Knowledge

Rayleigh scattering

Source 📝

46: 759: 1596: 126: 1330: 343:
variations over the object's surface. Rayleigh scattering applies to the case when the scattering particle is very small (x ≪ 1, with a particle size < 1/10 of wavelength) and the whole surface re-radiates with the same phase. Because the particles are randomly positioned, the scattered light
558: 1437:
such as glass, and is responsible for acoustic wave damping and phonon damping in glasses and granular matter at low or not too high temperatures. This is because in glasses at higher temperatures the Rayleigh-type scattering regime is obscured by the anharmonic damping (typically with a
713: 1042: 1257: 1552: 894: 385: 575: 129:
Due to Rayleigh scattering, red and orange colors are more visible during sunset because the blue and violet light has been scattered out of the direct path. Due to removal of such colors, these colors are scattered by
903: 334:
that characterizes the particle's interaction with the incident radiation such that: Objects with x ≫ 1 act as geometric shapes, scattering light according to their projected area. At the intermediate x ≃ 1 of
1387:) wavelengths. This results in the indirect blue and violet light coming from all regions of the sky. The human eye responds to this wavelength combination as if it were a combination of blue and white light. 1129: 1611:
scattering can also be exhibited by porous materials. An example is the strong optical scattering by nanoporous materials. The strong contrast in refractive index between pores and solid parts of sintered
1454:. Silica fibers are glasses, disordered materials with microscopic variations of density and refractive index. These give rise to energy losses due to the scattered light, with the following coefficient: 719:
is the refractive index of the spheres that approximate the molecules of the gas; the index of the gas surrounding the spheres is neglected, an approximation that introduces an error of less than 0.05%.
149:
whose radiation we see as scattered light. The particles may be individual atoms or molecules; it can occur when light travels through transparent solids and liquids, but is most prominently seen in
145:
of the particles. The oscillating electric field of a light wave acts on the charges within a particle, causing them to move at the same frequency. The particle, therefore, becomes a small radiating
1457: 310: 1289: 780: 2730: 1122: 118:
of the wavelength (e.g., a blue color is scattered much more than a red color as light propagates through air). The phenomenon is named after the 19th-century British physicist
206:
and other computational techniques. Rayleigh scattering applies to particles that are small with respect to wavelengths of light, and that are optically "soft" (i.e., with a
356:
from each particle and therefore proportional to the inverse fourth power of the wavelength and the sixth power of its size. The wavelength dependence is characteristic of
1313: 1073: 257:. In 1899, he showed that they applied to individual molecules, with terms containing particulate volumes and refractive indices replaced with terms for molecular 226:
discovered that bright light scattering off nanoscopic particulates was faintly blue-tinted. He conjectured that a similar scattering of sunlight gave the sky its
773:, proportional to the dipole moment induced by the electric field of the light. In this case, the Rayleigh scattering intensity for a single particle is given in 1093: 553:{\displaystyle I_{s}=I_{0}{\frac {1+\cos ^{2}\theta }{2R^{2}}}\left({\frac {2\pi }{\lambda }}\right)^{4}\left({\frac {n^{2}-1}{n^{2}+2}}\right)^{2}r^{6}} 360:
and the volume dependence will apply to any scattering mechanism. In detail, the intensity of light scattered by any one of the small spheres of radius
1417:
due to the brownish color of the Moon. The moonlit sky is not perceived as blue, however, because at low light levels human vision comes mainly from
766:
The expression above can also be written in terms of individual molecules by expressing the dependence on refractive index in terms of the molecular
2576:, John Wiley, New York 1983. Contains a good description of the asymptotic behavior of Mie theory for small size parameter (Rayleigh approximation). 708:{\displaystyle \sigma _{\text{s}}={\frac {8\pi }{3}}\left({\frac {2\pi }{\lambda }}\right)^{4}\left({\frac {n^{2}-1}{n^{2}+2}}\right)^{2}r^{6}.} 774: 1814:"XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky" 743:
at a wavelength of 532 nm (green light). This means that about a fraction 10 of the light will be scattered for every meter of travel.
723:
The fraction of light scattered by scattering particles over the unit travel length (e.g., meter) is the number of particles per unit volume
2699:
Gives a brief history of theories of why the sky is blue leading up to Rayleigh's discovery, and a brief description of Rayleigh scattering.
2054:"On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky" 2310: 1037:{\displaystyle I_{s}=I_{0}{\frac {\pi ^{2}\alpha ^{2}}{{\varepsilon _{0}}^{2}\lambda ^{4}R^{2}}}{\frac {1+\cos ^{2}(\theta )}{2}}} 274: 2735: 230:, but he could not explain the preference for blue light, nor could atmospheric dust explain the intensity of the sky's color. 222:
In 1869, while attempting to determine whether any contaminants remained in the purified air he used for infrared experiments,
2671: 2597: 2412: 727:
times the cross-section. For example, air has a refractive index of 1.0002793 at atmospheric pressure, where there are about
735:
molecules per cubic meter, and therefore the major constituent of the atmosphere, nitrogen, has a Rayleigh cross section of
198:
Scattering by particles with a size comparable to, or larger than, the wavelength of the light is typically treated by the
1909:"On the blue colour of the sky, the polarization of skylight, and on the polarization of light by cloudy matter generally" 1252:{\displaystyle I=I_{0}{\frac {\pi ^{2}V^{2}\sigma _{\epsilon }^{2}}{2\lambda ^{4}R^{2}}}{\left(1+\cos ^{2}\theta \right)}} 17: 1620:-type scattering is caused by the nanoporous structure (a narrow pore size distribution around ~70 nm) obtained by 250: 82: 2220:
Sneep, Maarten; Ubachs, Wim (2005). "Direct measurement of the Rayleigh scattering cross section in various gases".
