protein is unique to that protein, and defines the structure and function of the protein. The sequence of a protein can be determined by methods such as 904:
that experience conformational changes after being affected by interactions with other proteins or as a part of enzymatic activity. However, proteins may have varying degrees of stability, and some of the less stable variants are
1152:, can probe the structured fraction and its stability without the need for purification. Once a protein's structure has been experimentally determined, further detailed studies can be done computationally, using 1143:
has become a valuable method to investigate the structures of flexible peptides and proteins that cannot be studied with other methods. A more qualitative picture of protein structure is often obtained by
2379: 703:
but instead appear in a variety of proteins. Domains often are named and singled out because they figure prominently in the biological function of the protein they belong to; for example, the "
1551:
Chiang YS, Gelfand TI, Kister AE, Gelfand IM (September 2007). "New classification of supersecondary structures of sandwich-like proteins uncovers strict patterns of strand assemblage".
575:
Quaternary structure is the three-dimensional structure consisting of the aggregation of two or more individual polypeptide chains (subunits) that operate as a single functional unit (
583:
and disulfide bonds as in tertiary structure. There are many possible quaternary structure organisations. Complexes of two or more polypeptides (i.e. multiple subunits) are called
1194:, both in developing the computational methods used and in providing a large experimental dataset used by some methods to provide insights about the function of a protein. 2516:
Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (March 1958). "A three-dimensional model of the myoglobin molecule obtained by x-ray analysis".
1231:, and joining proteins sharing these fragments into protein superfamilies is no longer justified. Topology of a protein can be used to classify proteins as well. 635:. Bertolini et al. in 2021 presented evidence that homomer formation may be driven by interaction between nascent polypeptide chains as they are translated from 130: 1227:. If shared structure is significant but the fraction shared is small, the fragment shared may be the consequence of a more dramatic evolutionary event such as 1186:
focus on sequence information, and contain no structural information for the majority of entries. Protein structure databases are critical for many efforts in
873:. "n effect, the is a nanomachine composed of perhaps over 600 proteins in molecular complexes, many of which also function independently as nanomachines... 225:, rather than a protein. To be able to perform their biological function, proteins fold into one or more specific spatial conformations driven by a number of 128: 3741: 2305:
Sivakolundu SG, Bashford D, Kriwacki RW (November 2005). "Disordered p27Kip1 exhibits intrinsic structure resembling the Cdk2/cyclin A-bound conformation".
129: 3913: 3882: 3826: 3774: 1060:
stabilization of the inner core through hydrophobic interactions, the free energy of stabilization emerges as small difference between large numbers.
127: 1055:
protein states. This free energy difference is very sensitive to temperature, hence a change in temperature may result in unfolding or denaturation.
4025: 1449:
Sanger F (May 1959). "Chemistry of insulin; determination of the structure of insulin opens the way to greater understanding of life processes".
2810:
Kumari I, Sandhu P, Ahmed M, Akhter Y (August 2017). "Molecular Dynamics Simulations, Challenges and Opportunities: A Biologist's Prospective".
481:
between the main-chain peptide groups. They have a regular geometry, being constrained to specific values of the dihedral angles ψ and φ on the
3002:"Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures" 1211: 784: 743:
refer to short segments of protein three-dimensional structure or amino acid sequence that were found in a large number of different proteins
2093:"Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase" 1270:
methods can build a 3-D model for a protein of unknown structure from experimental structures of evolutionarily-related proteins, called a
372:-group), which is the end where the amino group is not involved in a peptide bond. The primary structure of a protein is determined by the 2340:
Zhang G, Ignatova Z (February 2011). "Folding at the birth of the nascent chain: coordinating translation with co-translational folding".
1796: 1239:
are two topology frameworks developed for classification of protein folds based on chain crossing and intrachain contacts respectively.
3163: 2258:"A relationship between the transient structure in the monomeric state and the aggregation propensities of α-synuclein and β-synuclein" 1178: 664: 2901: 416:. It is strictly recommended to use the words "amino acid residues" when discussing proteins because when a peptide bond is formed, a 3734: 3404: 141: 1780: 3217: 546: 489:, an unfolded polypeptide chain lacking any fixed three-dimensional structure. Several sequential secondary structures may form a " 461:
refers to highly regular local sub-structures on the actual polypeptide backbone chain. Two main types of secondary structure, the
368:(N-terminus) based on the nature of the free group on each extremity. Counting of residues always starts at the N-terminal end (NH 2142:"p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins" 1402:"The amino-acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates" 91: 3601: 63: 2391: 1335: 1140: 1148:, which is also useful to screen for more crystallizable protein samples. Novel implementations of this approach, including 4123: 4018: 3727: 3651: 3189: 2644:"Identifying residual structure in intrinsically disordered systems: a 2D IR spectroscopic study of the GVGXPGVG peptide" 296: 272:
Protein structures range in size from tens to several thousand amino acids. By physical size, proteins are classified as
70: 886: 1149: 44: 4128: 4118: 3810: 3596: 2598: 1951: 1861: 1632:
Bertolini M, Fenzl K, Kats I, Wruck F, Tippmann F, Schmitt J, Auburger JJ, Tans S, Bukau B, Kramer G (January 2021).
922: 906: 110: 3161:
50 Years of Protein Structure Determination Timeline - HTML Version - National Institute of General Medical Sciences
945:
The conformational ensembles were generated for a number of highly dynamic and partially unfolded proteins, such as
4108: 3836: 302:
in performing its biological function. The alternative structures of the same protein are referred to as different
266: 77: 921:
have been devised as a way to provide a more accurate and 'dynamic' representation of the conformational state of
4113: 4011: 3929: 3784: 3611: 3245: 2581:
Krimm S, Bandekar J (1986). "Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins".
950: 421: 245:
packing. To understand the functions of proteins at a molecular level, it is often necessary to determine their
3519: 878: 48: 892: 59: 3872: 3764: 3474: 3397: 1029:. The final structure of the protein chain is generally assumed to be determined by its amino acid sequence ( 262: 3867: 432:
are usually also considered a part of the primary structure, and cannot be read from the gene. For example,
409: 4075: 4065: 3993: 3971: 3210: 2140:
De Biasio A, Ibáñez de Opakua A, Cordeiro TN, Villate M, Merino N, Sibille N, et al. (February 2014).
1263: 1248: 1111:
to be determined to a certain resolution. Roughly 7% of the known protein structures have been obtained by
720: 695:
independently of the rest of the protein chain. Many domains are not unique to the protein products of one
570: 436:
is composed of 51 amino acids in 2 chains. One chain has 31 amino acids, and the other has 20 amino acids.
2902:"SCOP: a structural classification of proteins database for the investigation of sequences and structures" 671:
Proteins are frequently described as consisting of several structural units. These units include domains,
4138: 4055: 1841: 1056: 1052: 453: 2696:"Two-dimensional infrared population transfer spectroscopy for enhancing structural markers of proteins" 1848:. Advances in Protein Chemistry and Structural Biology. Vol. 83. Academic Press. pp. 163–221. 992: 4223: 4060: 3988: 3663: 1165: 914: 910: 901: 660: 644: 502: 246: 2671: 4194: 4050: 3934: 335: 2628: 751:
Tertiary protein structures can have multiple secondary elements on the same polypeptide chain. The
3877: 3779: 3390: 1228: 1136: 1116: 934: 929: 918: 752: 580: 526: 490: 385: 303: 226: 719:
proteins. A conservative combination of several domains that occur in different proteins, such as
603:
if it contains five subunits, and so forth. The subunits are frequently related to one another by
3898: 3851: 3203: 2643: 2079: 938: 37: 1594:
Moutevelis E, Woolfson DN (January 2009). "A periodic table of coiled-coil protein structures".
1494:"The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain" 4095: 4085: 4034: 2197:
Kragelj J, Palencia A, Nanao MH, Maurin D, Bouvignies G, Blackledge M, Jensen MR (March 2015).
