Knowledge

Room-temperature superconductor

Source 📝

350:, published a paper in a journal, and submitted a patent application. The reported observations were received with skepticism by experts due to the lack of clear signatures of superconductivity. The story was widely discussed on social media, leading to a large number of attempted replications, none of which had more than qualified success. By mid-August, a series of papers from major labs provided significant evidence that LK-99 was not a superconductor, finding resistivity much higher than copper, and explaining observed effects such as magnetic response and resistance drops in terms of impurities and ferromagnetism in the material. 271: 307:, Bangalore claimed the observation of superconductivity at ambient pressure and room temperature in films and pellets of a nanostructured material that is composed of silver particles embedded in a gold matrix. Due to similar noise patterns of supposedly independent plots and the publication's lack of 203:
In 1993 and 1997, Michel Laguës and his team published evidence of room temperature superconductivity observed on MBE deposited ultrathin nanostructures of BiSrCaCuO. These compounds exhibit extremely low resistivities orders of magnitude below that of copper, strongly non-linear I(V) characteristics
574:
explanation is correct, a normally semiconducting material can transition under some conditions into a superconductor if a critical level of alternating spin coupling in a single plane within the lattice is exceeded; this may have been documented in very early experiments from 1986. The best analogy
68:
currently hold the temperature record, manifesting superconductivity at temperatures as high as 138 K (−135 Â°C). Over time, researchers have consistently encountered superconductivity at temperatures previously considered unexpected or impossible, challenging the notion that achieving
394:
has claimed to make metallic hydrogen and reports a pressure of 495 GPa. Though the exact critical temperature has not yet been determined, weak signs of a possible Meissner effect and changes in magnetic susceptibility at 250 K may have appeared in early magnetometer tests on an original
250:) and an explanation in 2004. In 2007, the same group published results suggesting a superconducting transition temperature of 260 K, with transition temperature increasing as the density of hydrogen inside the palladium lattice increases. This has not been corroborated by other groups. 1458:
Scheike, Thomas; Böhlmann, Winfried; Esquinazi, Pablo; Barzola-Quiquia, José; Ballestar, Ana; Setzer, Annette (2012). "Can Doping Graphite Trigger Room Temperature Superconductivity? Evidence for Granular High-Temperature Superconductivity in Water-Treated Graphite Powder".
326:
at 267 GPa, triggered into crystallisation via green laser. This was retracted in 2022 after flaws in their statistical methods were identified and led to questioning of other data. In 2023 he reported superconductivity at 294 K and 1 GPa in nitrogen-doped
2901:
Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki; Hu, Rongwei; Ziemak, Steven; Syers, Paul; Wang, Limin; Hodovanets, Halyna; Denlinger, Jonathan D.; Brydon, Philip M. R.; Agterberg, Daniel F.; Tanatar, Makariy A.; Prozorov, Ruslan; Paglione, Johnpierre (2018).
1697:
Snider, Elliot; Dasenbrock-Gammon, Nathan; McBride, Raymond; Debessai, Mathew; Vindana, Hiranya; Vencatasamy, Kevin; Lawler, Keith V.; Salamat, Ashkan; Dias, Ranga P. (October 2020). "Room-temperature superconductivity in a carbonaceous sulfur hydride".
681:
Drozdov, Alexander P.; Kong, Panpan; Minkov, Vasily S.; Besedin, Stanislav P.; Kuzovnikov, Mikhail A.; Mozaffari, Shirin; Balicas, Luis; Balakirev, Fedor F.; Graf, David E.; Prakapenka, Vitali B.; Greenberg, Eran; Knyazev, Dmitry A.; Tkacz, Marek;
415:
In 2004, Ashcroft returned to his idea and suggested that hydrogen-rich compounds can become metallic and superconducting at lower pressures than hydrogen. More specifically, he proposed a novel way to pre-compress hydrogen chemically by examining
1860:
Dasenbrock-Gammon, Nathan; Snider, Elliot; McBride, Raymond; Pasan, Hiranya; Durkee, Dylan; Khalvashi-Sutter, Nugzari; Munasinghe, Sasanka; Dissanayake, Sachith E.; Lawler, Keith V.; Salamat, Ashkan; Dias, Ranga P. (9 March 2023).
257:
On 31st of December 2023 "Global Room-Temperature Superconductivity in Graphite" was published in the journal "Advanced Quantum Technologies" claiming to demonstrate superconductivity at room temperature and ambient pressure in
2433: 253:
In March 2021, an announcement reported superconductivity in a layered yttrium-palladium-hydron material at 262 K and a pressure of 187 GPa. Palladium may act as a hydrogen migration catalyst in the material.
1583: 1552: 331:, in a paper widely met with skepticism about its methods and data. Later in 2023 he was found to have plagiarized parts of his dissertation from someone else's thesis, and to have fabricated data in a paper on 909:
Mankowsky, Roman; Subedi, Alaska; Först, Michael; Mariager, Simon O.; Chollet, Matthieu; Lemke, Henrik T.; Robinson, Joseph Stephen; Glownia, James M.; Minitti, Michael P.; Frano, Alex; Fechner, Michael;
2223:
Lee, Sukbae; Kim, Jihoon; Kim, Hyun-Tak; Im, Sungyeon; An, SooMin; Keun Ho Auh (2023). "Superconductor Pb10−xCux(PO4)6O showing levitation at room temperature and atmospheric pressure and mechanism".
1986: 2757: 1838: 550: 2167: 887: 462:
as a plausible explanation for the anomalous transient resistance drops seen during some experiments, and hydrogen absorption by cuprates was suggested in light of the 2015 results in
2060: 2423: 580: 2136: 1575: 311:, the results have been called into question. Although the researchers repeated their findings in a later paper in 2019, this claim is yet to be verified and confirmed. 1542: 296:
powder after treatment with pure water at temperatures as high as 300 K and above. So far, the authors have not been able to demonstrate the occurrence of a clear
747:
Dai, Pengcheng; Chakoumakos, Bryan C.; Sun, G.F.; Wong, Kai Wai; Xin, Ying; Lu, D.F. (1995). "Synthesis and neutron powder diffraction study of the superconductor HgBa
69:
superconductivity at room temperature was infeasible. The concept of "near-room temperature" transient effects has been a subject of discussion since the early 1950s.
2590:
Jiang, Qiwen; Duan, Defang; Song, Hao; Zhang, Zihan; Huo, Zihao; Cui, Tian; Yao, Yansun (2024). "Prediction of Room-Temperature Superconductivity in Quasi-Atomic H
1395: 504: 1956: 1249:
Prins, Johan F. (1 March 2003). "The diamond vacuum interface: II. Electron extraction from n-type diamond: evidence for superconduction at room temperature".
2879: 1675: 914:; Loew, Toshinao; Keimer, Bernhard; Georges, Antoine; Cavalleri, Andrea (2014). "Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa 2181:
Salke, Nilesh P.; Mark, Alexander C.; Ahart, Muhtar; Hemley, Russell J. (9 June 2023). "Evidence for Near Ambient Superconductivity in the Lu-N-H System".
49:
which are commonly encountered in everyday settings. As of 2023, the material with the highest accepted superconducting temperature was highly pressurized
1292:
Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja (May 2003). "Possibility of high temperature superconducting phases in PdH".
