Knowledge

Solid solution strengthening

Source 📝

269:
state. In substitutional solid solutions, these stress fields are spherically symmetric, meaning they have no shear stress component. As such, substitutional solute atoms do not interact with the shear stress fields characteristic of screw dislocations. Conversely, in interstitial solid solutions, solute atoms cause a tetragonal distortion, generating a shear field that can interact with edge, screw, and mixed dislocations. The attraction or repulsion of the dislocation to the solute atom depends on whether the atom sits above or below the slip plane. For example, consider an
186: 233: 25: 729:
difference in lattice parameter, the higher the local stress fields introduced by alloying. Alloying with elements of higher shear modulus or of very different lattice parameters will increase the stiffness and introduce local stress fields respectively. In either case, the dislocation propagation will be hindered at these sites, impeding plasticity and increasing yield strength proportionally with solute concentration.
274:
positioned below the slip plane, the dislocation would be repelled by the solute. However, the overall interaction energy between an edge dislocation and a smaller solute is negative because the dislocation spends more time at sites with attractive energy. This is also true for solute atom with size greater than the solvent atom. Thus, the interaction energy dictated by the size effect is generally negative.
901:
at the grain boundaries. The key impacting factor for these turbine blades lies in the grain size which an increase in grain size can lead to a significant reduction in the strain rate. An example of this reduced strain rate in MAR--M200 can be seen in the figures to the right where the figure on the bottom has a grain size of 100um and the figure on the top has a grain size of 10mm.
314:
charge effect is also important. For example, addition of divalent ion to a monovalent material may strengthen the electrostatic interaction between the solute and the charged matrix atoms that comprise a dislocation. However, this strengthening is to a less extent than the elastic strengthening effects. For materials containing a higher density of
329:, is one example of solid solution strengthening in which the density of solute carbon atoms is increased close to the surface of the steel, resulting in a gradient of carbon atoms throughout the material. This provides superior mechanical properties to the surface of the steel without having to use a higher-cost material for the component. 896:
depend on solid solution as a strengthening mechanism. The most popular example is the Inconel family, where many of these alloys contain chromium and iron and some other additions of cobalt, molybdenum, niobium, and titanium. The nickel-based superalloys are well known for their intensive use in the
193:
Depending on the size of the alloying element, a substitutional solid solution or an interstitial solid solution can form. In both cases, atoms are visualised as rigid spheres where the overall crystal structure is essentially unchanged. The rationale of crystal geometry to atom solubility prediction
929:
Titanium and titanium alloys have been wide usage in aerospace, medical, and maritime applications. The most known titanium alloy that adopts solid solution strengthening is Ti-6Al-4V. Also, the addition of oxygen to pure Ti alloy adopts a solid solution strengthening as a mechanism to the material,
900:
An example of the use of the nickel-based superalloys in the industrial field would be turbine blades. In practice, this alloy is known as MAR—M200 and is solid solution strengthened by chromium, tungsten and cobalt in the matrix and is also precipitation hardened by carbide and boride precipitates
904:
This reduced strain rate is extremely important for turbine blade operation because they undergo significant mechanical stress and high temperatures which can lead to the onset of creep deformation. Therefore, the precise control of grain size in nickel-based superalloys is key to creep resistance
728:
In order to achieve noticeable material strengthening via solution strengthening, one should alloy with solutes of higher shear modulus, hence increasing the local shear modulus in the material. In addition, one should alloy with elements of different equilibrium lattice constants. The greater the
853:
Nevertheless, one should not add so much solute as to precipitate a new phase. This occurs if the concentration of the solute reaches a certain critical point given by the binary system phase diagram. This critical concentration therefore puts a limit to the amount of solid solution strengthening
313:
The elastic interaction effects (i.e. size and modulus effects) dominate solid-solution strengthening for most crystalline materials. However, other effects, including charge and stacking fault effects, may also play a role. For ionic solids where electrostatic interaction dictates bond strength,
310:) necessary to tear dislocation away from the lowest energy state (i.e. the solute atom) is greater for the soft solute than the hard one. As a result, a soft solute will strengthen a crystal more than a hard solute due to the synergistic strengthening by combining both size and modulus effects. 268:
When solute and solvent atoms differ in size, local stress fields are created that can attract or repel dislocations in their vicinity. This is known as the size effect. By relieving tensile or compressive strain in the lattice, the solute size mismatch can put the dislocation in a lower energy
256:
The strength of a material is dependent on how easily dislocations in its crystal lattice can be propagated. These dislocations create stress fields within the material depending on their character. When solute atoms are introduced, local stress fields are formed that interact with those of the
243:
form when the solute atom is small enough (radii up to 57% the radii of the parent atoms) to fit at interstitial sites between the solvent atoms. The atoms crowd into the interstitial sites, causing the bonds of the solvent atoms to compress and thus deform (this rationale can be explained with
208:
strengthening occurs when the solute atom is large enough that it can replace solvent atoms in their lattice positions. Some alloying elements are only soluble in small amounts, whereas some solvent and solute pairs form a solution over the whole range of binary compositions. Generally, higher
273:
encountering a smaller solute atom above its slip plane. In this case, the interaction energy is negative, resulting in attraction of the dislocation to the solute. This is due to the reduced dislocation energy by the compressed volume lying above the dislocation core. If the solute atom were
945:
are both copper alloys that are solid solution strengthened. Bronze is the result of adding about 12% tin to copper while brass is the result of adding about 34% zinc to copper. Both of these alloys are being utilized in coins production, ship hardware, and art.