1826: 1634:"Interactions between nascent proteins translated by adjacent ribosomes drive homomer assembly" 1293: 1283: 1079: 672: 84: 1325: 4103: 3955: 3939: 3908: 3769: 3554: 3349: 2407: 1224: 1187: 1092: 1042: 826: 814: 806: 397: 307: 299: 254: 206: 3240: 3160: 3013: 2932: 2764: 2707: 2525: 2472: 2210: 2153: 2031:"Computational approaches for inferring the functions of intrinsically disordered proteins" 1898: 1505: 1458: 1139:
can also be used to characterize the conformation of peptides, polypeptides, and proteins.
675:, and folds. Despite the fact that there are about 100,000 different proteins expressed in 530: 353: 238: 2753:"Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp" 865:, which moves cargo inside cells towards the nucleus and produces the axonemal beating of 8: 4207: 4164: 4133: 3976: 3636: 1191: 1030: 756: 712: 510:
refers to the three-dimensional structure created by a single protein molecule (a single
458: 205:, which indicates a repeating unit of a polymer. Proteins form by amino acids undergoing 3017: 2768: 2711: 2529: 2476: 2465:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
2214: 2157: 1902: 1509: 1462: 1095:. This method allows one to measure the three-dimensional (3-D) density distribution of 909:. These proteins exist and function in a relatively 'disordered' state lacking a stable 3903: 3831: 3703: 3621: 3134: 3109: 3085: 3060: 3036: 3001: 2870: 2787: 2752: 2728: 2695: 2616: 2549: 2490: 2436: 2411: 2282: 2257: 2233: 2198: 2174: 2141: 2117: 2092: 2057: 2030: 2001: 1976: 1919: 1886: 1853: 1818: 1756: 1731: 1707: 1682: 1658: 1633: 1576: 1528: 1493: 1426: 1401: 1377: 1352: 1220: 1153: 1132: 1121: 830: 592: 519: 507: 250: 170: 2974: 2957: 2920: 2823: 2590: 2091:
Mittag T, Marsh J, Grishaev A, Orlicky S, Lin H, Sicheri F, et al. (March 2010).
659:
Protein domains. The two shown protein structures share a common domain (maroon), the
3805: 3800: 3698: 3255: 3139: 3090: 3041: 2979: 2924: 2889: 2862: 2827: 2792: 2733: 2676: 2604: 2594: 2541: 2498: 2441: 2387: 2357: 2322: 2287: 2238: 2179: 2122: 2062: 2006: 1957: 1947: 1924: 1867: 1857: 1810: 1761: 1712: 1683:"INTRAGENIC COMPLEMENTATION AMONG TEMPERATURE SENSITIVE MUTANTS OF BACTERIOPHAGE T4D" 1663: 1611: 1568: 1533: 1474: 1431: 1382: 1331: 1267: 1183: 1088: 1073: 1048: 716: 688: 588: 511: 482: 405: 361: 357: 341: 277: 234: 214: 154: 2874: 1580: 691:
is an element of the protein's overall structure that is self-stabilizing and often
4189: 3688: 3359: 3317: 3312: 3307: 3129: 3121: 3080: 3072: 3031: 3021: 2969: 2949: 2916: 2854: 2819: 2782: 2772: 2723: 2715: 2666: 2658: 2586: 2553: 2533: 2480: 2431: 2423: 2349: 2314: 2277: 2269: 2256:
Allison JR, Rivers RC, Christodoulou JC, Vendruscolo M, Dobson CM (November 2014).
2228: 2218: 2169: 2161: 2112: 2104: 2052: 2042: 1996: 1988: 1914: 1906: 1849: 1822: 1800: 1792: 1751: 1743: 1702: 1694: 1653: 1645: 1603: 1560: 1523: 1513: 1466: 1421: 1413: 1372: 1364: 1254: 1236: 1203: 822: 818: 810: 800: 788: 760: 736: 401: 230: 2642:
Lessing J, Roy S, Reppert M, Baer M, Marx D, Jansen TL, et al. (March 2012).
1470: 3265: 3250: 3167: 3026: 2777: 1012: 874: 834: 692: 425: 281: 2719: 1698: 4159: 4080: 3626: 3489: 3413: 3286: 2953: 2203:
Proceedings of the National Academy of Sciences of the United States of America
1498:
Proceedings of the National Academy of Sciences of the United States of America
1303: 1288: 1271: 962: 838: 740: 604: 550: 538: 515: 478: 417: 365: 210: 3719: 3125: 2858: 2353: 2318: 2165: 2108: 1992: 1607: 679:
systems, there are many fewer different domains, structural motifs and folds.
412:. Often, however, it is read directly from the sequence of the gene using the 4217: 3559: 3344: 3339: 2897: 2375: 2047: 1961: 1885:
Fraser JS, Clarkson MW, Degnan SC, Erion R, Kern D, Alber T (December 2009).
1169: 1068: 780: 636: 474: 429: 349: 289: 2223: 1887:"Hidden alternative structures of proline isomerase essential for catalysis" 1842:"Proteins MOVE! Protein dynamics and long-range allostery in cell signaling" 1649: 4174: 3846: 3641: 3564: 3549: 3509: 3444: 3143: 3094: 3045: 2866: 2831: 2796: 2737: 2680: 2545: 2485: 2460: 2361: 2326: 2291: 2242: 2183: 2126: 2066: 2010: 1928: 1871: 1814: 1797:
10.1002/(SICI)1097-0134(19990601)35:4<408::AID-PROT4>3.0.CO;2-A
1765: 1716: 1667: 1615: 1572: 1537: 1478: 1435: 1386: 1100: 1026: 858: 854: 772: 413: 273: 218: 2983: 2928: 2608: 2502: 2445: 1518: 881:
connected by them to recruit their binding partners and induce long-range
866: 553:. The disulfide bonds are extremely rare in cytosolic proteins, since the 4003: 3708: 3693: 3616: 3606: 3586: 3581: 3576: 3539: 3494: 3469: 3454: 3449: 3434: 3364: 3354: 3076: 2893: 1805: 1368: 1232: 1145: 1112: 1022: 776: 700: 620: 486: 466: 462: 258: 242: 190: 2139: 1910: 1223:. Structure similarity can then be used to group proteins together into 1202:
Protein structures can be grouped based on their structural similarity,
980: 4169: 3841: 3683: 3678: 3673: 3658: 3646: 3631: 3571: 3544: 3534: 3529: 3524: 3514: 3484: 3479: 3464: 3459: 3439: 3429: 3291: 2494: 1564: 708: 676: 608: 470: 377: 345: 221:. By convention, a chain under 30 amino acids is often identified as a 194: 174: 2662: 2427: 2273: 1417: 711:". Because they are independently stable, domains can be "swapped" by 158: 16:
Three-dimensional arrangement of atoms in an amino acid-chain molecule
3668: 3591: 3504: 3499: 3424: 3369: 2567: 2537: 2255: 1747: 1732:"Superdomains in the protein structure hierarchy: The case of PTP-C2" 1207: 882: 724: 624: 420:
is lost, and therefore proteins are made up of amino acid residues.
348:
in the polypeptide chain. The primary structure is held together by
321: 26: 3322: 3260: 1298: 1096: 1018: 954: 870: 727:
pair, was called "a superdomain" that may evolve as a single unit.
640: 632: 628: 600: 596: 584: 576: 393: 178: 3382: 813:, and have been linked to functionally relevant phenomena such as 805:
Proteins are not static objects, but rather populate ensembles of
771:
A protein fold refers to the general protein architecture, like a
763:
motif. Some of them may be also referred to as structural motifs.