2680: 1978: 2749: 1830: 2257: 2019: 579:, but in this case the outcome is a drop to zero rather than a decrease within a very narrow temperature range for the compounds tested similar to " 2283: 848: 3331: 2159: 879: 2306: 1417:
Kopelevich, Yakov; Torres, José; Da Silva, Robson; Oliveira, Felipe; Diamantini, Maria Cristina; Trugenberger, Carlo; Vinokur, Valerii (2023).
2568: 191:) pressure. In 2019, the material with the highest accepted superconducting temperature was highly pressurized lanthanum decahydride, whose 2455:
Loubeyre, Paul; Occelli, Florent; Dumas, Paul (2019). "Observation of a first order phase transition to metal hydrogen near 425 GPa".
2046: 1354:
Tripodi, Paolo; Di Gioacchino, Daniele; Vinko, Jenny Darja (2007). "A review of high temperature superconducting property of PdH system".
319: 3001: 3064: 2023: 590:
in YPtBi. Though YPtBi is a relatively low temperature superconductor, this does suggest another approach to creating superconductors.
1230:
LaguĂ«s et al. "Evidence suggesting superconductivity at 250 K in a sequentially deposited cuprate film" Science 262, 1850 (1993)
1323:
Tripodi, Paolo; Di Gioacchino, Daniele; Vinko, Jenny Darja (August 2004). "Superconductivity in PdH: Phenomenological explanation".
1125:"First-principles demonstration of superconductivity at 280 K (7 Â°C) in hydrogen sulfide with low phosphorus substitution" 2334: 1356: 2132: 2706:
is an important advance toward room-temperature superconductors. Here, we identify an alternative clathrate structure in ternary
1906: 1520:
Thapa, Dev Kumar; Pandey, Anshu (2018). "Evidence for superconductivity at ambient temperature and pressure in nanostructures".
613:
Somayazulu, Maddury; Ahart, Muhtar; Mishra, Ajay Kumar; Geballe, Zachary M.; Baldini, Maria; Meng, Yue; Struzhkin, Viktor V.;
2969: 2360: 3423: 3161: 3039: 2736:
of ~473 K at 250 GPa, which may allow us to obtain room-temperature or even higher-temperature superconductivity.
31: 65: 1052: 215:
work, Johan Prins claimed to have observed a phenomenon that he explained as room-temperature superconductivity within a
1391: 3271: 1239:
Laguës et al. "Room temperature transport properties of new BiSrCaCuO compounds" C.R.Acad.Sci. Paris, 324, 627 (1997)
259: 115: 78: 1948: 3359: 2770:
In August, Ma and colleagues published a study that showed the promise of ternary superhydrides. They predicted that
1644: 516:
between 333 K (60 Â°C) and 398 K (125 Â°C) – under a pressure expected not to exceed 100 GPa.
849:"Almaden Institute 2012: Superconductivity 297 K â€“ Synthetic Routes to Room Temperature Superconductivity" 3459: 3080: 2871: 1667: 2994: 2637:"Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride Compounds under High Pressure" 2202:
Lee, Sukbae; Kim, Ji-Hoon; Kwon, Young-Wan (2023). "The First Room-Temperature Ambient-Pressure Superconductor".
1776:
van der Marel, Dirk; Hirsch, Jorge E. (19 January 2022). "Comment on Nature 586, 373 (2020) by E. Snider et al".
3464: 3059: 3029: 1170: 395:
now-lost sample. A French team is working with doughnut shapes rather than planar at the diamond culette tips.
2636: 1418: 346:, was superconducting up to 370 K, though they had not observed this fully. They posted two preprints to 322:
in 2016. In October 2020, they reported room-temperature superconductivity at 288 K (at 15 Â°C) in a
3400: 3252: 3196: 3171: 3302: 3231: 2424:"Hydrogen turned into metal in stunning act of alchemy that could revolutionise technology and spaceflight" 2822: 2280:"Room temperature and normal pressure superconducting ceramic compound, and method for manufacturing same" 2245: 617:(2019). "Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures". 3247: 3166: 323: 304: 100: 2279: 856: 593:"Quantum bipolarons" could describe how a material might superconduct at up to nearly room temperature. 85:), several materials have been claimed, although not confirmed, to be room-temperature superconductors. 28:
Is it possible to make a material that is a superconductor at room temperature and atmospheric pressure?
3354: 3349: 3034: 2987: 3307: 3054: 2246:"ë‹€ìŒë…ŒëŹž Consideration for the development of room-temperature ambient-pressure superconductor (LK-99)" 303:
In 2018, Dev Kumar Thapa and Anshu Pandey from the Solid State and Structural Chemistry Unit of the
3454: 3090: 328: 2556: 81:("high" being temperatures above 77 K (−196.2 Â°C; −321.1 Â°F), the boiling point of 3433: 3292: 3224: 3141: 2513: 2387: 2244:
Lee, Sukbae; Kim, Jihoon; Im, Sungyeon; An, Soomin; Kwon, Young-Wan; Ho, Auh Keun (April 2023).
168:
Also in 2018, researchers noted a possible superconducting phase at 260 K (−13 Â°C) in
3344: 3317: 3297: 3219: 2511:
Ashcroft, N. W. (2004). "Hydrogen Dominant Metallic Alloys: High Temperature superconductors".
1192:
Grant, Andrew (23 August 2018). "Pressurized superconductors approach room-temperature realm".
477:
as a plausible explanation for transient resistance drops or "USO" noticed in the 1990s by Chu
192: 54: 3214: 991:"Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system" 403:
In 1964, William A. Little proposed the possibility of high-temperature superconductivity in
375:) should become superconducting at approximately room temperature, due to its extremely high 169: 50: 46: 2009: 335:, which was retracted. The lutetium hydride paper was also retracted. The first attempts to 3418: 3374: 2925: 2844: 2648: 2522: 2485: 2396: 2095: 1874: 1707: 1618: 1478: 1365: 1328: 1297: 1258: 1197: 1146: 1087: 1012: 947: 810: 772: 705: 636: 233:
In 2003, a group of researchers published results on high-temperature superconductivity in
61: 8: 2563: 798: 523: 332: 275: 2929: 2848: 2652: 2526: 2489: 2400: 2099: 1878: 1711: 1622: 1482: 1369: 1332: 1301: 1262: 1201: 1150: 1091: 1016: 951: 814: 776: 709: 640: 3405: 3156: 3116: 2946: 2915: 2903: 2834: 2672: 2599: 2456: 2224: 2203: 2182: 2133:"Replication of room-temperature superconductor claims fails to show superconductivity" 2113: 1898: 1811: 1785: 1739: 1636: 1521: 1502: 1468: 1430: 1274: 1213: 1162: 1136: 1044: 1002: 971: 937: 729: 695: 660: 626: 391: 380: 288: 151: 2904:"Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal" 1309: 989:
Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I. (2015).