871:
where solid solution strengthening happens by adding magnesium and manganese into the aluminum matrix. Commercially Mn can be added to the AA3xxx series and Mg can be added to the AA5xxx series. Mn addition to the Aluminum alloys assists in the
302:
is positive for a “hard” solute, which results in lower total interaction energy than a soft atom. Even though the interaction force is negative (attractive) in both cases when the dislocation is approaching the solute. The maximum force
413: 516: 714: 650: 920:
mainly contain chromium, nickel, molybdenum, and manganese. It is being used mostly for cookware, kitchen equipment, and in marine applications for its good corrosion properties in saline environments.
799: 281:
of the solute atom can also determine the extent of strengthening. For a “soft” solute with elastic modulus lower than that of the solvent, the interaction energy due to modulus mismatch (
905:
and mechanical reliability and longevity. Some ways to control the grain size lie in the manufacturing techniques like directional solidification and single crystal casting.
590: 543: 916:
is one of the most commonly used metals in many industries. Solid solution strengthening of steel is one of the mechanisms used to enhance the properties of the alloy.
455: 563: 248:). Elements commonly used to form interstitial solid solutions include H, Li, Na, N, C, and O. Carbon in iron (steel) is one example of interstitial solid solution. 828: 355: 1403: 848: 318:, solute atoms may interact with the stacking faults either attractively or repulsively. This lowers the stacking fault energy, leading to repulsion of the 897:
industrial field especially the aeronautical and the aerospace industry due to their superior mechanical and corrosion properties at high temperatures.
262: 1574: 457:
is the lattice strain due to the solute. This is composed of two terms, one describing lattice distortion and the other local modulus change.
42: 89: 362: 61: 68: 1079:
Li, Donglong; Zhang, Mengqi; Xie, Lechun; Wang, Zhanjiang; Zhou, Zhongrong; Zhao, Ning; Palmer, David; Jane Wang, Q. (2020-07-15).
462: 664: 600: 261:
of the material, which means an increase in strength of the material. This gain is a result of both lattice distortion and the
1299:"Creep characteristics of directionally solidified turbine blades based on the difference in original casting characteristics" 75: 1063: 991: 960: 754: 57: 749:
For many common alloys, rough experimental fits can be found for the addition in strengthening provided in the form of:
880:
size as well. Both of these systems are used in low to medium-strength applications, with appreciable formability and
1025: 108: 1297:
Gu, Shuning; Gao, Hangshan; Wen, Zhixun; Pei, Haiqing; Li, Zhenwei; Zhao, Yanchao; Yue, Zhufeng (December 2021).
1554: 873: 46: 82: 1121:
Ryen, Øyvind; Holmedal, Bjørn; Nijs, Oscar; Nes, Erik; Sjölander, Emma; Ekström, Hans-Erik (2006-06-01).
1338:"Creep-Based Reliability Evaluation of Turbine Blade-Tip Clearance with Novel Neural Network Regression" 917: 1467: 1161: 337:
Solid solution strengthening increases yield strength of the material by increasing the shear stress,
568: 521: 1336:
Zhang, Chun-Yi; Wei, Jing-Shan; Wang, Ze; Yuan, Zhe-Shan; Fei, Cheng-Wei; Lu, Cheng (2019-10-29).