1616:
results in very strong scattering, with light completely changing direction each five micrometers on average. The
1664: 1338: 2484: 2282: 2162: 2755: 1262: 897: 203: 2349: 2750: 211: 2760: 2609: 1704: 1098: 2715: 131: 2350:"Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings" 1547:{\displaystyle \alpha _{\text{scat}}={\frac {8\pi ^{3}}{3\lambda ^{4}}}n^{8}p^{2}kT_{\text{f}}\beta } 1413:, the moonlit night sky is also blue, because moonlight is reflected sunlight, with a slightly lower 762:
Figure showing the greater proportion of blue light scattered by the atmosphere relative to red light
180: 95: 2392: 49:
Rayleigh scattering causes the blue color of the daytime sky and the reddening of the Sun at sunset.
2435:"Quasi-localized vibrational modes, boson peak and sound attenuation in model mass-spring networks" 1652: 750:) means that shorter (blue) wavelengths are scattered more strongly than longer (red) wavelengths. 569: 2710: 2254: 331: 2099: 889:{\displaystyle I_{s}=I_{0}{\frac {8\pi ^{4}\alpha ^{2}}{\lambda ^{4}R^{2}}}(1+\cos ^{2}\theta )} 2274: 2268: 2174:
Cox, A.J. (2002). "An experiment to measure Mie and Rayleigh total scattering cross sections".
2082: 1587:, representing the temperature at which the density fluctuations are "frozen" in the material. 1442:
dependence on wavelength), which becomes increasingly more important as the temperature rises.
1298: 1058: 111: 2607:
Chakraborti, Sayan (September 2007). "Verification of the Rayleigh scattering cross section".
45: 2663: 2657: 1324: 227: 165: 161: 35: 2628: 2534: 2509: 2364: 2229: 2183: 1873: 1675: 1334: 192: 8: 2740: 1687: 1358: 1346: 1053: 349: 345: 246: 107: 2632: 2538: 2368: 2233: 2187: 1877: 1850:
Lord Rayleigh (John Strutt) refined his theory of scattering in a series of papers; see
2644: 2618: 2550: 2524: 2446: 2348:
Zerefos, C. S.; Gerogiannis, V. T.; Balis, D.; Zerefos, S. C.; Kazantzidis, A. (2007),
2199: 1698: 1693: 1633: 1569: 1394:, the blue cast of the sky is notably brightened by the persistent sulfate load of the 1078: 1450:
Rayleigh scattering is an important component of the scattering of optical signals in
2667: 2648: 2593: 2589: 2480: 2408: 2330: 2288: 2278: 2158: 2127:
Barnett, C.E. (1942). "Some application of wavelength turbidimetry in the infrared".
1889: 1745:
Strutt, J.W (1871). "XXXVI. On the light from the sky, its polarization and colour".
1643: 1414: 2554: 2495: 2203: 1967:
Strutt, Hon. J.W. (1871). "On the light from the sky, its polarization and colour".
1940:
Strutt, Hon. J.W. (1871). "On the light from the sky, its polarization and colour".
135: 2690: 2636: 2542: 2456: 2400: 2372: 2322: 2237: 2191: 2136: 2065: 2034: 2003: 1976: 1949: 1920: 1881: 1825: 1800: 1775: 1754: 1733: 1658: 1434: 1391: 365: 357: 254: 242: 207: 188: 59: 2461: 2434: 1724:
Strutt, J.W (1871). "XV. On the light from the sky, its polarization and colour".
1422: 1410: 1399: 1390:
Some of the scattering can also be from sulfate particles. For years after large
39: 2241: 1124:, then any incident light will be scattered according to the following equation 2745: 2058:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
2027:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1996:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1969:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1942:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1818:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1793:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1768:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1747:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1726:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1710: 1669: 1451: 767: 758: 336: 258: 238: 142: 30:
This article is about the optical phenomenon. For the magnetic phenomenon, see
2404: 2069: 2038: 2007: 1980: 1953: 1829: 1804: 1779: 1758: 1737: 1713: – Physical law regarding scattering angles of radiation through a medium 1646: – Observable events that result from the interaction of light and matter 2724: 2334: 1681: 1638: 1403: 1395: 340: 234: 119: 2694: 2582: 2377: 2292: 1766:
Strutt, J.W (1871). "LVIII. On the scattering of light by small particles".
2659:
Meteorology Today: an introduction to weather, climate, and the environment
1994:
Strutt, Hon. J.W. (1871). "On the scattering of light by small particles".
1925: 1908: 1893: 568:
is the scattering angle. Averaging this over all angles gives the Rayleigh
237:
published two papers on the color and polarization of skylight to quantify
223: 115: 31: 1885: 1600: 1433:
Rayleigh scattering is also an important mechanism of wave scattering in
2623: 2140: 1368:
Rayleigh scattering of that light off oxygen and nitrogen molecules, and
344:
arrives at a particular point with a random collection of phases; it is
191:, which changes the rotational state of the molecules and gives rise to 1672: – Scattering of light by tiny particles in a colloidal suspension 323: 199: 99: 2640: 2546: 2326: 2311:"Human color vision and the unsaturated blue color of the daytime sky" 2195: 1603:
glass: it appears blue from the side, but orange light shines through.