423:
In 2014–2015, conventional superconductivity was observed in a sulfur hydride system (
3181: 3010: 2951: 2693:
The recent theory-orientated discovery of record high-temperature superconductivity (
2676: 2664: 2617: 2538: 2117: 2084:"Allegations of Scientific Misconduct Mount as Physicist Makes His Biggest Claim Yet" 2056: 1929: 1902: 1890: 1862: 1815: 1803: 1758: 1743: 1731: 1723: 1640: 1607:"Allegations of Scientific Misconduct Mount as Physicist Makes His Biggest Claim Yet" 1506: 1494: 1278: 1270: 1217: 1166: 1105: 1036: 1028: 963: 826: 784: 733: 721: 652: 614: 576: 455: 368: 342:
On July 23, 2023, a Korean team claimed that Cu-doped lead apatite, which they named
234: 42: 1979:"'Revolutionary' blue crystal resurrects hope of room temperature superconductivity" 664: 318:
has produced a number of retracted or challenged papers in this field. In 2016 they
3390: 3364: 3136: 3111: 3044: 2941: 2933: 2852: 2660: 2656: 2609: 2530: 2493: 2404: 2103: 1921: 1882: 1831:"'Something is Seriously Wrong':Room-Temperature superconductivity study retracted" 1795: 1750: 1715: 1626: 1576:"Finally, IISc team confirms breakthrough in superconductivity at room temperature" 1486: 1440: 1373: 1336: 1305: 1266: 1205: 1154: 1095: 1048: 1020: 975: 955: 928: 844: 818: 780: 713: 648: 644: 520: 464: 424: 404: 212: 95: 2970:"High-temperature superconductivity: Exploring quadratic electron-phonon coupling" 2534: 822: 154:. The critical temperature is 203 K (−70 Â°C) which would be the highest 3413: 3146: 2428: 2385:
Ashcroft, N. W. (1968). "Metallic Hydrogen: A High-Temperature Superconductor?".
2051: 683: 336: 297: 279: 82: 2856: 2408: 1340: 686:(2019). "Superconductivity at 250 K in lanthanum hydride under high pressures". 3151: 3095: 3085: 3049: 2476:
Little, W. A. (1964). "Possibility of Synthesizing an Organic Superconductor".
1925: 1886: 1754: 1158: 911: 587: 376: 216: 104: 2497: 1799: 1719: 1377: 1100: 1075: 717: 3448: 2311: 2014: 1807: 1209: 1032: 990: 372: 364: 315: 188: 3186: 3176: 3131: 3126: 2955: 2937: 2668: 2621: 2613: 2542: 1933: 1894: 1762: 1735: 1498: 1490: 1444: 1392:"A material that is superconductive at room temperature and lower pressure" 1109: 1040: 967: 830: 725: 656: 459: 162: 2361:"Well, Seems Like LK-99 Isn't a Room Temperature Superconductor After All" 2108: 2083: 1863:"Evidence of near-ambient superconductivity in a N-doped lutetium hydride" 1631: 1606: 1543:"IISc duo's claim of ambient superconductivity may have support in theory" 3312: 3121: 2839: 417: 308: 2635:
Sun, Ying; Lv, Jian; Xie, Yu; Liu, Hanyu; Ma, Yanming (26 August 2019).
1024: 959: 3024: 1457: 2872:"Physicists Just Discovered an Entirely New Type of Superconductivity" 1727: 1696: 2783: 1547: 571: 174: 150:
at 150 GPa (around 1.5 million times atmospheric pressure) in a
2979: 2307:"Room-temperature superconductor 'breakthrough' met with scepticism" 2160:"'Red matter' superconductor may not be a wonder material after all" 1124: 880:"Viral New Superconductivity Claims Leave Many Scientists Skeptical" 3339: 2920: 2604: 2461: 2229: 2208: 2187: 1949:"The Scientific Breakthrough That Could Make Batteries Last Longer" 1859: 1790: 1526: 1435: 1141: 1007: 700: 631: 490: 293: 120: 103:), could be made to briefly superconduct at room temperature using 20: 2750:"The race is on to make the first room temperature superconductor" 1473: 942: 451:) at 190 K to 203 K at pressures of up to 200 GPa. 2772: 2708: 2558:
Transient High-Temperature Superconductivity in Palladium Hydride
2335:"A superconductor claim blew up online. Science has punctured it" 2047:"Room-Temperature Superconductor Discovery Meets With Resistance" 528: 220: 208: 118:
suggested that under certain conditions such as extreme pressure
1416: 1291: 801:(12 March 1993). "Paths to Higher Temperature Superconductors". 398: 358: 278:
above a superconductor (at −200 Â°C) that is exhibiting the
2806: 988: 384: 224: 146: 131: 586:
In 2018, support was found for electrons having anomalous 3/2
3395: 3369: 347: 343: 908: 612: 3428: 2250:
Journal of the Korean Crystal Growth and Crystal Technology
1076:"Superconductivity record sparks wave of follow-up physics" 482: 383:
between the conduction electrons and the lattice-vibration
270: 57:
is approximately 250 K (−23 Â°C) at 200 GPa.
1353: 1322: 680: 507:) would exhibit superconductivity at room temperature – 2820: 1419:"Global Room-Temperature Superconductivity in Graphite" 300:
phase and the vanishing of the material's resistance.
165:
could superconduct at up to 260 K (−13 Â°C).
746: 2454: 2180: 1668:"Finally, the First Room-Temperature Superconductor" 16:
Material which exhibits superconductivity above 0 °C
2809:
at 250 GPa, far in excess of room temperature.