655: 650: 201:
of the polymer. A single amino acid monomer may also be called a
4154: 3332: 3327: 3226: 1125: 850: 704: 554: 433: 222: 198: 186: 182: 2958:"CATH--a hierarchic classification of protein domain structures" 1242: 913:. As a result, they are difficult to describe by a single fixed 794: 134: 3184: 2999: 1778: 966: 958: 862: 846: 842: 518:. The α-helices and β-pleated-sheets are folded into a compact 1131:
General secondary structure composition can be determined via
444: 3000:
Pascual-García A, Abia D, Ortiz AR, Bastolla U (March 2009).
1104: 933:
try to determine the most likely set of conformations for an
558: 534: 285: 937:
file. There are multiple methods for preparing data for the
896:
Schematic view of the two main ensemble modeling approaches.
3195: 2887: 2378:, Johnson A, Lewis J, Raff M, Roberts K, Walters P (2002). 2304: 1215: 1108: 946: 696: 549:, hydrogen bonds, and the tight packing of side chains and 400:. The sequence of amino acids in insulin was discovered by 389: 373: 149: 2199:"Structure and dynamics of the MKK7-JNK signaling complex" 2196: 2090: 2029:
Varadi M, Vranken W, Guharoy M, Tompa P (1 January 2015).
1550: 1083:
Rate of Protein Structure Determination by Method and Year
4184: 4179: 3171: 3110:"Progress and challenges in protein structure prediction" 2845:
Laskowski RA (June 2011). "Protein structure databases".
2515: 2386:(Fourth ed.). New York and London: Garland Science. 2028: 1884: 1262:
prediction methods use just the sequence of the protein.
1197: 1177:
information, such as unit cell dimensions and angles for
381: 1779:
Govindarajan S, Recabarren R, Goldstein RA (June 1999).
1353:"Protein length in eukaryotic and prokaryotic proteomes" 477:. These secondary structures are defined by patterns of 2809: 2374: 1631: 537:, but the structure is stable only when the parts of a 2948: 2412:"The formation and stabilization of protein structure" 1680: 1087:
Around 90% of the protein structures available in the
809:. Transitions between these states typically occur on 2641: 376:
corresponding to the protein. A specific sequence of
318:
There are four distinct levels of protein structure.
4070: 2461:"Protein structure and function at low temperatures" 1946:(4th ed.). Hoboken, NJ: John Wiley & Sons. 1173: 579:). The resulting multimer is stabilized by the same 2750: 1491: 1047:Thermodynamic stability of proteins represents the 900:Proteins are often thought of as relatively stable 51:. Unsourced material may be challenged and removed. 1593: 1063: 730: 619:An assemblage of multiple copies of a particular 4215: 1974: 1681:BERNSTEIN H, EDGAR RS, DENHARDT GH (June 1965). 1350: 1115:(NMR) techniques. For larger protein complexes, 3749: 1627: 1625: 853:, which moves cargo inside cells away from the 651:Domains, motifs, and folds in protein structure 249:. This is the topic of the scientific field of 126: 3058: 2995: 2993: 2952:, Michie AD, Jones S, Jones DT, Swindells MB, 2693: 1781:"Estimating the total number of protein folds" 1492:Pauling L, Corey RB, Branson HR (April 1951). 1212:Structural Classification of Proteins database 1159: 785:Structural Classification of Proteins database 313: 4019: 3735: 3398: 3211: 2580: 2339: 1772: 1344: 1243:Computational prediction of protein structure 795:Protein dynamics and conformational ensembles 2803: 2744: 1833: 1622: 448:An α-helix with hydrogen bonds (yellow dots) 193: – formed from sequences of 2990: 2942: 2881: 2574: 1977:"Structure and function of mammalian cilia" 1587: 1544: 1399: 1017:As it is translated, polypeptides exit the 746: 4033: 4026: 4012: 3742: 3728: 3405: 3391: 3218: 3204: 2672:11370/ff19c09b-088a-48f0-afee-2111a9b19252 1839: 1485: 665:phosphatidylinositol (3,4,5)-trisphosphate 306:, and transitions between them are called 269:, to determine the structure of proteins. 3133: 3101: 3084: 3061:"Dali server: conservation mapping in 3D" 3035: 3025: 2973: 2844: 2786: 2776: 2751:Minde DP, Maurice MM, Rüdiger SG (2012). 2727: 2670: 2484: 2435: 2281: 2232: 2222: 2173: 2116: 2056: 2046: 2000: 1968: 1918: 1804: 1755: 1729: 1706: 1657: 1527: 1517: 1425: 1376: 1317: 217:in order to attach to one another with a 111:Learn how and when to remove this message 2651:Journal of the American Chemical Society 2458: 2406: 2400: 1941: 1078: 1072:Examples of protein structures from the 1067: 891: 829:allow proteins to function as nanoscale 715:between one protein and another to make 654: 443: 320: 138:The image above contains clickable links 122: 2583:Advances in Protein Chemistry Volume 38 2368: 1351:Brocchieri L, Karlin S (10 June 2005). 1306:3D schematic representation of proteins 564: 344:of a protein refers to the sequence of 4216: 1448: 1323: 1198:Structural classifications of proteins 439: 171:three-dimensional arrangement of atoms 4007: 3723: 3386: 3199: 3114:Current Opinion in Structural Biology 3107: 2812:Current Protein & Peptide Science 2380:"The Shape and Structure of Proteins" 2342:Current Opinion in Structural Biology 2024: 2022: 2020: 1975:Satir P, Christensen ST (June 2008). 1141:Two-dimensional infrared spectroscopy 783:or different "folds" provided in the 557:(intracellular fluid) is generally a 496: 2694:Jansen TL, Knoester J (March 2008). 1400:Sanger F, Tuppy H (September 1951). 1036: 975: 755:refers to a specific combination of 682: 599:if it contains four subunits, and a 587:. Specifically it would be called a 352:that are made during the process of 329: 276:, between 1–100 nm. Very large 209:, in which the amino acids lose one 49:adding citations to reliable sources 20: 3412: 833:within cells, often in the form of 759:elements, such as β-α-β units or a 253:, which employs techniques such as 13: 3154: 3059:Holm L, Rosenström P (July 2010). 2585:. Vol. 38. pp. 181–364. 