1595: 269:
The size of a scattering particle is often parameterized by the ratio
1621: 1418: 1342: 353: 125: 103: 2053: 2022: 1813: 1788: 1329: 2451: 2266: 1362: 1292: 173: 157: 2529: 1701: – Atmospheric effects on the appearance of a distant object 1678: – Increase in photonic scattering during a phase transition 1613: 1445: 241:
in water droplets in terms of the tiny particulates' volumes and
169: 1655: – Technique for determining size distribution of particles 1095:
is different from the average dielectric constant of the medium
2662:(5th ed.). St. Paul MN: West Publishing Company. pp.  146: 2347: 1375:
The strong wavelength dependence of the Rayleigh scattering (~
1353:
The blue color of the sky is a consequence of three factors:
91: 2510:"Laser spectroscopy of gas confined in nanoporous materials" 2222:
Journal of Quantitative Spectroscopy and Radiative Transfer
1380: 74: 68: 2257:. Hyperphysics.phy-astr.gsu.edu. Retrieved on 2018-08-06. 2085:. Hyperphysics.phy-astr.gsu.edu. Retrieved on 2018-08-06. 1384: 184: 176: 150: 2273:. Sausalito, Calif.: University Science Books. pp.  2716:
Full physical explanation of sky color, in simple terms
1707: – Interacting phenomenon between light and matter 1648:
Pages displaying short descriptions of redirect targets
1383:) wavelengths are scattered more strongly than longer ( 102:
of the radiation. For light frequencies well below the
2731:
Scattering, absorption and radiative transfer (optics)
2588:(2nd ed.). London: Blackie & Sons. pp.  2574:
Absorption and scattering of light by small particles
1460: 1318: 1301: 1265: 1132: 1101: 1081: 1061: 906: 783: 746:
The strong wavelength dependence of the scattering (~
578: 388: 277: 264: 83: 2432: 71: 65: 2157:, John Wiley and Sons, New Jersey, Chapter 15.1.1, 1402:may owe their vivid red colours to the eruption of 62: 2581: 1546: 1307: 1283: 1251: 1116: 1087: 1067: 1036: 888: 707: 552: 304: 1661: – Inelastic scattering of photons by matter 98:, by particles with a size much smaller than the 2722: 2681:Lilienfeld, Pedro (2004). "A Blue Sky History". 2433:Mahajan, Shivam; Pica Ciamarra, Massimo (2023). 214:applies to optically soft but larger particles. 168:, which is the reason for the blue color of the 2711:HyperPhysics description of Rayleigh scattering 2397:Principles of Colour and Appearance Measurement 2393:"Unusual visual phenomena and colour blindness" 2304: 2302: 2153:Seinfeld, John H. and Pandis, Spyros N. (2006) 1864:Young, Andrew T (1981). "Rayleigh scattering". 1428: 371:from a beam of unpolarized light of wavelength 2215: 2213: 2155:Atmospheric Chemistry and Physics, 2nd Edition 1564:is the photoelastic coefficient of the glass, 1446:In amorphous solids – glasses – optical fibers 1295:of the fluctuation in the dielectric constant 141:Rayleigh scattering results from the electric 1337:. The picture on the right is shot through a 253:, he showed that his equations followed from 38:. For the wireless communication effect, see 2507: 2299: 2267:McQuarrie, Donald A. (Donald Allan) (2000). 305:{\displaystyle x={\frac {2\pi r}{\lambda }}} 251:proof of the electromagnetic nature of light 2606: 2498:. Webexhibits.org. Retrieved on 2018-08-06. 2219: 2210: 1789:"X. On the electromagnetic theory of light" 106:frequency of the scattering medium (normal 2680: 2093: 2091: 1913:Proceedings of the Royal Society of London 1421:that do not produce any color perception ( 2622: 2579: 2528: 2460: 2450: 2390: 2376: 1924: 1047: 2501: 2051: 2023:"On the electromagnetic theory of light" 2020: 1811: 1786: 1594: 1371:the response of the human visual system. 1328: 757: 124: 44: 2508:Svensson, Tomas; Shen, Zhijian (2010). 