1775: 519:Some research efforts are currently moving towards 262:with dense arrays of nearly parallel line defects. 2589: 265: 2900: 2020:Institute of Electrical and Electronics Engineers 41:is a hypothetical material capable of displaying 3446: 2823:"Superconductors with two critical temperatures" 2821:Di Grezia, E.; Esposito, S.; Salesi, G. (2007). 2304: 2510: 2384: 1574:Prasad, R.; Desikan, Shubashree (25 May 2019). 161:ever recorded and their research suggests that 2567:(Griffith thesis). Griffith University. 2016. 2045:Wood, Charlie; Savitsky, Zack (8 March 2023). 1116: 320:claimed observation of solid metallic hydrogen 2995: 2475: 1573: 562:of 473 K (200 Â°C) at 250 GPa. 399:Organic polymers and exciton-mediated pairing 359:Metallic hydrogen and phonon-mediated pairing 99:suggested that some materials, notably YBCO ( 2797: 2694: 2044: 2010:"Room-Temperature Superconductivity Claimed" 1123:Ge, Yanfeng; Zhang, Fan; Yao, Yugui (2016). 554: 508: 292:article claimed superconducting behavior of 2634: 2222: 1519: 1347: 1316: 1285: 454:In 2016, research suggested a link between 219:formed on the surface of oxygen-doped type 195:is approximately 250 K (−23 Â°C). 22: 3002: 2988: 2702:~250 K) in sodalitelike clathrate LaH 2305:Padavic-Callaghn, Karmela (26 July 2023). 2243: 2201: 1122: 843: 45:above 0 Â°C (273 K; 32 Â°F), 2945: 2919: 2869: 2838: 2603: 2460: 2228: 2207: 2186: 2107: 1789: 1778:International Journal of Modern Physics B 1630: 1525: 1472: 1434: 1357:International Journal of Modern Physics B 1140: 1099: 1073: 1006: 941: 699: 676: 674: 630: 207:In 2000, while extracting electrons from 198: 2504: 2421: 2378: 2007: 1946: 608: 606: 269: 2747: 2332: 2157: 2081: 1604: 1540: 877: 797: 481:during research after the discovery of 135:transitioned to a superconductive form 88: 3447: 1841:from the original on 27 September 2022 1541:Desikan, Shubashree (18 August 2018). 837: 671: 458:containing small impurities of sulfur 371:at extremely high pressure (~500  363:Theoretical work by British physicist 3009: 2983: 2760:from the original on 30 December 2019 2683:from the original on 26 November 2020 2130: 1665: 1248: 1191: 1067: 603: 2882:from the original on 7 February 2019 1828: 1678:from the original on 14 October 2020 1251:Semiconductor Science and Technology 1173:from the original on 7 November 2017 2358: 2170:from the original on 21 March 2023. 1074:Cartlidge, Edwin (18 August 2015). 551:dilithium magnesium hexadecahydride 526:, where it has been predicted that 32:(more unsolved problems in physics) 13: 2894: 2594:-Type Hydrides at High Pressure". 2571:from the original on 6 August 2020 2333:Johnson, Carolyn (9 August 2023). 2063:from the original on 14 March 2023 1666:Chang, Kenneth (14 October 2020). 1647:from the original on 21 March 2023 1398:from the original on 22 March 2021 847:; Roche, Kevin P. (25 July 2016). 260:Highly oriented pyrolytic graphite 14: 3476: 2870:MacDonald, Fiona (9 April 2018). 2748:Extance, Andy (1 November 2019). 2729:with a remarkably high estimated 2422:Johnston, Ian (26 January 2017). 2286:from the original on 26 July 2023 2260:from the original on 26 July 2023 2139:from the original on 18 June 2023 2026:from the original on 9 March 2023 1989:from the original on 8 March 2023 1959:from the original on 8 March 2023 1909:from the original on 8 March 2023 1555:from the original on 24 June 2020 890:from the original on 27 July 2023 410: 204:and hysteretic I(V) behavior. 110:In 2015, an article published in 93:In 2014, an article published in 2008:Anderson, Margo (8 March 2023). 1947:Woodward, Aylin (8 March 2023). 1829:Hand, Eric (26 September 2022). 1586:from the original on 26 May 2019 570:It is also possible that if the 565: 79:high-temperature superconductors 2962: 2863: 2814: 2741: 2628: 2583: 2549: 2469: 2448: 2436:from the original on 3 May 2019 2415: 2352: 2326: 2298: 2272: 2237: 2216: 2195: 2174: 2158:Wilkins, Alex (17 March 2023). 2151: 2124: 2075: 2038: 2001: 1971: 1940: 1853: 1822: 1769: 1690: 1659: 1598: 1567: 1534: 1513: 1451: 1410: 1384: 1242: 1233: 1224: 1185: 1055:from the original on 6 May 2021 266:Retracted or unreliable studies 39:room-temperature superconductor 2756:. Royal Society of Chemistry. 2661:10.1103/PhysRevLett.123.097001 982: 902: 871: 791: 740: 649:10.1103/PhysRevLett.122.027001 1: 2535:10.1103/PhysRevLett.92.187002 2359:Orf, Darren (9 August 2023). 2082:Garisto, Dan (9 March 2023). 1605:Garisto, Dan (9 March 2023). 1594:– via www.thehindu.com. 1423:Advanced Quantum Technologies 1310:10.1016/S0921-4534(02)02745-4 878:Garisto, Dan (27 July 2023). 823:10.1126/science.259.5101.1550 596: 785:10.1016/0921-4534(94)02461-8 581:re-entrant superconductivity 7: 2857:10.1016/j.physc.2006.10.013 2409:10.1103/PhysRevLett.21.1748 1917:– via www.nature.com. 1341:10.1016/j.physc.2004.02.099 488:It has been predicted that 353: 324:carbonaceous sulfur hydride 305:Indian Institute of Science 101:yttrium barium copper oxide 23:Unsolved problem in physics 10: 3481: 3332:Technological applications 2131:Yirka, Bob (17 May 2023). 1926:10.1038/s41586-023-06774-2 1887:10.1038/s41586-023-05742-0 1755:10.1038/s41586-022-05294-9 1271:10.1088/0268-1242/18/3/319 1159:10.1103/PhysRevB.93.224513 684:Eremets, Mikhail Ivanovich 575:here would be anisotropic 314:Since 2016, a team led by 72: 3383: 3330: 3285: 3261: 3240: 3204: 3195: 3104: 3074:Characteristic parameters 3073: 3017: 2498:10.1103/PhysRev.134.A1416 1800:10.1142/S0217979223750012 1720:10.1038/s41586-020-2801-z 1378:10.1142/S0217979207044524 1101:10.1038/nature.2015.18191 853:researcher.watson.ibm.com 718:10.1038/s41586-019-1201-8 3091:London penetration depth 1364:(18&19): 3343–3347. 