2035:Frontiers in Molecular Biosciences 2017: 1854:10.1016/B978-0-12-381262-9.00005-7 1150:fast parallel proteolysis (FASTpp) 971: 263:cryo-electron microscopy (cryo-EM) 133: 14: 4235: 3177: 2824:10.2174/1389203718666170622074741 1330:. Cengage Learning. p. 371. 923:intrinsically disordered proteins 907:intrinsically disordered proteins 595:if it contains three subunits, a 284:. For example, many thousands of 3837:Dual-polarization interferometry 3183: 1327:Organic and Biological Chemistry 979: 422:Post-translational modifications 325:Four levels of protein structure 267:dual polarisation interferometry 189: – specifically 25: 3246:Post-translational modification 3071:(Web Server issue): W545–W549. 3052: 2838: 2687: 2635: 2560: 2509: 2452: 2333: 2298: 2249: 2190: 2133: 2084: 2073: 1981:Histochemistry and Cell Biology 1935: 1878: 1723: 1156:simulations of that structure. 1107:the 3-D coordinates of all the 1064:Protein structure determination 766: 647:evidence was reviewed in 1965. 591:if it contains two subunits, a 545:tertiary interactions, such as 522:. The folding is driven by the 36:needs additional citations for 3868:Analytical ultracentrifugation 1846:Protein Structure and Diseases 1674: 1442: 1393: 731:Structural and sequence motifs 1: 3873:Size exclusion chromatography 3765:Cryogenic electron microscopy 2975:10.1016/S0969-2126(97)00260-8 2921:10.1016/S0022-2836(05)80134-2 2591:10.1016/S0065-3233(08)60528-8 2384:Molecular Biology of the Cell 1730:Haynie DT, Xue B (May 2015). 1471:10.1126/science.129.3359.1340 1310: 3972:Protein structure prediction 3225: 3027:10.1371/journal.pcbi.1000331 2909:Journal of Molecular Biology 2778:10.1371/journal.pone.0046147 2307:Journal of Molecular Biology 1596:Journal of Molecular Biology 1324:Stoker HS (1 January 2015). 1249:Protein structure prediction 721:protein tyrosine phosphatase 623:chain can be described as a 571:Protein quaternary structure 473:, were suggested in 1951 by 295:A protein usually undergoes 7: 3930:Hydrogen–deuterium exchange 3751:Protein structural analysis 2720:10.1529/biophysj.107.118851 2459:Jaenicke R (January 1990). 1277: 1192:structure based drug design 1160:Protein structure databases 845:, which is responsible for 614: 454:Protein secondary structure 314:Levels of protein structure 247:three-dimensional structure 10: 4240: 3287:Protein structural domains 3006:PLOS Computational Biology 1840:Bu Z, Callaway DJ (2011). 1246: 1166:protein structure database 1113:nuclear magnetic resonance 1040: 1010: 798: 645:intragenic complementation 568: 503:Protein tertiary structure 500: 451: 333: 288:molecules assemble into a 144:(which is interactive) of 4195:Nucleic acid double helix 4147: 4094: 4041: 3985: 3964: 3948: 3935:Site-directed mutagenesis 3922: 3891: 3860: 3819: 3793: 3757: 3420: 3300: 3274: 3233: 3126:10.1016/j.sbi.2008.02.004 2859:10.1007/s12033-010-9372-4 2354:10.1016/j.sbi.2010.10.008 2319:10.1016/j.jmb.2005.08.074 2166:10.1016/j.bpj.2013.12.046 2109:10.1016/j.str.2010.01.020 2080:Protein Ensemble Database 1993:10.1007/s00418-008-0416-9 1699:10.1093/genetics/51.6.987 1608:10.1016/j.jmb.2008.11.028 1174:experimentally determined 939:Protein Ensemble Database 581:non-covalent interactions 541:are locked into place by 336:Protein primary structure 227:non-covalent interactions 3780:Electron crystallography 2048:10.3389/fmolb.2015.00045 1942:Voet D, Voet JG (2011). 1229:horizontal gene transfer 1137:Vibrational spectroscopy 1117:cryo-electron microscopy 1091:have been determined by 919:Conformational ensembles 753:supersecondary structure 747:Supersecondary structure 527:hydrophobic interactions 410:tandem mass spectrometry 3899:Fluorescence anisotropy 3861:Translational diffusion 3852:Fluorescence anisotropy 3166:29 October 2018 at the 2847:Molecular Biotechnology 2416:The Biochemical Journal 2224:10.1073/pnas.1419528112 1650:10.1126/science.abc7151 1406:The Biochemical Journal 1099:in the protein, in the 1051:between the folded and 887:protein domain dynamics 835:multi-protein complexes 787:. A related concept is 663:, which is involved in 392:, which is read by the 360:are referred to as the 4035:Biomolecular structure 3065:Nucleic Acids Research 2486:10.1098/rstb.1990.0030 1357:Nucleic Acids Research 1294:Nucleic acid structure 1284:Biomolecular structure 1168:is a database that is 1084: 1076: 1049:free energy difference 897: 879:mobile protein domains 827:conformational changes 668: 516:one or several domains 449: 356:. The two ends of the 326: 308:conformational changes 207:condensation reactions 163: 139: 3994:Quaternary structure→ 3956:Equilibrium unfolding 3940:Chemical modification 3909:Dielectric relaxation 3770:X-ray crystallography 3350:Photoreceptor protein 3108:Zhang Y (June 2008). 1519:10.1073/pnas.37.4.205 1225:protein superfamilies 1188:computational biology 1182:information, whereas 1179:x-ray crystallography 1093:X-ray crystallography 1082: 1071: 1043:Equilibrium unfolding 895: 807:conformational states 658: 447: 364:(C-terminus) and the 324: 255:X-ray crystallography 137: 132: 3892:Rotational diffusion 3241:Protein biosynthesis 3192:at Wikimedia Commons 1253:The generation of a 1057:Protein denaturation 815:allosteric signaling 565:Quaternary structure 531:hydrophobic residues 396:in a process called 354:protein biosynthesis 239:Van der Waals forces 45:improve this article 4165:Protein engineering 3989:←Tertiary structure 3018:2009PLSCB...5E0331P 2769:2012PLoSO...746147M 2712:2008BpJ....94.1818J 2700:Biophysical Journal 2530:1958Natur.181..662K 2477:1990RSPTB.326..535J 2215:2015PNAS..112.3409K 2158:2014BpJ...106..865D 2146:Biophysical Journal 1911:10.1038/nature08615 1903:2009Natur.462..669F 1510:1951PNAS...37..205P 1463:1959Sci...129.1340G 1457:(3359): 1340–1344. 