170: 150: 35: 153:
in the lattice due to the alloying element makes plastic deformation more difficult by impeding
1162:"The effect of silicon on the strengthening and work hardening of aluminum at room temperature" 1081:"Contact Yield Initiation and Its Influence on Rolling Contact Fatigue of Case-Hardened Steels" 440: 955: 134: 548: 1518: 1505:
Oh, J. -M.; Lee, B. -G.; Cho, S. -W.; Lee, S. -W.; Choi, G. -S.; Lim, J. -W. (2011-10-01).
1349: 1222: 806: 340: 221:
in their pure form. Examples of completely miscible binary systems are Cu-Ni and the Ag-Au
8: 1569: 319: 226: 222: 142: 1522: 1353: 1226: 1380: 1337: 833: 434: 245: 214: 199: 195: 1257: 1534: 1487: 1448: 1385: 1367: 1318: 1279: 1238: 1191: 1142: 1100: 1059: 1031: 1021: 987: 218: 1507:"Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V" 1211:"The history of solid-solution-strengthened Ni alloys for aqueous corrosion service" 1526: 1479: 1444: 1440: 1375: 1357: 1310: 1269: 1230: 1181: 1173: 1134: 1092: 270: 141:. The technique works by adding atoms of one element (the alloying element) to the 1427:
Coudon, F.; Gourdin, S.; Boucicaud, A.; Rose, T.; Cailletaud, G. (February 2020).
1314: 1428: 913: 868: 278: 1298: 1483: 1177: 877: 326: 315: 166: 146: 1530: 1234: 1138: 1563: 1538: 1491: 1452: 1371: 1322: 1283: 1242: 1195: 1146: 1104: 1035: 659:
Meanwhile, the local modulus change is captured in the following expression:
426: 174: 1506: 1210: 1122: 1389: 258: 158: 1429:"A stochastic approach applied to directionally solidified turbine blades" 1274: 1186: 210: 154: 185: 1362: 893: 162: 122: 1096: 232: 1015: 881: 1080: 930:
while adding it to Ti-6Al-4V alloy doesn’t have the same influence.
24: 1258:"A review on superalloys and IN718 nickel-based INCONEL superalloy" 408:{\displaystyle \Delta \tau =Gb\epsilon ^{\tfrac {3}{2}}{\sqrt {c}}} 257:
dislocations, impeding their motion and causing an increase in the
209:
solubility is seen when solvent and solute atoms are similar in
938: 1466:
Sieurin, Henrik; Zander, Johan; Sandström, Rolf (2006-01-15).
1014:
Soboyejo, Wole O. (2003). "8.3 Solid Solution Strengthening".
942: 511:{\displaystyle \epsilon =|\epsilon _{G}-\beta \epsilon _{a}|} 138: 130: 1123:"Strengthening mechanisms in solid solution aluminum alloys" 709:{\displaystyle \epsilon _{G}={\dfrac {\Delta G}{G\Delta c}}} 645:{\displaystyle \epsilon _{a}={\dfrac {\Delta a}{a\Delta c}}} 288:) is negative, which reinforce the size interaction energy ( 1426: 169:, leading to strengthening via other mechanisms (e.g. the 1468:"Modelling solid solution hardening in stainless steels" 16:
Type of alloying which improves strength of pure metals
1465: 386: 836: 809: 757: 682: 667: 618: 603: 571: 551: 524: 465: 443: 365: 343: 850:
is the concentration of solute in atomic fractions.