1210:10.1063/PT.6.1.20180823b 187:) at elevated (200  163:other hydrogen compounds 3460:Hypothetical technology 3384:List of superconductors 3262:By critical temperature 2641:Physical Review Letters 2514:Physical Review Letters 2388:Physical Review Letters 799:Geballe, Theodore Henry 77:Since the discovery of 2938:10.1126/sciadv.aao4513 2754:www.chemistryworld.com 2614:10.1002/advs.202405561 1491:10.1002/adma.201202219 1445:10.1002/qute.202300230 615:Hemley, Russell Julian 505:scandium dodecahydride 339:those results failed. 283: 199:Uncorroborated studies 193:transition temperature 114:by researchers of the 55:transition temperature 47:operating temperatures 3465:High pressure science 3030:Bean's critical state 2109:10.1103/Physics.16.40 1920:(Retracted, see 1749:(Retracted, see 1632:10.1103/Physics.16.40 763:by Tl substitution". 367:predicted that solid 273: 170:lanthanum decahydride 51:lanthanum decahydride 3205:By magnetic response 1327:. 408–410: 350–352. 1296:. 388–389: 571–572. 379:and expected strong 89:Corroborated studies 62:atmospheric pressure 3157:persistent currents 3142:Little–Parks effect 2930:2018SciA....4.4513K 2849:2007PhyC..451...86D 2653:2019PhRvL.123i7001S 2564:Griffith University 2527:2004PhRvL..92r7002A 2490:1964PhRv..134.1416L 2484:(6A): A1416–A1424. 2401:1968PhRvL..21.1748A 2339:The Washington Post 2100:2023PhyOJ..16...40G 1953:Wall Street Journal 1879:2023Natur.615..244D 1712:2020Natur.586..373S 1623:2023PhyOJ..16...40G 1483:2012AdM....24.5826S 1370:2007IJMPB..21.3343T 1333:2004PhyC..408..350T 1302:2003PhyC..388..571T 1263:2003SeScT..18S.131P 1202:2018PhT..2018h0438G 1151:2016PhRvB..93v4513G 1092:2015Natur.524..277C 1025:10.1038/nature14964 1017:2015Natur.525...73D 960:10.1038/nature13875 952:2014Natur.516...71M 912:Spaldin, Nicola Ann 884:Scientific American 859:on 12 December 2013 815:1993Sci...259.1550G 809:(5101): 1550–1551. 777:1995PhyC..243..201D 710:2019Natur.569..528D 641:2019PhRvL.122b7001S 333:manganese disulfide 116:Otto Hahn Institute 3117:Andreev reflection 3112:Abrikosov vortices 1672:The New York Times 1461:Advanced Materials 392:Harvard University 289:Advanced Materials 284: 152:diamond anvil cell 3442: 3441: 3360:quantum computing 3326: 3325: 3182:superdiamagnetism 3011:Superconductivity 2521:(18): 1748–1749. 2395:(26): 1748–1749. 2365:Popular Mechanics 2057:Simons Foundation 1873:(7951): 244–250. 1706:(7829): 373–377. 1467:(43): 5826–5831. 845:Jones, Barbara A. 694:(7757): 528–531. 577:magnetoresistance 456:palladium hydride 369:metallic hydrogen 276:magnet levitating 235:palladium hydride 43:superconductivity 3472: 3391:bilayer graphene 3365:Rutherford cable 3277:room temperature 3272:high temperature 3202: 3201: 3162:proximity effect 3137:Josephson effect 3081:coherence length 3004: 2997: 2990: 2981: 2980: 2974: 2973: 2966: 2960: 2959: 2949: 2923: 2908:Science Advances 2898: 2892: 2891: 2889: 2887: 2867: 2861: 2860: 2842: 2840:cond-mat/0607303 2818: 2812: 2811: 2804: 2795: 2794: 2793: 2782: 2781: 2767: 2765: 2745: 2739: 2738: 2728: 2727: 2726: 2718: 2717: 2701: 2690: 2688: 2632: 2626: 2625: 2607: 2596:Advanced Science 2587: 2581: 2580: 2578: 2576: 2553: 2547: 2546: 2508: 2502: 2501: 2473: 2467: 2466: 2464: 2452: 2446: 2445: 2443: 2441: 2419: 2413: 2412: 2382: 2376: 2375: 2373: 2371: 2356: 2350: 2349: 2347: 2345: 2330: 2324: 2323: 2321: 2319: 2302: 2296: 2295: 2293: 2291: 2276: 2270: 2269: 2267: 2265: 2241: 2235: 2234: 2232: 2220: 2214: 2213: 2211: 2199: 2193: 2192: 2190: 2178: 2172: 2171: 2155: 2149: 2148: 2146: 2144: 2128: 2122: 2121: 2111: 2079: 2073: 2072: 2070: 2068: 2042: 2036: 2035: 2033: 2031: 2005: 1999: 1998: 1996: 1994: 1975: 1969: 1968: 1966: 1964: 1944: 1938: 1937: 1918: 1916: 1914: 1857: 1851: 1850: 1848: 1846: 1826: 1820: 1819: 1793: 1773: 1767: 1766: 1747: 1694: 1688: 1687: 1685: 1683: 1663: 1657: 1656: 1654: 1652: 1634: 1602: 1596: 1595: 1593: 1591: 1571: 1565: 1564: 1562: 1560: 1538: 1532: 1531: 1529: 1517: 1511: 1510: 1476: 1455: 1449: 1448: 1438: 1414: 1408: 1407: 1405: 1403: 1388: 1382: 1381: 1351: 1345: 1344: 1320: 1314: 1313: 1289: 1283: 1282: 1257:(3): S131–S140. 1246: 1240: 1237: 1231: 1228: 1222: 1221: 1189: 1183: 1182: 1180: 1178: 1144: 1120: 1114: 1113: 1103: 1071: 1065: 1064: 1062: 1060: 1010: 986: 980: 979: 945: 906: 900: 899: 897: 895: 875: 869: 868: 866: 864: 855:. Archived from 841: 835: 834: 795: 789: 788: 771:(3–4): 201–206. 744: 738: 737: 703: 678: 669: 668: 634: 610: 561: 548: 547: 546: 538: 537: 515: 502: 501: 500: 476: 473: 472: 450: 448: 447: 436: 434: 433: 405:organic polymers 329:lutetium hydride 249: 227: 213:ion implantation 186: 185: 184: 149: 145: 144: 134: 130: 129: 24: 3480: 3479: 3475: 3474: 3473: 3471: 3470: 3469: 3455:Superconductors 3445: 3444: 3443: 3438: 3409: 3379: 3322: 3281: 3268:low temperature 3257: 3236: 3191: 3147:Meissner effect 3100: 3096:Silsbee current 3069: 3035:Ginzburg–Landau 3013: 3008: 2978: 2977: 2968: 2967: 2963: 2914:(4): eaao4513. 