1172:around the various 1122:virus coat proteins 1103:state, and thereby 1025:and folds into its 902:tertiary structures 837:. Examples include 831:biological machines 757:secondary structure 713:genetic engineering 707:-binding domain of 639:by nearby adjacent 605:symmetry operations 491:supersecondary unit 459:Secondary structure 440:Secondary structure 280:can be formed from 60:"Protein structure" 3904:Flow birefringence 3832:Circular dichroism 3190:Protein structures 3077:10.1093/nar/gkq366 1829:on 5 January 2013. 1565:10.1002/prot.21473 1369:10.1093/nar/gki615 1184:sequence databases 1133:circular dichroism 1085: 1077: 991:. You can help by 915:tertiary structure 911:tertiary structure 898: 669: 520:globular structure 514:). It may include 508:Tertiary structure 497:Tertiary structure 450: 327: 300:structural changes 251:structural biology 235:ionic interactions 164: 140: 4224:Protein structure 4208:Protein Structure 4203: 4202: 4001: 4000: 3977:Molecular docking 3806:Mass spectrometry 3801:Fiber diffraction 3794:Medium resolution 3717: 3716: 3380: 3379: 3282:Protein structure 3256:Protein targeting 3188:Media related to 2938:on 26 April 2012. 2818:(11): 1163–1179. 2663:10.1021/ja2114135 2657:(11): 5032–5035. 2570:. 1 October 2022. 2524:(4610): 662–666. 2471:(1237): 535–553. 2428:10.1042/bj1280737 2393:978-0-8153-3218-3 2274:10.1021/bi5009326 2268:(46): 7170–7183. 2209:(11): 3409–3414. 1897:(7273): 669–673. 1418:10.1042/bj0490463 1363:(10): 3390–3400. 1337:978-1-305-68645-8 1268:homology modeling 1204:topological class 1154:molecular dynamic 1089:Protein Data Bank 1037:Protein stability 1009: 1008: 689:structural domain 683:Structural domain 512:polypeptide chain 483:Ramachandran plot 406:Edman degradation 362:carboxyl terminus 358:polypeptide chain 342:primary structure 330:Primary structure 278:protein complexes 167:Protein structure 146:protein structure 121: 120: 113: 95: 4231: 4190:Structural motif 4028: 4021: 4014: 4005: 4004: 3878:Light scattering 3744: 3737: 3730: 3721: 3720: 3407: 3400: 3393: 3384: 3383: 3360:Phycobiliprotein 3318:Globular protein 3313:Membrane protein 3308:List of proteins 3220: 3213: 3206: 3197: 3196: 3187: 3148: 3147: 3137: 3105: 3099: 3098: 3088: 3056: 3050: 3049: 3039: 3029: 2997: 2988: 2987: 2977: 2968:(8): 1093–1108. 2946: 2940: 2939: 2937: 2931:. Archived from 2906: 2885: 2879: 2878: 2842: 2836: 2835: 2807: 2801: 2800: 2790: 2780: 2748: 2742: 2741: 2731: 2706:(5): 1818–1825. 2691: 2685: 2684: 2674: 2648: 2639: 2633: 2632: 2626: 2622: 2620: 2612: 2578: 2572: 2571: 2568:"PDB Statistics" 2564: 2558: 2557: 2538:10.1038/181662a0 2513: 2507: 2506: 2488: 2456: 2450: 2449: 2439: 2404: 2398: 2397: 2372: 2366: 2365: 2337: 2331: 2330: 2313:(5): 1118–1128. 2302: 2296: 2295: 2285: 2253: 2247: 2246: 2236: 2226: 2194: 2188: 2187: 2177: 2137: 2131: 2130: 2120: 2088: 2082: 2077: 2071: 2070: 2060: 2050: 2026: 2015: 2014: 2004: 1972: 1966: 1965: 1939: 1933: 1932: 1922: 1882: 1876: 1875: 1837: 1831: 1830: 1825:. Archived from 1808: 1776: 1770: 1769: 1759: 1748:10.1002/pro.2664 1727: 1721: 1720: 1710: 1678: 1672: 1671: 1661: 1629: 1620: 1619: 1591: 1585: 1584: 1548: 1542: 1541: 1531: 1521: 1489: 1483: 1482: 1446: 1440: 1439: 1429: 1397: 1391: 1390: 1380: 1348: 1342: 1341: 1321: 1255:protein sequence 1237:circuit topology 1031:Anfinsen's dogma 1004: 1001: 983: 976: 875:Flexible linkers 823:Protein dynamics 819:enzyme catalysis 801:Protein dynamics 789:protein topology 761:helix-turn-helix 529:, the burial of 426:phosphorylations 402:Frederick Sanger 282:protein subunits 259:NMR spectroscopy 231:hydrogen bonding 197:, which are the 161: 152:as an example. ( 136: 125: 116: 109: 105: 102: 96: 94: 53: 29: 21: 4239: 4238: 4234: 4233: 4232: 4230: 4229: 4228: 4214: 4213: 4204: 4199: 4143: 4090: 4037: 4032: 4002: 3997: 3996: 3991: 3981: 3960: 3944: 3918: 3887: 3856: 3815: 3789: 3758:High resolution 3753: 3748: 3718: 3713: 3416: 3414:Protein domains 3411: 3381: 3376: 3340:Fibrous protein 3296: 3270: 3266:Protein methods 3251:Protein folding 3229: 3224: 3180: 3168:Wayback Machine 3157: 3155:Further reading 3152: 3151: 3106: 3102: 3057: 3053: 3012:(3): e1000331. 2998: 2991: 2956:(August 1997). 2947: 2943: 2935: 2904: 2886: 2882: 2843: 2839: 2808: 2804: 2749: 2745: 2692: 2688: 2646: 2640: 2636: 2624: 2623: 2614: 2613: 2601: 2579: 2575: 2566: 2565: 2561: 2514: 2510: 2457: 2453: 2405: 2401: 2394: 2373: 2369: 2338: 2334: 2303: 2299: 2254: 2250: 2195: 2191: 2138: 2134: 2089: 2085: 2078: 2074: 2027: 2018: 1973: 1969: 1954: 1940: 1936: 1883: 1879: 1864: 1838: 1834: 1777: 1773: 1736:Protein Science 1728: 1724: 1693:(6): 987–1002. 1679: 1675: 1644:(6524): 57–64. 1630: 1623: 1592: 1588: 1549: 1545: 1490: 1486: 1447: 1443: 1398: 1394: 1349: 1345: 1338: 1322: 1318: 1313: 1280: 1251: 1245: 1200: 1162: 1066: 1045: 1039: 1015: 1013:Protein folding 1005: 999: 996: 989:needs expansion 974: 972:Protein folding 803: 797: 769: 749: 741:sequence motifs 733: 685: 653: 617: 573: 567: 551:disulfide bonds 505: 499: 456: 442: 371: 338: 332: 316: 153: 131: 123: 117: 106: 100: 97: 54: 52: 42: 30: 17: 12: 11: 5: 4237: 4227: 4226: 4212: 4211: 4210:drugdesign.org 4201: 4200: 4198: 4197: 4192: 4187: 4182: 4177: 4172: 4167: 4162: 4160:Protein domain 4157: 4151: 4149: 4145: 4144: 4142: 4141: 4139:Thermodynamics 4136: 4131: 4126: 4121: 4116: 4111: 4106: 4100: 4098: 4092: 4091: 4089: 4088: 4086:Thermodynamics 4083: 4078: 4073: 4068: 4063: 4058: 4053: 4047: 4045: 4039: 4038: 4031: 4030: 4023: 4016: 4008: 3999: 3998: 3992: 3987: 3986: 3983: 3982: 3980: 3979: 3974: 3968: 3966: 3962: 3961: 3959: 3958: 3952: 3950: 3946: 3945: 3943: 3942: 3937: 3932: 3926: 3924: 3920: 3919: 3917: 3916: 3911: 3906: 3901: 3895: 3893: 3889: 3888: 3886: 3885: 3880: 3875: 3870: 3864: 3862: 3858: 3857: 3855: 3854: 3849: 3844: 3839: 3834: 3829: 3823: 3821: 3817: 3816: 3814: 3813: 3808: 3803: 3797: 3795: 3791: 3790: 3788: 3787: 3782: 3777: 3772: 3767: 3761: 3759: 3755: 3754: 3747: 3746: 3739: 3732: 3724: 3715: 3714: 3712: 3711: 3706: 3701: 3696: 3691: 3686: 3681: 3676: 3671: 3666: 3661: 3656: 3655: 3654: 3644: 3639: 3634: 3629: 3624: 3619: 3614: 3609: 3604: 3599: 3594: 3589: 3584: 3579: 3574: 3569: 3568: 3567: 3562: 3557: 3552: 3542: 3537: 3532: 3527: 3522: 3517: 3512: 3507: 3502: 3497: 3492: 3487: 3482: 3477: 3472: 3467: 3462: 3457: 3452: 3447: 3442: 3437: 3432: 3427: 3421: 3418: 3417: 3410: 3409: 3402: 3395: 3387: 3378: 3377: 3375: 3374: 3373: 3372: 3367: 3362: 3352: 3347: 3342: 3337: 3336: 3335: 3330: 3325: 3315: 3310: 3304: 3302: 3298: 3297: 3295: 3294: 3289: 3284: 3278: 3276: 3272: 3271: 3269: 3268: 3263: 3258: 3253: 3248: 3243: 3237: 3235: 3231: 3230: 3223: 3222: 3215: 3208: 3200: 3194: 3193: 3179: 3178:External links 3176: 3175: 3174: 3156: 3153: 3150: 3149: 3120:(3): 342–348. 