1120: 1058:. Illinois: Waveland Press, Inc. pp. 186–195. 794:{\displaystyle \Delta \sigma _{s}=k_{s}{\sqrt {c}}} 49:. Unsourced material may be challenged and removed. 842: 830:is a solid solution strengthening coefficient and 822: 793: 708: 644: 584: 557: 537: 510: 449: 407: 349: 595:The lattice distortion term can be described as: 545:the term that captures the local modulus change, 1561: 1335: 1262:Periodicals of Engineering and Natural Sciences 876:and recovery of the alloy which influences the 145:of another element (the base metal), forming a 1433:International Journal of Solids and Structures 1160:Zhao, Qinglong; Holmedal, Bjørn (2013-02-15). 1078: 1017:Mechanical properties of engineered materials 745:Valency of solute atoms (for ionic materials) 565:a constant dependent on the solute atoms and 1159: 854:that can be achieved with a given material. 1504: 1296: 887: 322:, which thus makes the material stronger. 1255: 1127:Metallurgical and Materials Transactions A 656:is the lattice parameter of the material. 421:is the concentration of the solute atoms, 1379: 1361: 1273: 1185: 732:Solid solution strengthening depends on: 720:is shear modulus of the solute material. 109:Learn how and when to remove this message 1053: 1013: 986:. New York: Springer. pp. 236–239. 231: 184: 1562: 1256:Akca, Enes; Gürsel, Ali (2015-06-26). 981: 332: 1575:Strengthening mechanisms of materials 1208: 961:Strengthening mechanisms of materials 1472:Materials Science and Engineering: A 1166:Materials Science and Engineering: A 1116: 1114: 1049: 1047: 1045: 1009: 1007: 1005: 1003: 977: 975: 47:adding citations to reliable sources 18: 1555:The Strengthening of Iron and Steel 225:(FCC) binary systems, and the Mo-W 161:. In contrast, alloying beyond the 13: 1511:Metals and Materials International 984:Mechanical Properties of Materials 924: 908: 862: 758: 696: 685: 632: 621: 366: 14: 1586: 1548: 1408:defmech.engineering.dartmouth.edu 1111: 1042: 1000: 972: 1056:Mechanical Behavior of Materials 933: 592:is the lattice distortion term. 189:Substitutional solute in lattice 133:that can be used to improve the 23: 1498: 1459: 1420: 1396: 1329: 1303:Journal of Alloys and Compounds 723: 236:Interstitial solutes in lattice 34:needs additional citations for 1445:10.1016/j.ijsolstr.2019.04.007 1290: 1249: 1209:Hodge, F. Galen (2006-09-01). 1202: 1153: 1072: 504: 473: 58:"Solid solution strengthening" 1: 1315:10.1016/j.jallcom.2021.161055 966: 739:Shear modulus of solute atoms 736:Concentration of solute atoms 585:{\displaystyle \epsilon _{a}} 538:{\displaystyle \epsilon _{G}} 206:Substitutional solid solution 1054:Courtney, Thomas H. (2005). 251: 241:Interstitial solid solutions 127:solid solution strengthening 7: 949: 857: 10: 1591: 1484:10.1016/j.msea.2005.09.031 1178:10.1016/j.msea.2012.11.062 1531:10.1007/s12540-011-1006-2 1235:10.1007/s11837-006-0078-9 1139:10.1007/s11661-006-0142-7 450:{\displaystyle \epsilon } 888:Nickel-based superalloys 433:is the magnitude of the 357:, to move dislocations: 325:Surface carburizing, or 180: 165:limit can form a second 982:Pelleg, Joshua (2013). 844: 824: 795: 710: 646: 586: 559: 558:{\displaystyle \beta } 539: 512: 451: 409: 351: 237: 213:(15% according to the 190: 956:Strength of materials 845: 825: 823:{\displaystyle k_{s}} 796: 711: 647: 587: 560: 540: 513: 452: 410: 352: 350:{\displaystyle \tau } 235: 229:(BCC) binary system. 