2899: 2895: 2885: 2883: 2868: 2864: 2819: 2815: 2803: 2792: 2789: 2788: 2787: 2780: 2777: 2776: 2775: 2771: 2763: 2761: 2746: 2742: 2735: 2725: 2722: 2721: 2720: 2716: 2713: 2712: 2711: 2707: 2705: 2700: 2686: 2684: 2633: 2629: 2593: 2588: 2584: 2574: 2572: 2555: 2554: 2550: 2509: 2505: 2478:Physical Review 2474: 2470: 2453: 2449: 2439: 2437: 2429:The Independent 2420: 2416: 2383: 2379: 2369: 2367: 2357: 2353: 2343: 2341: 2331: 2327: 2317: 2315: 2303: 2299: 2289: 2287: 2278: 2277: 2273: 2263: 2261: 2242: 2238: 2221: 2217: 2200: 2196: 2179: 2175: 2156: 2152: 2142: 2140: 2129: 2125: 2080: 2076: 2066: 2064: 2052:Quanta Magazine 2043: 2039: 2029: 2027: 2006: 2002: 1992: 1990: 1983:www.science.org 1977: 1976: 1972: 1962: 1960: 1945: 1941: 1919: 1912: 1910: 1858: 1854: 1844: 1842: 1827: 1823: 1774: 1770: 1748: 1695: 1691: 1681: 1679: 1664: 1660: 1650: 1648: 1603: 1599: 1589: 1587: 1572: 1568: 1558: 1556: 1539: 1535: 1518: 1514: 1456: 1452: 1415: 1411: 1401: 1399: 1390: 1389: 1385: 1352: 1348: 1321: 1317: 1290: 1286: 1247: 1243: 1238: 1234: 1229: 1225: 1190: 1186: 1176: 1174: 1121: 1117: 1072: 1068: 1058: 1056: 1001:(7567): 73–76. 987: 983: 936:(7529): 71–73. 925: 921: 917: 907: 903: 893: 891: 876: 872: 862: 860: 842: 838: 796: 792: 762: 758: 754: 750: 745: 741: 679: 672: 619:Phys. Rev. Lett 611: 604: 599: 568: 560: 553:) would have a 545: 542: 541: 540: 536: 533: 532: 531: 527: 514: 499: 496: 495: 494: 489: 471: 468: 467: 466: 463: 446: 443: 442: 441: 439: 432: 429: 428: 427: 425: 413: 401: 361: 356: 280:Meissner effect 268: 244: 242: 225: 201: 183: 180: 179: 178: 173: 160: 143: 140: 139: 138: 136: 128: 125: 124: 123: 119: 91: 83:liquid nitrogen 75: 35: 34: 29: 26: 17: 12: 11: 5: 3478: 3468: 3467: 3462: 3457: 3440: 3439: 3437: 3436: 3431: 3426: 3421: 3416: 3411: 3407: 3403: 3398: 3393: 3387: 3385: 3381: 3380: 3378: 3377: 3372: 3367: 3362: 3357: 3352: 3347: 3345:electromagnets 3342: 3336: 3334: 3328: 3327: 3324: 3323: 3321: 3320: 3315: 3310: 3305: 3300: 3295: 3289: 3287: 3286:By composition 3283: 3282: 3280: 3279: 3274: 3269: 3265: 3263: 3259: 3258: 3256: 3255: 3253:unconventional 3250: 3244: 3242: 3241:By explanation 3238: 3237: 3235: 3234: 3229: 3228: 3227: 3222: 3217: 3208: 3206: 3199: 3197:Classification 3193: 3192: 3190: 3189: 3184: 3179: 3174: 3169: 3164: 3159: 3154: 3149: 3144: 3139: 3134: 3129: 3124: 3119: 3114: 3108: 3106: 3102: 3101: 3099: 3098: 3093: 3088: 3086:critical field 3083: 3077: 3075: 3071: 3070: 3068: 3067: 3062: 3057: 3055:Mattis–Bardeen 3052: 3047: 3042: 3040:Kohn–Luttinger 3037: 3032: 3027: 3021: 3019: 3015: 3014: 3007: 3006: 2999: 2992: 2984: 2976: 2975: 2961: 2893: 2862: 2813: 2801: 2790: 2778: 2740: 2733: 2723: 2714: 2703: 2698: 2627: 2591: 2582: 2548: 2503: 2468: 2447: 2414: 2377: 2351: 2325: 2297: 2271: 2236: 2215: 2194: 2173: 2150: 2123: 2074: 2037: 2000: 1970: 1939: 1852: 1821: 1784:(4): 2375001. 1768: 1689: 1658: 1597: 1566: 1533: 1512: 1450: 1409: 1383: 1346: 1315: 1284: 1241: 1232: 1223: 1184: 1135:(22): 224513. 1115: 1066: 981: 923: 919: 915: 901: 870: 836: 790: 760: 756: 752: 748: 739: 670: 601: 600: 598: 595: 567: 564: 558: 543: 534: 512: 497: 469: 444: 430: 412: 411:Other hydrides 409: 400: 397: 377:speed of sound 360: 357: 355: 352: 267: 264: 238: 200: 197: 181: 158: 141: 126: 105:infrared laser 90: 87: 74: 71: 30: 27: 21: 15: 9: 6: 4: 3: 2: 3477: 3466: 3463: 3461: 3458: 3456: 3453: 3452: 3450: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3404: 3402: 3399: 3397: 3394: 3392: 3389: 3388: 3386: 3382: 3376: 3373: 3371: 3368: 3366: 3363: 3361: 3358: 3356: 3353: 3351: 3348: 3346: 3343: 3341: 3338: 3337: 3335: 3333: 3329: 3319: 3316: 3314: 3311: 3309: 3306: 3304: 3303:heavy fermion 3301: 3299: 3296: 3294: 3291: 3290: 3288: 3284: 3278: 3275: 3273: 3270: 3267: 3266: 3264: 3260: 3254: 3251: 3249: 3246: 3245: 3243: 3239: 3233: 3232:ferromagnetic 3230: 3226: 3223: 3221: 3218: 3216: 3213: 3212: 3210: 3209: 3207: 3203: 3200: 3198: 3194: 3188: 3185: 3183: 3180: 3178: 3177:supercurrents 3175: 3173: 3170: 3168: 3165: 3163: 3160: 3158: 3155: 3153: 3150: 3148: 3145: 3143: 3140: 3138: 3135: 3133: 3130: 3128: 3125: 3123: 3120: 3118: 3115: 3113: 3110: 3109: 3107: 3103: 3097: 3094: 3092: 3089: 3087: 3084: 3082: 3079: 3078: 3076: 3072: 3066: 3063: 3061: 3058: 3056: 3053: 3051: 3048: 3046: 3043: 3041: 3038: 3036: 3033: 3031: 3028: 3026: 3023: 3022: 3020: 3016: 3012: 3005: 3000: 2998: 2993: 2991: 2986: 2985: 2982: 2971: 2965: 2957: 2953: 2948: 2943: 2939: 2935: 2931: 2927: 2922: 2917: 2913: 2909: 2905: 2897: 2881: 2877: 2873: 2866: 2858: 2854: 2850: 2846: 2841: 2836: 2832: 2828: 2824: 2817: 2810: 2808: 2800: 2796:would have a 2785: 2774: 2759: 2755: 2751: 2744: 2737: 2732: 2710: 2697: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2650: 2647:(9): 097001. 2646: 2642: 2638: 2631: 2623: 2619: 2615: 2611: 2606: 2601: 2597: 2586: 2570: 2566: 2565: 2560: 2559: 2552: 2544: 2540: 2536: 2532: 2528: 2524: 2520: 2516: 2515: 2507: 2499: 2495: 2491: 2487: 2483: 2479: 2472: 2463: 2458: 2451: 2435: 2431: 2430: 2425: 2418: 2410: 2406: 2402: 2398: 2394: 2390: 2389: 2381: 2366: 2362: 2355: 2340: 2336: 2329: 2314: 2313: 2312:New Scientist 2308: 2301: 2285: 2281: 2275: 2259: 2255: 2251: 2247: 2240: 2231: 2226: 2219: 2210: 2205: 2198: 2189: 2184: 2177: 2169: 2165: 2164:New Scientist 2161: 2154: 2138: 2134: 2127: 2119: 2115: 2110: 2105: 2101: 2097: 2093: 2089: 2085: 2078: 2062: 2058: 2054: 2053: 2048: 2041: 2025: 2021: 2017: 2016: 2015:IEEE Spectrum 2011: 2004: 1988: 1984: 1980: 1974: 1958: 1954: 1950: 1943: 1935: 1931: 1927: 1923: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1872: 1868: 1864: 1856: 1840: 1836: 1832: 1825: 