3100: 3051: 2989: 2941: 2915:(4): 536–540. 2900:(April 1995). 2880: 2853:(2): 183–198. 2837: 2802: 2763:(10): e46147. 2743: 2686: 2634: 2625:|journal= 2599: 2573: 2559: 2508: 2451: 2422:(4): 737–749. 2399: 2392: 2367: 2332: 2297: 2248: 2189: 2152:(4): 865–874. 2132: 2103:(4): 494–506. 2083: 2072: 2016: 1987:(6): 687–693. 1967: 1952: 1934: 1877: 1862: 1832: 1791:(4): 408–414. 1771: 1742:(5): 874–882. 1722: 1673: 1621: 1602:(3): 726–732. 1586: 1559:(4): 915–921. 1543: 1504:(4): 205–211. 1484: 1441: 1412:(4): 463–481. 1392: 1343: 1336: 1315: 1314: 1312: 1309: 1308: 1307: 1304:Ribbon diagram 1301: 1296: 1291: 1289:Gene structure 1286: 1279: 1276: 1272:protein family 1247:Main article: 1244: 1241: 1199: 1196: 1161: 1158: 1065: 1062: 1041:Main article: 1038: 1035: 1011:Main article: 1007: 1006: 986: 984: 973: 970: 963:Beta-synuclein 839:motor proteins 799:Main article: 796: 793: 768: 765: 748: 745: 732: 729: 684: 681: 652: 649: 616: 613: 569:Main article: 566: 563: 539:protein domain 501:Main article: 498: 495: 479:hydrogen bonds 452:Main article: 441: 438: 430:glycosylations 418:water molecule 369: 366:amino terminus 334:Main article: 331: 328: 315: 312: 211:water molecule 119: 118: 33: 31: 24: 15: 9: 6: 4: 3: 2: 4236: 4225: 4222: 4221: 4219: 4209: 4206: 4205: 4196: 4193: 4191: 4188: 4186: 4183: 4181: 4178: 4176: 4173: 4171: 4168: 4166: 4163: 4161: 4158: 4156: 4153: 4152: 4150: 4146: 4140: 4137: 4135: 4132: 4130: 4127: 4125: 4124:Determination 4122: 4120: 4117: 4115: 4112: 4110: 4107: 4105: 4102: 4101: 4099: 4097: 4093: 4087: 4084: 4082: 4079: 4077: 4074: 4072: 4071:Determination 4069: 4067: 4064: 4062: 4059: 4057: 4054: 4052: 4049: 4048: 4046: 4044: 4040: 4036: 4029: 4024: 4022: 4017: 4015: 4010: 4009: 4006: 3995: 3990: 3984: 3978: 3975: 3973: 3970: 3969: 3967: 3965:Computational 3963: 3957: 3954: 3953: 3951: 3949:Thermodynamic 3947: 3941: 3938: 3936: 3933: 3931: 3928: 3927: 3925: 3921: 3915: 3912: 3910: 3907: 3905: 3902: 3900: 3897: 3896: 3894: 3890: 3884: 3881: 3879: 3876: 3874: 3871: 3869: 3866: 3865: 3863: 3859: 3853: 3850: 3848: 3845: 3843: 3840: 3838: 3835: 3833: 3830: 3828: 3825: 3824: 3822: 3820:Spectroscopic 3818: 3812: 3809: 3807: 3804: 3802: 3799: 3798: 3796: 3792: 3786: 3783: 3781: 3778: 3776: 3773: 3771: 3768: 3766: 3763: 3762: 3760: 3756: 3752: 3745: 3740: 3738: 3733: 3731: 3726: 3725: 3722: 3710: 3707: 3705: 3702: 3700: 3697: 3695: 3692: 3690: 3687: 3685: 3682: 3680: 3677: 3675: 3672: 3670: 3667: 3665: 3662: 3660: 3657: 3653: 3650: 3649: 3648: 3645: 3643: 3640: 3638: 3635: 3633: 3630: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3608: 3605: 3603: 3600: 3598: 3595: 3593: 3590: 3588: 3585: 3583: 3580: 3578: 3575: 3573: 3570: 3566: 3563: 3561: 3558: 3556: 3553: 3551: 3548: 3547: 3546: 3543: 3541: 3538: 3536: 3533: 3531: 3528: 3526: 3523: 3521: 3518: 3516: 3513: 3511: 3508: 3506: 3503: 3501: 3498: 3496: 3493: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3422: 3419: 3415: 3408: 3403: 3401: 3396: 3394: 3389: 3388: 3385: 3371: 3368: 3366: 3363: 3361: 3358: 3357: 3356: 3353: 3351: 3348: 3346: 3345:Chromoprotein 3343: 3341: 3338: 3334: 3331: 3329: 3326: 3324: 3321: 3320: 3319: 3316: 3314: 3311: 3309: 3306: 3305: 3303: 3299: 3293: 3290: 3288: 3285: 3283: 3280: 3279: 3277: 3273: 3267: 3264: 3262: 3259: 3257: 3254: 3252: 3249: 3247: 3244: 3242: 3239: 3238: 3236: 3232: 3228: 3221: 3216: 3214: 3209: 3207: 3202: 3201: 3198: 3191: 3186: 3182: 3181: 3173: 3169: 3165: 3162: 3159: 3158: 3145: 3141: 3136: 3131: 3127: 3123: 3119: 3115: 3111: 3104: 3096: 3092: 3087: 3082: 3078: 3074: 3070: 3066: 3062: 3055: 3047: 3043: 3038: 3033: 3028: 3023: 3019: 3015: 3011: 3007: 3003: 2996: 2994: 2985: 2981: 2976: 2971: 2967: 2963: 2959: 2955: 2951: 2945: 2934: 2930: 2926: 2922: 2918: 2914: 2910: 2903: 2899: 2895: 2891: 2884: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2848: 2841: 2833: 2829: 2825: 2821: 2817: 2813: 2806: 2798: 2794: 2789: 2784: 2779: 2774: 2770: 2766: 2762: 2758: 2754: 2747: 2739: 2735: 2730: 2725: 2721: 2717: 2713: 2709: 2705: 2701: 2697: 2690: 2682: 2678: 2673: 2668: 2664: 2660: 2656: 2652: 2645: 2638: 2630: 2618: 2610: 2606: 2602: 2600:9780120342389 2596: 2592: 2588: 2584: 2577: 2569: 2563: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2519: 2512: 2504: 2500: 2496: 2492: 2487: 2482: 2478: 2474: 2470: 2466: 2462: 2455: 2447: 2443: 2438: 2433: 2429: 2425: 2421: 2417: 2413: 2410:(July 1972). 