217:) and adopt the same 194:is summarized in the 188: 1275:10.21533/pen.v3i1.43 1085:Journal of Tribology 834: 807: 755: 742:Size of solute atoms 665: 601: 569: 549: 522: 463: 441: 363: 341: 320:partial dislocations 43:improve this article 1523:2011MMI....17..733O 1354:2019Mate...12.3552Z 1227:2006JOM....58i..28H 333:Governing equations 227:body-centered cubic 223:face-centered cubic 151:local nonuniformity 143:crystalline lattice 1363:10.3390/ma12213552 892:Many nickel-based 840: 820: 791: 706: 704: 642: 640: 582: 555: 535: 508: 447: 405: 395: 347: 238: 215:Hume-Rothery rules 196:Hume-Rothery rules 191: 1097:10.1115/1.4047581 1065:978-1-57766-425-3 1020:. Marcel Dekker. 993:978-94-007-4341-0 918:Austenitic steels 874:recrystallization 843:{\displaystyle c} 789: 703: 639: 403: 394: 219:crystal structure 119: 118: 111: 93: 1582: 1543: 1542: 1502: 1496: 1495: 1463: 1457: 1456: 1424: 1418: 1417: 1415: 1414: 1400: 1394: 1393: 1383: 1365: 1333: 1327: 1326: 1294: 1288: 1287: 1277: 1253: 1247: 1246: 1206: 1200: 1199: 1189: 1157: 1151: 1150: 1133:(6): 1999–2006. 1118: 1109: 1108: 1076: 1070: 1069: 1051: 1040: 1039: 1011: 998: 997: 979: 849: 847: 846: 841: 829: 827: 826: 821: 819: 818: 800: 798: 797: 792: 790: 785: 783: 782: 770: 769: 715: 713: 712: 707: 705: 702: 691: 683: 677: 676: 651: 649: 648: 643: 641: 638: 627: 619: 613: 612: 591: 589: 588: 583: 581: 580: 564: 562: 561: 556: 544: 542: 541: 536: 534: 533: 517: 515: 514: 509: 507: 502: 501: 486: 485: 476: 456: 454: 453: 448: 414: 412: 411: 406: 404: 399: 397: 396: 387: 356: 354: 353: 348: 295:). In contrast, 271:edge dislocation 114: 107: 103: 100: 94: 92: 51: 27: 19: 1590: 1589: 1585: 1584: 1583: 1581: 1580: 1579: 1560: 1559: 1551: 1546: 1503: 1499: 1464: 1460: 1425: 1421: 1412: 1410: 1402: 1401: 1397: 1334: 1330: 1295: 1291: 1254: 1250: 1207: 1203: 1158: 1154: 1119: 1112: 1077: 1073: 1066: 1052: 1043: 1028: 1012: 1001: 994: 980: 973: 969: 952: 936: 927: 925:Titanium alloys 914:Stainless steel 911: 909:Stainless steel 890: 869:aluminum alloys 865: 863:Aluminum alloys 860: 835: 832: 831: 814: 810: 808: 805: 804: 784: 778: 774: 765: 761: 756: 753: 752: 726: 692: 684: 681: 672: 668: 666: 663: 662: 628: 620: 617: 608: 604: 602: 599: 598: 576: 572: 570: 567: 566: 550: 547: 546: 529: 525: 523: 520: 519: 503: 497: 493: 481: 477: 472: 464: 461: 460: 442: 439: 438: 435:Burger's vector 398: 385: 381: 364: 361: 360: 342: 339: 338: 335: 316:stacking faults 309: 301: 294: 287: 279:elastic modulus 254: 246:Pauling's rules 200:Pauling's rules 183: 157:motion through 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 1588: 1578: 1577: 1572: 1558: 1557: 1550: 1549:External links 1547: 1545: 1544: 1517:(5): 733–736. 1497: 1458: 1419: 1395: 1328: 1289: 1248: 1201: 1152: 1110: 1071: 1064: 1041: 1026: 999: 992: 970: 968: 965: 964: 963: 958: 951: 948: 935: 932: 926: 923: 910: 907: 889: 886: 867:An example of 864: 861: 859: 856: 839: 817: 813: 788: 781: 777: 773: 768: 764: 760: 747: 746: 743: 740: 737: 725: 722: 701: 698: 695: 690: 687: 680: 675: 671: 637: 634: 631: 626: 623: 616: 611: 607: 579: 575: 554: 532: 528: 506: 500: 496: 492: 489: 484: 480: 475: 471: 468: 446: 402: 393: 390: 384: 380: 377: 374: 371: 368: 346: 334: 331: 327:case hardening 307: 299: 292: 285: 263:modulus effect 253: 250: 182: 179: 147:solid solution 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 1587: 1576: 1573: 1571: 1568: 1567: 1565: 1556: 1553: 1552: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1501: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1462: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1423: 1409: 1405: 1399: 1391: 1387: 