1817: 1813: 1809: 1805: 1801: 1797: 1792: 1787: 1783: 1779: 1772: 1764: 1760: 1756: 1752: 1745: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1705: 1701: 1693: 1677: 1673: 1669: 1662: 1646: 1642: 1638: 1633: 1628: 1624: 1620: 1616: 1612: 1608: 1601: 1585: 1581: 1577: 1570: 1554: 1550: 1549: 1544: 1537: 1528: 1523: 1516: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1475: 1470: 1466: 1462: 1454: 1446: 1442: 1437: 1432: 1428: 1424: 1420: 1413: 1397: 1393: 1387: 1379: 1375: 1371: 1367: 1363: 1359: 1358: 1350: 1342: 1338: 1334: 1330: 1326: 1319: 1311: 1307: 1303: 1299: 1295: 1288: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1245: 1236: 1227: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1194:Physics Today 1188: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1143: 1138: 1134: 1130: 1126: 1119: 1111: 1107: 1102: 1097: 1093: 1089: 1086:(7565): 277. 1085: 1081: 1077: 1070: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1009: 1004: 1000: 996: 992: 985: 977: 973: 969: 965: 961: 957: 953: 949: 944: 939: 935: 931: 930: 913: 905: 889: 885: 881: 874: 858: 854: 850: 846: 840: 832: 828: 824: 820: 816: 812: 808: 804: 800: 794: 786: 782: 778: 774: 770: 766: 743: 735: 731: 727: 723: 719: 715: 711: 707: 702: 697: 693: 689: 685: 677: 675: 666: 662: 658: 654: 650: 646: 642: 638: 633: 628: 625:(2): 027001. 624: 620: 616: 609: 607: 602: 594: 591: 589: 584: 582: 578: 573: 566:Spin coupling 563: 557: 552: 530: 525: 524:superhydrides 522: 517: 511: 506: 492: 486: 484: 480: 475: 461: 460:nanoparticles 457: 452: 437: 421: 419: 408: 406: 396: 393: 388: 386: 382: 378: 374: 370: 366: 365:Neil Ashcroft 351: 349: 345: 340: 338: 334: 330: 325: 321: 317: 316:Ranga P. Dias 312: 310: 306: 301: 299: 295: 291: 290: 281: 277: 272: 263: 261: 255: 251: 247: 241: 236: 231: 229: 222: 218: 214: 210: 205: 196: 194: 190: 176: 171: 166: 164: 157: 153: 148: 133: 122: 117: 113: 108: 106: 102: 98: 97: 86: 84: 80: 70: 67: 63: 58: 56: 52: 48: 44: 40: 33: 19: 3313:oxypnictides 3276: 3248:conventional 3187:superstripes 3132:flux pumping 3127:flux pinning 3122:Cooper pairs 2964: 2911: 2907: 2896: 2884:. Retrieved 2876:ScienceAlert 2875: 2865: 2830: 2826: 2816: 2805:of 473  2798: 2769: 2762:. Retrieved 2753: 2743: 2730: 2695: 2692: 2685:. Retrieved 2644: 2640: 2630: 2598:: e2405561. 2595: 2585: 2573:. Retrieved 2562: 2557: 2551: 2518: 2512: 2506: 2481: 2477: 2471: 2450: 2438:. Retrieved 2427: 2417: 2392: 2386: 2380: 2368:. Retrieved 2364: 2354: 2342:. Retrieved 2338: 2328: 2316:. Retrieved 2310: 2300: 2288:. Retrieved 2274: 2262:. Retrieved 2256:(2): 61–70. 2253: 2249: 2239: 2218: 2197: 2176: 2163: 2153: 2141:. Retrieved 2126: 2091: 2087: 2077: 2065:. Retrieved 2050: 2040: 2028:. Retrieved 2013: 2003: 1991:. Retrieved 1982: 1973: 1961:. Retrieved 1952: 1942: 1911:. Retrieved 1870: 1866: 1855: 1845:27 September 1843:. Retrieved 1834: 1824: 1781: 1777: 1771: 1703: 1699: 1692: 1680:. Retrieved 1671: 1661: 1649:. Retrieved 1614: 1610: 1600: 1588:. Retrieved 1579: 1569: 1557:. Retrieved 1546: 1536: 1515: 1464: 1460: 1453: 1426: 1422: 1412: 1400:. Retrieved 1386: 1361: 1355: 1349: 1324: 1318: 1293: 1287: 1254: 1250: 1244: 1235: 1226: 1196:(8): 30438. 1193: 1187: 1175:. Retrieved 1132: 1129:Phys. Rev. B 1128: 1118: 1083: 1079: 1069: 1057:. Retrieved 998: 994: 984: 933: 927: 904: 892:. Retrieved 883: 873: 863:18 September 861:. Retrieved 857:the original 852: 839: 806: 802: 793: 768: 764: 742: 691: 687: 622: 618: 592: 585: 569: 555: 518: 509: 487: 478: 453: 422: 418:IVa hydrides 414: 402: 389: 362: 341: 313: 302: 287: 286:In 2012, an 285: 256: 252: 245: 239: 232: 226:10 mbar 221:IIa diamonds 206: 202: 167: 155: 111: 109: 94: 92: 76: 60:At standard 59: 38: 36: 18: 3172:SU(2) color 3152:Homes's law 2764:30 December 2440:12 December 588:spin states 309:peer review 3449:Categories 3308:iron-based 3167:reentrance 2921:1603.03375 2886:6 February 2605:2302.02621 2575:2 December 2462:1906.05634 2230:2307.12037 2209:2307.12008 2188:2306.06301 1791:2201.07686 1682:14 October 1527:1807.08572 1436:2208.00854 1177:6 November 1142:1507.08525 1008:1506.08190 701:1812.01561 632:1808.07695 597:References 390:A team at 3105:Phenomena 2833:(2): 86. 2827:Physica C 2687:9 January 2677:202123043 2118:257615348 1903:257407449 1816:252324362 1808:0217-9792 1744:222823227 1641:257615348 1580:The Hindu 1559:4 October 1548:The Hindu 1507:205246535 1474:1209.1938 1325:Physica C 1294:Physica C 1279:250881569 1218:240297717 1167:118730557 1033:0028-0836 943:1405.2266 765:Physica C 734:119231000 572:bipolaron 337:replicate 3340:cryotron 3298:cuprates 3293:covalent 3050:Matthias 3018:Theories 2956:29740606 2880:Archived 2758:Archived 2681:Archived 2669:31524448 2622:39033541 2569:Archived 2543:15169525 2434:Archived 2370:9 August 2344:9 August 2284:Archived 2258:Archived 2168:Archived 2137:Archived 2067:14 March 2061:Archived 2024:Archived 1987:Archived 1957:Archived 1934:37935926 1907:Archived 1895:36890373 1839:Archived 1763:36163290 1736:33057222 1676:Archived 1651:21 March 1645:Archived 1584:Archived 1553:Archived 1499:22949348 1402:22 March 1396:Archived 1171:Archived 1110:26289188 1053:Archived 1041:26280333 968:25471882 888:Archived 831:17733017 726:31118520 665:53622077 657:30720326 381:coupling 354:Theories 298:Meissner 294:graphite 107:pulses. 