2341: 2126: 2107:ECE303 Electromagnetic Fields and Waves 2088: 1906: 1284:{\displaystyle \sigma _{\epsilon }^{2}} 339:, interference effects develop through 34:. For the stochastic distribution, see 14: 2723: 2655: 1993: 1966: 1939: 1765: 1744: 1723: 1590: 352:is just the sum of the squares of the 2308: 1863: 110:regime), the amount of scattering is 90:) is the scattering or deflection of 1690: – Polish physicist (1872–1917) 564:is the distance to the particle and 2173: 1576:is the isothermal compressibility. 1365:coming into the Earth's atmosphere, 27:Light scattering by small particles 24: 2565: 2391:Choudhury, Asim Kumar Roy (2014), 1319:Cause of the blue color of the sky 1117:{\displaystyle {\bar {\epsilon }}} 265:Small size parameter approximation 25: 2772: 2704: 2479:, PHI, New Delhi, part I, Ch. 3, 2357:Atmospheric Chemistry and Physics 753: 2496:Blue & red | Causes of Color 2097: 2083:Blue Sky and Rayleigh Scattering 1684:– scientific simulation software 1398:gases. Some works of the artist 58: 2489: 2477:Textbook on Engineering Physics 2469: 2426: 2384: 2260: 2248: 2167: 2147: 2120: 1624:monodispersive alumina powder. 245:. In 1881, with the benefit of 2399:, Elsevier, pp. 185–220, 2309:Smith, Glenn S. (2005-07-01). 2076: 2045: 2014: 1987: 1960: 1933: 1900: 1857: 1844: 1108: 1075:of a certain region of volume 1025: 1019: 883: 858: 187:. Sunlight is also subject to 13: 1: 2736:Atmospheric optical phenomena 2462:10.21468/SciPostPhys.15.2.069 1837: 204:discrete dipole approximation 2100:"Electromagnetic Scattering" 1429:Of sound in amorphous solids 212:Anomalous diffraction theory 7: 2610:American Journal of Physics 2315:American Journal of Physics 2242:10.1016/j.jqsrt.2004.07.025 2176:American Journal of Physics 1665:Rayleigh–Gans approximation 1627: 10: 2777: 2656:Ahrens, C. Donald (1994). 1851: 1322: 572:of the particles in air: 318:is the particle's radius, 217: 183:to reddish hue of the low 132:dramatically colored skies 29: 2683:Optics and Photonics News 2572:C.F. Bohren, D. Huffman, 2405:10.1533/9780857099242.185 2070:10.1080/14786449908621276 2039:10.1080/14786448108627074 2008:10.1080/14786447108640507 1981:10.1080/14786447108640479 1954:10.1080/14786447108640452 1830:10.1080/14786449908621276 1805:10.1080/14786448108627074 1780:10.1080/14786447108640507 1759:10.1080/14786447108640479 1738:10.1080/14786447108640452 1560:is the refraction index, 1409:In locations with little 1308:{\displaystyle \epsilon } 1068:{\displaystyle \epsilon } 96:electromagnetic radiation 2580:Ditchburn, R.W. (1963). 1717: 1653:Dynamic light scattering 1349:in a specific direction. 1345:transmits light that is 1333:Scattered blue light is 570:scattering cross-section 122:(John William Strutt). 2695:10.1364/OPN.15.6.000032 2517:Applied Physics Letters 2378:10.5194/acp-7-4027-2007 2052:Rayleigh, Lord (1899). 2021:Rayleigh, Lord (1881). 1812:Rayleigh, Lord (1899). 1787:Rayleigh, Lord (1881). 1599:Rayleigh scattering in 332:dimensionless parameter 156:Rayleigh scattering of 1926:10.1098/rspl.1868.0033 1907:Tyndall, John (1869). 1604: 1548: 1379:) means that shorter ( 1350: 1309: 1285: 1253: 1118: 1089: 1069: 1048:Effect of fluctuations 1038: 890: 763: 709: 554: 306: 138: 136:monochromatic rainbows 112:inversely proportional 50: 2475:Rajagopal, K. (2008) 2270:Statistical mechanics 1598: 1549: 1332: 1325:Diffuse sky radiation 1310: 1286: 1254: 1119: 1090: 1070: 1039: 891: 761: 710: 555: 307: 166:diffuse sky radiation 128: 48: 36:Rayleigh distribution 2756:Scientific phenomena 1886:10.1364/AO.20.000533 1676:Critical opalescence 1458: 1299: 1263: 1130: 1099: 1079: 1059: 904: 781: 576: 386: 275: 2751:Concepts in physics 2633:2007AmJPh..75..824C 2539:2010ApPhL..96b1107S 2369:2007ACP.....7.4027Z 2255:Rayleigh scattering 2234:2005JQSRT..92..293S 2188:2002AmJPh..70..620C 