2409: 2403: 2395: 2389: 2385: 2381: 2377: 2371: 2363: 2359: 2355: 2351: 2347: 2343: 2336: 2328: 2324: 2320: 2316: 2312: 2308: 2301: 2293: 2289: 2284: 2279: 2275: 2271: 2267: 2263: 2259: 2252: 2244: 2240: 2235: 2230: 2225: 2220: 2216: 2212: 2208: 2204: 2200: 2193: 2185: 2181: 2176: 2171: 2167: 2163: 2159: 2155: 2151: 2147: 2143: 2136: 2128: 2124: 2119: 2114: 2110: 2106: 2102: 2098: 2094: 2087: 2081: 2076: 2068: 2064: 2059: 2054: 2049: 2044: 2040: 2036: 2032: 2025: 2023: 2021: 2012: 2008: 2003: 1998: 1994: 1990: 1986: 1982: 1978: 1971: 1963: 1959: 1955: 1953:9780470570951 1949: 1945: 1938: 1930: 1926: 1921: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1881: 1873: 1869: 1865: 1863:9780123812629 1859: 1855: 1851: 1847: 1843: 1836: 1828: 1824: 1820: 1816: 1812: 1807: 1806:2027.42/34969 1802: 1798: 1794: 1790: 1786: 1782: 1775: 1767: 1763: 1758: 1753: 1749: 1745: 1741: 1737: 1733: 1726: 1718: 1714: 1709: 1704: 1700: 1696: 1692: 1688: 1684: 1677: 1669: 1665: 1660: 1655: 1651: 1647: 1643: 1639: 1635: 1628: 1626: 1617: 1613: 1609: 1605: 1601: 1597: 1590: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1547: 1539: 1535: 1530: 1525: 1520: 1515: 1511: 1507: 1503: 1499: 1495: 1488: 1480: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1445: 1437: 1433: 1428: 1423: 1419: 1415: 1411: 1407: 1403: 1396: 1388: 1384: 1379: 1374: 1370: 1366: 1362: 1358: 1354: 1347: 1339: 1333: 1329: 1328: 1320: 1316: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1281: 1275: 1273: 1269: 1265: 1261: 1256: 1250: 1240: 1238: 1234: 1230: 1226: 1222: 1217: 1213: 1209: 1205: 1195: 1193: 1189: 1185: 1180: 1175: 1171: 1167: 1157: 1155: 1151: 1147: 1142: 1138: 1134: 1129: 1127: 1123: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1081: 1075: 1070: 1061: 1058: 1054: 1050: 1044: 1034: 1032: 1028: 1024: 1020: 1014: 1003: 994: 990: 987:This section 985: 982: 978: 977: 969: 968: 964: 960: 956: 952: 948: 943: 940: 936: 931: 926: 924: 920: 916: 912: 908: 903: 894: 890: 888: 884: 880: 876: 872: 868: 864: 860: 856: 852: 849:contraction, 848: 844: 840: 836: 832: 828: 824: 820: 816: 812: 808: 802: 792: 790: 786: 782: 781:Rossmann fold 778: 774: 764: 762: 758: 754: 744: 742: 738: 728: 726: 722: 718: 714: 710: 706: 702: 698: 694: 690: 680: 678: 674: 666: 662: 657: 648: 646: 642: 638: 634: 630: 626: 622: 612: 610: 606: 602: 598: 594: 590: 586: 582: 578: 572: 562: 561:environment. 560: 556: 552: 548: 544: 540: 536: 532: 528: 525: 521: 517: 513: 509: 504: 494: 492: 488: 484: 480: 476: 475:Linus Pauling 472: 468: 464: 460: 455: 446: 437: 435: 431: 427: 423: 419: 415: 411: 407: 403: 399: 395: 391: 387: 383: 379: 375: 367: 363: 359: 355: 351: 350:peptide bonds 347: 343: 337: 323: 319: 311: 309: 305: 304:conformations 301: 298: 293: 291: 290:microfilament 287: 283: 279: 275: 274:nanoparticles 270: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 168: 160: 156: 151: 147: 143: 115: 112: 104: 93: 90: 86: 83: 79: 76: 72: 69: 65: 62: –  61: 57: 56:Find sources: 50: 46: 40: 39: 34:This article 32: 28: 23: 22: 19: 4175:Nucleic acid 4096:Nucleic acid 4042: 3847:Fluorescence 3750: 3281: 3117: 3113: 3103: 3068: 3064: 3054: 3009: 3005: 2965: 2961: 2944: 2933:the original 2912: 2908: 2883: 2850: 2846: 2840: 2815: 2811: 2805: 2760: 2756: 2746: 2703: 2699: 2689: 2654: 2650: 2637: 2582: 2576: 2562: 2521: 2517: 2511: 2468: 2464: 2454: 2419: 2415: 2402: 2383: 2370: 2348:(1): 25–31. 2345: 2341: 2335: 2310: 2306: 2300: 2265: 2262:Biochemistry 2261: 2251: 2206: 2202: 2192: 2149: 2145: 2135: 2100: 2096: 2086: 2075: 2038: 2034: 2013:. 1432-119X. 1984: 1980: 1970: 1944:Biochemistry 1943: 1937: 1894: 1890: 1880: 1845: 1835: 1827:the original 1788: 1784: 1774: 1739: 1735: 1725: 1690: 1686: 1676: 1641: 1637: 1599: 1595: 1589: 1556: 1552: 1546: 1501: 1497: 1487: 1454: 1450: 1444: 1409: 1405: 1395: 1360: 1356: 1346: 1326: 1319: 1259: 1252: 1210:origin. The 1208:evolutionary 1206:or a common 1201: 1163: 1130: 1101:crystallized 1086: 1046: 1027:native state 1021:mostly as a 1016: 997: 993:adding to it 988: 944: 927: 899: 867:motile cilia 859:microtubules 804: 773:helix bundle 770: 767:Protein fold 750: 734: 686: 670: 618: 574: 547:salt bridges 542: 524:non-specific 523: 506: 457: 414:genetic code 339: 317: 294: 271: 219:peptide bond 202: 191:polypeptides 166: 165: 145: 142:This diagram 107: 98: 88: 81: 74: 67: 55: 43:Please help 38:verification 35: 18: 3709:zinc finger 3365:Phytochrome 3355:Biliprotein 2954:Thornton JM 2888:Murzin AG, 2408:Anfinsen CB 1233:Knot theory 1146:proteolysis 1023:random coil 723:domain and 701:gene family 621:polypeptide 487:random coil 398:translation 386:transcribed 378:nucleotides 346:amino acids 243:hydrophobic 195:amino acids 4170:Proteasome 4129:Prediction 4119:Quaternary 4076:Prediction 4066:Quaternary 3842:Absorbance 3292:Proteasome 3275:Structures 2890:Brenner SE 1311:References 1000:April 2019 877:allow the 841:, such as 811:nanoscales 737:structural 709:calmodulin 677:eukaryotic 609:hemoglobin 297:reversible 229:, such as 175:amino acid 71:newspapers 4109:Secondary 4056:Secondary 3597:EcoEI_R_C 3370:Lipocalin 3234:Processes 2962:Structure 2950:Orengo CA 2898:Chothia C 2894:Hubbard T 2627:ignored ( 2617:cite book 2376:Alberts B 2097:Structure 1962:690489261 1264:Threading 1260:Ab initio 1097:electrons 883:allostery 725:C2 domain 661:PH domain 641:ribosomes 585:multimers 4218:Category 4148:See also 4114:Tertiary 4061:Tertiary 3923:Chemical 3323:Globulin 3261:Proteome 3227:Proteins 3164:Archived 3144:18436442 3095:20457744 3046:19325884 2875:45184564 2867:21225378 2832:28637405 2797:23056252 2757:PLOS ONE 2738:17981904 2681:22356513 2546:13517261 2362:21111607 2327:16214166 2292:25389903 2243:25737554 2184:24559989 2127:20399186 2067:26301226 2011:18365235 1929:19956261 1872:21570668 1815:10382668 1785:Proteins 1766:25694109 1717:14337770 1687:Genetics 1668:33384371 1616:19059267 1581:29904865 1573:17557333 1553:Proteins 1538:14816373 1479:13658959 1436:14886310 1387:15951512 1299:PCRPi-DB 1278:See also 1221:homology 1190:such as 1128:fibers. 