66:cuprates 53:, whose 3434:more... 3318:organic 2947:5938259 2926:Bibcode 2845:Bibcode 2649:Bibcode 2523:Bibcode 2486:Bibcode 2397:Bibcode 2318:26 July 2290:26 July 2264:26 July 2143:18 June 2096:Bibcode 2088:Physics 2030:9 March 1993:8 March 1963:8 March 1913:8 March 1875:Bibcode 1835:Science 1728:1673473 1708:Bibcode 1619:Bibcode 1611:Physics 1479:Bibcode 1366:Bibcode 1329:Bibcode 1298:Bibcode 1259:Bibcode 1198:Bibcode 1147:Bibcode 1088:Bibcode 1049:4468914 1013:Bibcode 976:3127527 948:Bibcode 894:28 July 811:Bibcode 803:Science 773:Bibcode 706:Bibcode 637:Bibcode 521:ternary 385:phonons 211:during 209:diamond 73:Reports 3211:Types 3045:London 2954:  2944:  2675:  2667:  2620:  2541:  2116:  2094:: 40. 1932:  1928:, 1901:  1893:  1867:Nature 1814:  1806:  1761:  1757:, 1742:  1734:  1726:  1700:Nature 1639:  1617:: 40. 1590:26 May 1505:  1497:  1277:  1216:  1165:  1108:  1080:Nature 1059:9 June 1047:  1039:  1031:  995:Nature 974:  966:  929:Nature 829:  732:  724:  688:Nature 663:  655:  479:et al. 248:> 1 228:vacuum 112:Nature 96:Nature 3424:TBCCO 3396:BSCCO 3375:wires 3370:SQUID 2916:arXiv 2835:arXiv 2673:S2CID 2600:arXiv 2457:arXiv 2225:arXiv 2204:arXiv 2183:arXiv 2114:S2CID 1899:S2CID 1812:S2CID 1786:arXiv 1740:S2CID 1637:S2CID 1522:arXiv 1503:S2CID 1469:arXiv 1431:arXiv 1429:(2). 1275:S2CID 1214:S2CID 1163:S2CID 1137:arXiv 1045:S2CID 1003:arXiv 972:S2CID 938:arXiv 730:S2CID 696:arXiv 661:S2CID 627:arXiv 348:arXiv 344:LK-99 223:in a 217:phase 3429:YBCO 3419:NbTi 3414:NbSn 3401:LBCO 2952:PMID 2888:2019 2766:2019 2689:2022 2665:PMID 2618:PMID 2577:2019 2539:PMID 2442:2017 2372:2023 2346:2023 2320:2023 2292:2023 2266:2023 2145:2023 2069:2023 2032:2023 1995:2023 1965:2023 1930:PMID 1915:2023 1891:PMID 1847:2022 1804:ISSN 1759:PMID 1732:PMID 1724:OSTI 1684:2020 1653:2023 1592:2019 1561:2018 1495:PMID 1404:2021 1179:2017 1106:PMID 1061:2021 1037:PMID 1029:ISSN 964:PMID 896:2023 865:2018 827:PMID 722:PMID 653:PMID 483:YBCO 237:(PdH 3406:MgB 3355:NMR 3350:MRI 3225:1.5 3065:WHH 3060:RVB 3025:BCS 2942:PMC 2934:doi 2853:doi 2831:451 2719:MgH 2657:doi 2645:123 2610:doi 2531:doi 2494:doi 2482:134 2405:doi 2104:doi 1922:doi 1883:doi 1871:615 1796:doi 1751:doi 1716:doi 1704:586 1627:doi 1487:doi 1441:doi 1374:doi 1337:doi 1306:doi 1267:doi 1206:doi 1155:doi 1096:doi 1084:524 1021:doi 999:525 956:doi 934:516 926:". 924:6.5 819:doi 807:259 781:doi 769:243 761:8+ÎŽ 714:doi 692:569 645:doi 623:122 583:". 539:MgH 438:or 373:GPa 189:GPa 3451:: 3220:II 2950:. 2940:. 2932:. 2924:. 2910:. 2906:. 2878:. 2874:. 2851:. 2843:. 2829:. 2825:. 2791:16 2784:Mg 2773:Li 2768:. 2752:. 2724:16 2709:Li 2704:10 2691:. 2679:. 2671:. 2663:. 2655:. 2643:. 2639:. 2616:. 2608:. 2561:. 2537:. 2529:. 2519:92 2517:. 2492:. 2480:. 2432:. 2426:. 2403:. 2393:21 2391:. 2363:. 2337:. 2309:. 2282:. 2254:33 2252:. 2248:. 2166:. 2162:. 2135:. 2112:. 2102:. 2092:16 2090:. 2086:. 2059:. 2055:. 2049:. 2022:. 2018:. 2012:. 1985:. 1981:. 1955:. 1951:. 1905:. 1897:. 1889:. 1881:. 1869:. 1865:. 1837:. 1833:. 1810:. 1802:. 1794:. 1782:37 1780:. 1738:. 1730:. 1722:. 1714:. 1702:. 1674:. 1670:. 1643:. 1635:. 1625:. 1615:16 1613:. 1609:. 1582:. 1578:. 1551:. 1545:. 1501:. 1493:. 1485:. 1477:. 1465:24 1463:. 1439:. 1425:. 1421:. 1394:. 1372:. 1362:21 1360:. 1335:. 1304:. 1273:. 1265:. 1255:18 1253:. 1212:. 1204:. 1169:. 1161:. 1153:. 1145:. 1133:93 1131:. 1127:. 1104:. 1094:. 1082:. 1078:. 1051:. 1043:. 1035:. 1027:. 1019:. 1011:. 997:. 993:. 970:. 962:. 954:. 946:. 932:. 918:Cu 886:. 882:. 851:. 825:. 817:. 805:. 779:. 767:. 755:Cu 751:Ca 728:. 720:. 712:. 704:. 690:. 673:^ 659:. 651:. 643:. 635:. 621:. 605:^ 544:16 529:Li 498:12 491:Sc 485:. 420:. 407:. 387:. 274:A 243:: 230:. 182:10 175:La 64:, 37:A 3408:2 3215:I 3003:e 2996:t 2989:v 2972:. 2958:. 2936:: 2928:: 2918:: 2912:4 2890:. 2859:. 2855:: 2847:: 2837:: 2807:K 2802:c 2799:T 2786:H 2779:2 2734:c 2731:T 2715:2 2699:c 2696:T 2659:: 2651:: 2624:. 2612:: 2602:: 2592:2 2579:. 2545:. 2533:: 2525:: 2500:. 2496:: 2488:: 2465:. 2459:: 2444:. 2411:. 2407:: 2399:: 2374:. 2348:. 2322:. 2294:. 2268:. 2233:. 2227:: 2212:. 2206:: 2191:. 2185:: 2147:. 2120:. 2106:: 2098:: 2071:. 2034:. 1997:. 1967:. 1936:) 1924:: 1885:: 1877:: 1849:. 1818:. 1798:: 1788:: 1765:) 1753:: 1746:. 1718:: 1710:: 1686:. 1655:. 1629:: 1621:: 1563:. 1530:. 1524:: 1509:. 1489:: 1481:: 1471:: 1447:. 1443:: 1433:: 1427:7 1406:. 1380:. 1376:: 1368:: 1343:. 1339:: 1331:: 1312:. 1308:: 1300:: 1281:. 1269:: 1261:: 1220:. 1208:: 1200:: 1181:. 1157:: 1149:: 1139:: 1112:. 1098:: 1090:: 1063:. 1023:: 1015:: 1005:: 978:. 958:: 950:: 940:: 922:O 920:3 916:2 898:. 867:. 833:. 821:: 813:: 787:. 783:: 775:: 759:O 757:3 753:2 749:2 736:. 716:: 708:: 698:: 667:. 647:: 639:: 629:: 559:c 556:T 549:( 535:2 513:c 510:T 503:( 493:H 474:S 470:2 465:H 449:S 445:3 440:H 435:S 431:2 426:H 282:. 246:x 240:x 177:H 172:( 159:c 156:T 147:S 142:3 137:H 132:S 127:2 121:H 25::

Index

(more unsolved problems in physics)
superconductivity
operating temperatures
lanthanum decahydride
transition temperature
atmospheric pressure
cuprates
high-temperature superconductors
liquid nitrogen
Nature
yttrium barium copper oxide
infrared laser
Otto Hahn Institute
H
S
S
diamond anvil cell
other hydrogen compounds
lanthanum decahydride
La
GPa
transition temperature
diamond
ion implantation
phase
IIa diamonds
10 mbar vacuum
palladium hydride
Highly oriented pyrolytic graphite
A magnet is suspended over a liquid nitrogen cooled high-temperature superconductor (−200 Â°C)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