2141:10.1021/j150415a009 1878:1981ApOpt..20..533Y 1688:Marian Smoluchowski 1591:In porous materials 1585:fictive temperature 1280: 1186: 1054:dielectric constant 247:James Clerk Maxwell 54:Rayleigh scattering 18:Rayleigh Scattering 2761:Physical phenomena 1705:Parametric process 1699:Aerial perspective 1694:Rayleigh criterion 1634:Rayleigh sky model 1605: 1570:Boltzmann constant 1544: 1351: 1347:linearly polarized 1305: 1281: 1266: 1249: 1172: 1114: 1085: 1065: 1034: 886: 764: 705: 550: 348:and the resulting 302: 243:refractive indices 162:Earth's atmosphere 139: 51: 2673:978-0-314-02779-5 2641:10.1119/1.2752825 2599:978-0-12-218101-6 2547:10.1063/1.3292210 2414:978-0-85709-229-8 2363:(15): 4027–4042, 2327:10.1119/1.1858479 2196:10.1119/1.1466815 1644:Optical phenomena 1538: 1506: 1468: 1415:color temperature 1406:in his lifetime. 1392:Plinian eruptions 1339:polarizing filter 1213: 1111: 1088:{\displaystyle V} 1032: 995: 856: 680: 625: 605: 586: 528: 473: 453: 358:dipole scattering 326:of the light and 300: 179:, as well as the 16:(Redirected from 2768: 2698: 2677: 2652: 2626: 2603: 2587: 2559: 2558: 2532: 2514: 2505: 2499: 2493: 2487: 2473: 2467: 2466: 2464: 2454: 2430: 2424: 2423: 2422: 2421: 2388: 2382: 2381: 2380: 2354: 2345: 2339: 2338: 2306: 2297: 2296: 2264: 2258: 2252: 2246: 2245: 2217: 2208: 2207: 2171: 2165: 2151: 2145: 2144: 2124: 2118: 2117: 2115: 2113: 2104: 2095: 2086: 2080: 2074: 2073: 2064:(287): 375–384. 2049: 2043: 2042: 2018: 2012: 2011: 2002:(275): 447–454. 1991: 1985: 1984: 1975:(273): 274–279. 1964: 1958: 1957: 1948:(271): 107–120. 1937: 1931: 1930: 1928: 1904: 1898: 1897: 1861: 1855: 1848: 1833: 1824:(287): 375–384. 1808: 1783: 1774:(275): 447–454. 1762: 1753:(273): 274–279. 1741: 1732:(271): 107–120. 1659:Raman scattering 1649: 1553: 1551: 1550: 1545: 1540: 1539: 1536: 1527: 1526: 1517: 1516: 1507: 1505: 1504: 1503: 1490: 1489: 1488: 1475: 1470: 1469: 1466: 1435:amorphous solids 1314: 1312: 1311: 1306: 1290: 1288: 1287: 1282: 1279: 1274: 1258: 1256: 1255: 1250: 1248: 1247: 1243: 1236: 1235: 1214: 1212: 1211: 1210: 1201: 1200: 1187: 1185: 1180: 1171: 1170: 1161: 1160: 1150: 1148: 1147: 1123: 1121: 1120: 1115: 1113: 1112: 1104: 1094: 1092: 1091: 1086: 1074: 1072: 1071: 1066: 1043: 1041: 1040: 1035: 1033: 1028: 1015: 1014: 998: 996: 994: 993: 992: 983: 982: 973: 972: 967: 966: 965: 953: 952: 951: 942: 941: 931: 929: 928: 916: 915: 895: 893: 892: 887: 876: 875: 857: 855: 854: 853: 844: 843: 833: 832: 831: 822: 821: 808: 806: 805: 793: 792: 742: 740: 734: 732: 714: 712: 711: 706: 701: 700: 691: 690: 685: 681: 679: 672: 671: 661: 654: 653: 643: 636: 635: 630: 626: 621: 613: 606: 601: 593: 588: 587: 584: 559: 557: 556: 551: 549: 548: 539: 538: 533: 529: 527: 520: 519: 509: 502: 501: 491: 484: 483: 478: 474: 469: 461: 454: 452: 451: 450: 437: 430: 429: 413: 411: 410: 398: 397: 366:refractive index 311: 309: 308: 303: 301: 296: 285: 255:electromagnetism 239:Tyndall's effect 208:refractive index 189:Raman scattering 86: 81: 80: 77: 76: 73: 70: 67: 64: 21: 2776: 2775: 2771: 2770: 2769: 2767: 2766: 2765: 2721: 2720: 2707: 2702: 2674: 2624:physics/0702101 2600: 2568: 2566:Further reading 2563: 2562: 2512: 2506: 2502: 2494: 2490: 2474: 2470: 2439:SciPost Physics 2431: 2427: 2419: 2417: 2415: 2389: 2385: 2352: 2346: 2342: 2307: 2300: 2285: 2265: 2261: 2253: 2249: 2218: 2211: 2172: 2168: 2152: 2148: 2125: 2121: 2111: 2109: 2102: 2096: 2089: 2081: 2077: 2050: 2046: 2019: 2015: 1992: 1988: 1965: 1961: 1938: 1934: 1905: 1901: 1862: 1858: 1849: 1845: 1840: 1720: 1647: 1630: 1593: 1582: 1535: 1531: 1522: 1518: 1512: 1508: 1499: 1495: 1491: 1484: 1480: 1476: 1474: 1465: 1461: 1459: 1456: 1455: 1448: 1431: 1423:Purkinje effect 1411:light pollution 