1053:unfolded 1019:ribosome 935:ensemble 930:ensemble 928:Protein 871:flagella 777:β-barrel 633:oligomer 629:multimer 615:Homomers 601:pentamer 597:tetramer 577:multimer 559:reducing 543:specific 471:β-sheets 467:β-strand 465:and the 424:such as 394:ribosome 215:reaction 199:monomers 187:polymers 183:Proteins 179:molecule 101:May 2018 4155:Protein 4104:Primary 4051:Primary 4043:Protein 3627:Kringle 3520:CGI-121 3490:BTB/POZ 3333:Albumin 3328:Edestin 3135:2680823 3086:2896194 3037:2654728 3014:Bibcode 2984:9309224 2929:7723011 2788:3463568 2765:Bibcode 2729:2242754 2708:Bibcode 2609:3541539 2554:4162786 2526:Bibcode 2503:1969647 2495:2398703 2473:Bibcode 2446:4565129 2437:1173893 2283:4245978 2234:4371970 2211:Bibcode 2175:3944474 2154:Bibcode 2118:2924144 2058:4525029 2002:2386530 1920:2805857 1899:Bibcode 1823:7147867 1757:4420535 1708:1210828 1659:7613021 1638:Science 1529:1063337 1506:Bibcode 1459:Bibcode 1451:Science 1427:1197535 1378:1150220 1170:modeled 1126:amyloid 955:p15 PAF 855:nucleus 851:kinesin 717:chimera 705:calcium 699:or one 667:binding 625:homomer 555:cytosol 463:α-helix 434:insulin 223:peptide 203:residue 177:-chain 169:is the 85:scholar 4134:Design 4081:Design 3142:  3132:  3093:  3083:  3044:  3034:  2982:  2927:  2873:  2865:  2830:  2795:  2785:  2736:  2726:  2679:  2607:  2597:  2552:  2544:  2518:Nature 2501:  2493:  2444:  2434:  2390:  2360:  2325:  2290:  2280:  2241:  2231:  2182:  2172:  2125:  2115:  2065:  2055:  2041:: 45. 2009:  1999:  1960:  1950:  1927:  1917:  1891:Nature 1870:  1860:  1821:  1813:  1764:  1754:  1715:  1705:  1666:  1656:  1614:  1579:  1571:  1536:  1526:  1477:  1434:  1424:  1385:  1375:  1334:  863:dynein 861:, and 857:along 847:muscle 843:myosin 673:motifs 593:trimer 241:, and 173:in an 87:  80:  73:  66:  58:  3642:NACHT 3565:Pyrin 3545:Death 3510:Cache 3445:ADF-H 3301:Types 2936:(PDF) 2905:(PDF) 2871:S2CID 2647:(PDF) 2550:S2CID 2491:JSTOR 1819:S2CID 1577:S2CID 1109:atoms 1105:infer 693:folds 589:dimer 535:water 533:from 388:into 286:actin 148:uses 92:JSTOR 78:books 3811:SAXS 3694:WD40 3689:TRIO 3622:HEAT 3617:FYVE 3612:FGGY 3607:ENTH 3587:DHR2 3582:DHR1 3577:DHHC 3560:CARD 3540:CVHN 3495:BZIP 3470:BESS 3455:ARID 3450:ANTH 3435:ACDC 3140:PMID 3091:PMID 3042:PMID 2980:PMID 2925:PMID 2863:PMID 2828:PMID 2793:PMID 2734:PMID 2677:PMID 2629:help 2605:PMID 2595:ISBN 2542:PMID 2499:PMID 2442:PMID 2388:ISBN 2358:PMID 2323:PMID 2288:PMID 2239:PMID 2180:PMID 2123:PMID 2063:PMID 2007:PMID 1958:OCLC 1948:ISBN 1925:PMID 1868:PMID 1858:ISBN 1811:PMID 1762:PMID 1713:PMID 1664:PMID 1612:PMID 1569:PMID 1534:PMID 1475:PMID 1432:PMID 1383:PMID 1332:ISBN 1266:and 1235:and 1216:CATH 1214:and 1124:and 965:and 959:MKK7 951:Cdc4 947:Sic1 889:. " 885:via 869:and 825:and 817:and 739:and 735:The 697:gene 637:mRNA 428:and 390:mRNA 374:gene 340:The 265:and 213:per 185:are 159:1AXC 150:PCNA 64:news 4185:RNA 4180:DNA 3914:NMR 3883:NMR 3827:NMR 3785:EPR 3775:NMR 3704:YTH 3684:SUN 3679:SH3 3674:SH2 3659:PDZ 3652:LOV 3647:PAS 3637:LRR 3632:LIM 3602:EF1 3572:DEP 3555:DED 3535:CUT 3530:CUB 3525:CRM 3515:CBS 3485:BPS 3480:BMC 3475:BIR 3465:BEN 3460:BAR 3440:ACT 3430:ABM 3172:NIH 3170:at 3130:PMC 3122:doi 3081:PMC 3073:doi 3032:PMC 3022:doi 2970:doi 2917:doi 2913:247 2855:doi 2820:doi 2783:PMC 2773:doi 2724:PMC 2716:doi 2667:hdl 2659:doi 2655:134 2587:doi 2534:doi 2522:181 2481:doi 2469:326 2432:PMC 2424:doi 2420:128 2350:doi 2315:doi 2311:353 2278:PMC 2270:doi 2229:PMC 2219:doi 2207:112 2170:PMC 2162:doi 2150:106 2113:PMC 2105:doi 2053:PMC 2043:doi 1997:PMC 1989:doi 1985:129 1915:PMC 1907:doi 1895:462 1850:doi 1801:hdl 1793:doi 1752:PMC 1744:doi 1703:PMC 1695:doi 1654:PMC 1646:doi 1642:371 1604:doi 1600:385 1561:doi 1524:PMC 1514:doi 1467:doi 1455:129 1422:PMC 1414:doi 1373:PMC 1365:doi 1074:PDB 1033:). 995:. 967:P27 821:. 631:or 493:". 469:or 408:or 384:is 382:DNA 380:in 155:PDB 47:by 4220:: 3699:X8 3669:PX 3664:PH 3592:DM 3550:DD 3505:C2 3500:C1 3425:3H 3138:. 3128:. 3118:18 3116:. 3112:. 3089:. 3079:. 3069:38 3067:. 3063:. 3040:. 3030:. 3020:. 3008:. 3004:. 2992:^ 2978:. 2964:. 2960:. 2923:. 2911:. 2907:. 2896:, 2892:, 2869:. 2861:. 2851:48 2849:. 2826:. 2816:18 2814:. 2791:. 2781:. 2771:. 2759:. 2755:. 2732:. 2722:. 2714:. 2704:94 2702:. 2698:. 2675:. 2665:. 2653:. 2649:. 2621:: 2619:}} 2615:{{ 2603:. 2593:. 2548:. 2540:. 2532:. 2520:. 2497:. 2489:. 2479:. 2467:. 2463:. 2440:. 2430:. 2418:. 2414:. 2382:. 2356:. 2346:21 2344:. 2321:. 2309:. 2286:. 2276:. 2266:53 2264:. 2260:. 2237:. 2227:. 2217:. 2205:. 2201:. 2178:. 2168:. 2160:. 2148:. 2144:. 2121:. 2111:. 2101:18 2099:. 2095:. 2061:. 2051:. 2037:. 2033:. 2019:^ 2005:. 1995:. 1983:. 1979:. 1956:. 1923:. 1913:. 1905:. 1893:. 1889:. 1866:. 1856:. 1844:. 1817:. 1809:. 1799:. 1789:35 1787:. 1783:. 1760:. 1750:. 1740:24 1738:. 1734:. 1711:. 1701:. 1691:51 1689:. 1685:. 1662:. 1652:. 1640:. 1636:. 1624:^ 1610:. 1598:. 1575:. 1567:. 1557:68 1555:. 1532:. 1522:. 1512:. 1502:37 1500:. 1496:. 1473:. 1465:. 1453:. 1430:. 1420:. 1410:49 1408:. 1404:. 1381:. 1371:. 1361:33 1359:. 1355:. 1274:. 1164:A 1135:. 961:, 957:, 953:, 925:. 917:. 791:. 779:, 775:, 687:A 627:, 611:. 310:. 292:. 261:, 257:, 237:, 233:, 181:. 162:​) 157:: 4027:e 4020:t 4013:v 3743:e 3736:t 3729:v 3406:e 3399:t 3392:v 3219:e 3212:t 3205:v 3146:. 3124:: 3097:. 3075:: 3048:. 3024:: 3016:: 3010:5 2986:. 2972:: 2966:5 2919:: 2877:. 2857:: 2834:. 2822:: 2799:. 2775:: 2767:: 2761:7 2740:. 2718:: 2710:: 2683:. 2669:: 2661:: 2631:) 2611:. 2589:: 2556:. 2536:: 2528:: 2505:. 2483:: 2475:: 2448:. 2426:: 2396:. 2364:. 2352:: 2329:. 2317:: 2294:. 2272:: 2245:. 2221:: 2213:: 2186:. 2164:: 2156:: 2129:. 2107:: 2069:. 2045:: 2039:2 1991:: 1964:. 1931:. 1909:: 1901:: 1874:. 1852:: 1803:: 1795:: 1768:. 1746:: 1719:. 1697:: 1670:. 1648:: 1618:. 1606:: 1583:. 1563:: 1540:. 1516:: 1508:: 1481:. 1469:: 1461:: 1438:. 1416:: 1389:. 1367:: 1340:. 1002:) 998:( 949:/ 370:2 114:) 108:( 103:) 99:( 89:· 82:· 75:· 68:· 41:.

Index


verification
improve this article
adding citations to reliable sources
"Protein structure"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
This diagram
protein structure
PCNA
PDB
1AXC
three-dimensional arrangement of atoms
amino acid
molecule
Proteins
polymers
polypeptides
amino acids
monomers
condensation reactions
water molecule
reaction
peptide bond
peptide
non-covalent interactions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.