1400:J. M. W. Turner 1327: 1321: 1300: 1297: 1296: 1291:represents the 1275: 1270: 1264: 1261: 1260: 1231: 1227: 1220: 1216: 1215: 1206: 1202: 1196: 1192: 1188: 1181: 1176: 1166: 1162: 1156: 1152: 1151: 1149: 1143: 1139: 1131: 1128: 1127: 1103: 1102: 1100: 1097: 1096: 1080: 1077: 1076: 1060: 1057: 1056: 1050: 1010: 1006: 999: 997: 988: 984: 978: 974: 968: 961: 957: 956: 955: 954: 947: 943: 937: 933: 932: 930: 924: 920: 911: 907: 905: 902: 901: 871: 867: 849: 845: 839: 835: 834: 827: 823: 817: 813: 809: 807: 801: 797: 788: 784: 782: 779: 778: 756: 738: 736: 730: 728: 696: 692: 686: 667: 663: 662: 649: 645: 644: 642: 638: 637: 631: 614: 612: 608: 607: 594: 592: 583: 579: 577: 574: 573: 544: 540: 534: 515: 511: 510: 497: 493: 492: 490: 486: 485: 479: 462: 460: 456: 455: 446: 442: 438: 425: 421: 414: 412: 406: 402: 393: 389: 387: 384: 383: 381: 286: 284: 276: 273: 272: 267: 220: 84: 61: 57: 43: 40:Rayleigh fading 28: 23: 22: 15: 12: 11: 5: 2774: 2764: 2763: 2758: 2753: 2748: 2743: 2738: 2733: 2719: 2718: 2713: 2706: 2705:External links 2703: 2701: 2700: 2678: 2672: 2653: 2617:(9): 824–826. 2604: 2598: 2577: 2569: 2567: 2564: 2561: 2560: 2500: 2488: 2468: 2425: 2413: 2383: 2340: 2321:(7): 590–597. 2298: 2283: 2259: 2247: 2228:(3): 293–310. 2209: 2166: 2146: 2119: 2098:Rana, Farhan. 2087: 2075: 2044: 2033:(73): 81–101. 2013: 1986: 1959: 1932: 1899: 1866:Applied Optics 1856: 1842: 1841: 1839: 1836: 1835: 1834: 1809: 1799:(73): 81–101. 1784: 1763: 1742: 1719: 1716: 1715: 1714: 1708: 1702: 1696: 1691: 1685: 1679: 1673: 1670:Tyndall effect 1667: 1662: 1656: 1650: 1641: 1636: 1629: 1626: 1607:Rayleigh-type 1592: 1589: 1580: 1543: 1534: 1530: 1525: 1521: 1515: 1511: 1502: 1498: 1494: 1487: 1483: 1479: 1473: 1464: 1452:optical fibers 1447: 1444: 1430: 1427: 1373: 1372: 1369: 1366: 1323:Main article: 1320: 1317: 1304: 1278: 1273: 1269: 1246: 1242: 1239: 1234: 1230: 1226: 1223: 1219: 1209: 1205: 1199: 1195: 1191: 1184: 1179: 1175: 1169: 1165: 1159: 1155: 1146: 1142: 1138: 1135: 1110: 1107: 1084: 1064: 1049: 1046: 1031: 1027: 1024: 1021: 1018: 1013: 1009: 1005: 1002: 991: 987: 981: 977: 971: 964: 960: 950: 946: 940: 936: 927: 923: 919: 914: 910: 885: 882: 879: 874: 870: 866: 863: 860: 852: 848: 842: 838: 830: 826: 820: 816: 812: 804: 800: 796: 791: 787: 768:polarizability 755: 754:From molecules 752: 704: 699: 695: 689: 684: 678: 675: 670: 666: 660: 657: 652: 648: 641: 634: 629: 624: 620: 617: 611: 604: 600: 597: 591: 582: 547: 543: 537: 532: 526: 523: 518: 514: 508: 505: 500: 496: 489: 482: 477: 472: 468: 465: 459: 449: 445: 441: 436: 433: 428: 424: 420: 417: 409: 405: 401: 396: 392: 379: 375:and intensity 337:Mie scattering 299: 295: 292: 289: 283: 280: 266: 263: 259:polarizability 219: 216: 143:polarizability 26: 9: 6: 4: 3: 2: 2773: 2762: 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2734: 2732: 2729: 2728: 2726: 2717: 2714: 2712: 2709: 2708: 2696: 2692: 2688: 2684: 2679: 2675: 2669: 2665: 2661: 2660: 2654: 2650: 2646: 2642: 2638: 2634: 2630: 2625: 2620: 2616: 2612: 2611: 2605: 2601: 2595: 2591: 2586: 2585: 2578: 2575: 2571: 2570: 2556: 2552: 2548: 2544: 2540: 2536: 2531: 2526: 2523:(2): 021107. 2522: 2518: 2511: 2504: 2497: 2492: 2486: 2482: 2478: 2472: 2463: 2458: 2453: 2448: 2444: 2440: 2436: 2429: 2416: 2410: 2406: 2402: 2398: 2394: 2387: 2379: 2374: 2370: 2366: 2362: 2358: 2351: 2344: 2336: 2332: 2328: 2324: 2320: 2316: 2312: 2305: 2303: 2294: 2290: 2286: 2280: 2276: 2272: 2271: 2263: 2256: 2251: 2243: 2239: 2235: 2231: 2227: 2223: 2216: 2214: 2205: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2170: 2164: 2160: 2156: 2150: 2142: 2138: 2134: 2130: 2129:J. Phys. Chem 2123: 2108: 2101: 2094: 2092: 2084: 2079: 2071: 2067: 2063: 2059: 2055: 2048: 2040: 2036: 2032: 2028: 2024: 2017: 2009: 2005: 2001: 1997: 1990: 1982: 1978: 1974: 1970: 1963: 1955: 1951: 1947: 1943: 1936: 1927: 1922: 1918: 1914: 1910: 1903: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1860: 1853: 1847: 1843: 1831: 1827: 1823: 1819: 1815: 1810: 1806: 1802: 1798: 1794: 1790: 1785: 1781: 1777: 1773: 1769: 1764: 1760: 1756: 1752: 1748: 1743: 1739: 1735: 1731: 1727: 1722: 1721: 1712: 1709: 1706: 1703: 1700: 1697: 1695: 1692: 1689: 1686: 1683: 1682:HRS Computing 1680: 1677: 1674: 1671: 1668: 1666: 1663: 1660: 1657: 1654: 1651: 1645: 1642: 1640: 1639:Rician fading 1637: 1635: 1632: 1631: 1625: 1623: 1619: 1615: 1610: 1602: 1597: 1588: 1586: 1579: 1575: 1571: 1567: 1563: 1559: 1554: 1541: 1532: 1528: 1523: 1519: 1513: 1509: 1500: 1496: 1492: 1485: 1481: 1477: 1471: 1462: 1453: 1443: 1441: 1436: 1426: 1424: 1420: 1416: 1412: 1407: 1405: 1404:Mount Tambora 1401: 1397: 1396:stratospheric 1393: 1388: 1386: 1382: 1378: 1370: 1367: 1364: 1360: 1356: 1355: 1354: 1348: 1344: 1340: 1336: 1331: 1326: 1316: 1302: 1294: 1276: 1271: 1267: 1244: 1240: 1237: 1232: 1228: 1224: 1221: 1217: 1207: 1203: 1197: 1193: 1189: 1182: 1177: 1173: 1167: 1163: 1157: 1153: 1144: 1140: 1136: 1133: 1125: 1105: 1082: 1062: 1055: 1045: 1029: 1022: 1016: 1011: 1007: 1003: 1000: 989: 985: 979: 975: 969: 962: 958: 948: 944: 938: 934: 925: 921: 917: 912: 908: 899: 880: 877: 872: 868: 864: 861: 850: 846: 840: 836: 828: 824: 818: 814: 810: 802: 798: 794: 789: 785: 776: 772: 769: 760: 751: 749: 744: 726: 721: 718: 702: 697: 693: 687: 682: 676: 673: 668: 664: 658: 655: 650: 646: 639: 632: 627: 622: 618: 615: 609: 602: 598: 595: 589: 580: 571: 567: 563: 545: 541: 535: 530: 524: 521: 516: 512: 506: 503: 498: 494: 487: 480: 475: 470: 466: 463: 457: 447: 443: 439: 434: 431: 426: 422: 418: 415: 407: 403: 399: 394: 390: 378: 374: 370: 367: 363: 359: 355: 351: 347: 342: 338: 333: 329: 325: 321: 317: 312: 297: 293: 290: 287: 281: 278: 270: 262: 260: 256: 252: 248: 244: 240: 236: 235:Lord Rayleigh 231: 229: 225: 215: 213: 210:close to 1). 209: 205: 201: 196: 194: 190: 186: 182: 178: 175: 171: 167: 163: 159: 154: 152: 148: 144: 137: 133: 127: 123: 121: 120:Lord Rayleigh 117: 113: 109: 105: 101: 97: 93: 89: 88: 79: 55: 47: 41: 37: 33: 19: 2689:(6): 32–39. 2686: 2682: 2658: 2614: 2608: 2583: 2573: 2520: 2516: 2503: 2491: 2476: 2471: 2442: 2438: 2428: 2418:, retrieved 2396: 2386: 2360: 2356: 2343: 2318: 2314: 2269: 2262: 2250: 2225: 2221: 2179: 2175: 2169: 2154: 2149: 2135:(1): 69–75. 2132: 2128: 2122: 2110:. Retrieved 2106: 2078: 2061: 2057: 2047: 2030: 2026: 2016: 1999: 1995: 1989: 1972: 1968: 1962: 1945: 1941: 1935: 1916: 1912: 1902: 1872:(4): 533–5. 1869: 1865: 1859: 1846: 1821: 1817: 1796: 1792: 1771: 1767: 1750: 1746: 1729: 1725: 1617: 1608: 1606: 1584: 1577: 1573: 1565: 1561: 1557: 1555: 1449: 1439: 1432: 1408: 1389: 1376: 1374: 1361:spectrum of 1352: 1126: 1051: 770: 765: 747: 745: 724: 722: 716: 565: 561: 382:is given by 376: 372: 368: 361: 327: 319: 315: 313: 271: 268: 232: 224:John Tyndall 221: 197: 193:polarization 155: 140: 116:fourth power 53: 52: 32:Rayleigh law 1919:: 223–233. 1711:Bragg's law 94:, or other 2741:Visibility 2725:Categories 2485:8120336658 2452:2211.01137 2420:2022-03-29 2284:1891389157 2182:(6): 620. 2163:0471720186 1838:References 1601:opalescent 354:amplitudes 346:incoherent 324:wavelength 200:Mie theory 108:dispersion 100:wavelength 2649:119100295 2530:0907.5092 2335:0002-9505 1622:sintering 1542:β 1497:λ 1482:π 1463:α 1419:rod cells 1359:blackbody 1343:polarizer 1335:polarized 1303:ϵ 1272:ϵ 1268:σ 1241:θ 1238:⁡ 1194:λ 1178:ϵ 1174:σ 1154:π 1109:¯ 1106:ϵ 1063:ϵ 1052:When the 1023:θ 1017:⁡ 976:λ 959:ε 945:α 935:π 881:θ 878:⁡ 837:λ 825:α 815:π 775:CGS-units 741:10 m 656:− 623:λ 619:π 599:π 581:σ 504:− 471:λ 467:π 435:θ 432:⁡ 350:intensity 298:λ 291:π 233:In 1871, 195:effects. 181:yellowish 104:resonance 2555:53705149 2293:43370175 2204:16699491 1894:20309152 1628:See also 1363:sunlight 1293:variance 898:SI-units 249:'s 1865 228:blue hue 174:twilight 158:sunlight 2629:Bibcode 2590:582–585 2535:Bibcode 2365:Bibcode 2230:Bibcode 2184:Bibcode 2112:2 April 1874:Bibcode 1614:alumina 1568:is the 896:and in 322:is the 218:History 170:daytime 164:causes 114:to the 2670:  2647:  2596:  2553:  2483:  2411:  2333:  2291:  2281:  2202:  2161:  1892:  1572:, and 1556:where 1341:: the 1259:where 560:where 314:where 202:, the 147:dipole 2746:Light 2664:88–89 2645:S2CID 2619:arXiv 2584:Light 2551:S2CID 2525:arXiv 2513:(PDF) 2447:arXiv 2445:(2). 2353:(PDF) 2200:S2CID 2103:(PDF) 1852:Works 1718:Works 1583:is a 715:Here 341:phase 330:is a 151:gases 92:light 2668:ISBN 2594:ISBN 2481:ISBN 2409:ISBN 2331:ISSN 2289:OCLC 2279:ISBN 2159:ISBN 2114:2014 1890:PMID 1467:scat 1381:blue 1357:the 364:and 172:and 134:and 87:-lee 2691:doi 2637:doi 2543:doi 2457:doi 2401:doi 2373:doi 2323:doi 2238:doi 2192:doi 2137:doi 2066:doi 2035:doi 2004:doi 1977:doi 1950:doi 1921:doi 1882:doi 1826:doi 1801:doi 1776:doi 1755:doi 1734:doi 1425:). 1385:red 1229:cos 1008:cos 900:by 869:cos 777:by 737:5.1 423:cos 185:Sun 177:sky 160:in 85:RAY 2727:: 2687:15 2685:. 2666:. 2643:. 2635:. 2627:. 2615:75 2613:. 2592:. 2549:. 2541:. 2533:. 2521:96 2519:. 2515:. 2455:. 2443:15 2441:. 2437:. 2407:, 2395:, 2371:, 2359:, 2355:, 2329:. 2319:73 2317:. 2313:. 2301:^ 2287:. 2277:. 2275:62 2236:. 2226:92 2224:. 2212:^ 2198:. 2190:. 2180:70 2178:. 2133:46 2131:. 2105:. 2090:^ 2062:47 2060:. 2056:. 2031:12 2029:. 2025:. 2000:41 1998:. 1973:41 1971:. 1946:41 1944:. 1917:17 1915:. 1911:. 1888:. 1880:. 1870:20 1868:. 1822:47 1820:. 1816:. 1797:12 1795:. 1791:. 1772:41 1770:. 1751:41 1749:. 1730:41 1728:. 1315:. 1044:. 733:10 261:. 153:. 69:eɪ 2697:. 2693:: 2676:. 2651:. 2639:: 2631:: 2621:: 2602:. 2557:. 2545:: 2537:: 2527:: 2465:. 2459:: 2449:: 2403:: 2375:: 2367:: 2361:7 2337:. 2325:: 2295:. 2244:. 2240:: 2232:: 2206:. 2194:: 2186:: 2143:. 2139:: 2116:. 2072:. 2068:: 2041:. 2037:: 2010:. 2006:: 1983:. 1979:: 1956:. 1952:: 1929:. 1923:: 1896:. 1884:: 1876:: 1854:. 1832:. 1828:: 1807:. 1803:: 1782:. 1778:: 1761:. 1757:: 1740:. 1736:: 1618:λ 1609:λ 1581:f 1578:T 1574:β 1566:k 1562:p 1558:n 1537:f 1533:T 1529:k 1524:2 1520:p 1514:8 1510:n 1501:4 1493:3 1486:3 1478:8 1472:= 1440:λ 1438:~ 1377:λ 1277:2 1245:) 1233:2 1225:+ 1222:1 1218:( 1208:2 1204:R 1198:4 1190:2 1183:2 1168:2 1164:V 1158:2 1145:0 1141:I 1137:= 1134:I 1083:V 1030:2 1026:) 1020:( 1012:2 1004:+ 1001:1 990:2 986:R 980:4 970:2 963:0 949:2 939:2 926:0 922:I 918:= 913:s 909:I 884:) 873:2 865:+ 862:1 859:( 851:2 847:R 841:4 829:2 819:4 811:8 803:0 799:I 795:= 790:s 786:I 771:α 748:λ 739:× 731:× 729:2 725:N 717:n 703:. 698:6 694:r 688:2 683:) 677:2 674:+ 669:2 665:n 659:1 651:2 647:n 640:( 633:4 628:) 616:2 610:( 603:3 596:8 590:= 585:s 566:θ 562:R 546:6 542:r 536:2 531:) 525:2 522:+ 517:2 513:n 507:1 499:2 495:n 488:( 481:4 476:) 464:2 458:( 448:2 444:R 440:2 427:2 419:+ 416:1 408:0 404:I 400:= 395:s 391:I 380:0 377:I 373:λ 369:n 362:r 328:x 320:λ 316:r 294:r 288:2 282:= 279:x 78:/ 75:i 72:l 66:r 63:ˈ 60:/ 56:( 42:. 20:)

Index

Rayleigh Scattering
Rayleigh law
Rayleigh distribution
Rayleigh fading

/ˈrli/
RAY-lee
light
electromagnetic radiation
wavelength
resonance
dispersion
inversely proportional
fourth power
Lord Rayleigh

dramatically colored skies
monochromatic rainbows
polarizability
dipole
gases
sunlight
Earth's atmosphere
diffuse sky radiation
daytime
twilight
sky
yellowish
Sun
Raman scattering

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.