1382: 1377: 1373: 1369: 1364: 1359: 1355: 1351: 1347: 1343: 1339: 1332: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1293: 1285: 1281: 1276: 1271: 1267: 1263: 1259: 1252: 1244: 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1205: 1197: 1193: 1188: 1187:11250/2469312 1183: 1179: 1175: 1171: 1167: 1163: 1156: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1117: 1115: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1075: 1067: 1061: 1057: 1050: 1048: 1046: 1037: 1033: 1029: 1027:0-8247-8900-8 1023: 1019: 1018: 1010: 1008: 1006: 1004: 995: 989: 985: 978: 976: 971: 962: 959: 957: 954: 953: 947: 944: 940: 934:Copper alloys 931: 922: 919: 915: 906: 902: 898: 895: 885: 883: 879: 875: 870: 855: 851: 837: 815: 811: 801: 786: 779: 775: 771: 766: 762: 750: 744: 741: 738: 735: 734: 733: 730: 721: 719: 699: 693: 688: 678: 673: 669: 660: 657: 655: 635: 629: 624: 614: 609: 605: 596: 593: 577: 573: 552: 530: 526: 498: 494: 490: 487: 482: 478: 469: 466: 458: 444: 436: 432: 428: 427:shear modulus 424: 420: 415: 400: 391: 388: 382: 378: 375: 372: 369: 358: 344: 330: 328: 323: 321: 317: 311: 306: 298: 291: 284: 280: 275: 272: 266: 264: 260: 249: 247: 242: 234: 230: 228: 224: 220: 216: 212: 207: 203: 201: 197: 187: 178: 176: 175:intermetallic 172: 171:precipitation 168: 164: 160: 159:stress fields 156: 152: 148: 144: 140: 136: 132: 129:is a type of 128: 124: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1514: 1510: 1500: 1478:(1): 66–71. 1475: 1471: 1461: 1436: 1432: 1422: 1411:. Retrieved 1407: 1404:"CHAPTER 19" 1398: 1348:(21): 3552. 1345: 1341: 1331: 1306: 1302: 1292: 1265: 1261: 1251: 1221:(9): 28–31. 1218: 1214: 1204: 1169: 1165: 1155: 1130: 1126: 1088: 1084: 1074: 1055: 1016: 983: 937: 928: 912: 903: 899: 891: 884:resistance. 866: 852: 802: 751: 748: 731: 727: 724:Implications 717: 661: 658: 653: 597: 594: 459: 430: 422: 418: 416: 359: 336: 324: 312: 304: 296: 289: 282: 276: 267: 259:yield stress 255: 240: 239: 205: 204: 192: 177:compounds). 126: 120: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 1439:: 193–201. 1172:: 147–151. 894:superalloys 211:atomic size 155:dislocation 1570:Metallurgy 1564:Categories 1413:2024-05-08 1309:: 161055. 967:References 163:solubility 137:of a pure 123:metallurgy 99:March 2008 69:newspapers 1539:2005-4149 1492:0921-5093 1453:0020-7683 1372:1996-1944 1342:Materials 1323:0925-8388 1284:2303-4521 1243:1543-1851 1196:0921-5093 1147:1543-1940 1105:0742-4787 1036:300921090 882:corrosion 763:σ 759:Δ 697:Δ 686:Δ 670:ϵ 633:Δ 622:Δ 606:ϵ 574:ϵ 553:β 527:ϵ 495:ϵ 491:β 488:− 479:ϵ 467:ϵ 445:ϵ 383:ϵ 370:τ 367:Δ 345:τ 252:Mechanism 1390:31671898 950:See also 858:Examples 716:, where 652:, where 135:strength 131:alloying 1519:Bibcode 1381:6861887 1350:Bibcode 1223:Bibcode 425:is the 300:modulus 286:modulus 83:scholar 1537:  1490:  1451:  1388:  1378:  1370:  1321:  1282:  1241:  1194:  1145:  1103:  1091:(12). 1062:  1034:  1024:  990:  939:Bronze 803:where 518:Here, 437:, and 417:where 149:. The 85:  78:  71:  64:  56:  1268:(1). 943:brass 878:grain 181:Types 167:phase 139:metal 90:JSTOR 76:books 1535:ISSN 1488:ISSN 1449:ISSN 1386:PMID 1368:ISSN 1319:ISSN 1280:ISSN 1239:ISSN 1192:ISSN 1143:ISSN 1101:ISSN 1060:ISBN 1032:OCLC 1022:ISBN 988:ISBN 941:and 293:size 277:The 198:and 62:news 1527:doi 1480:doi 1476:415 1441:doi 1437:184 1376:PMC 1358:doi 1311:doi 1307:884 1270:doi 1231:doi 1215:JOM 1182:hdl 1174:doi 1170:563 1135:doi 1093:doi 1089:142 308:max 202:. 173:of 121:In 45:by 1566:: 1533:. 1525:. 1515:17 1513:. 1509:. 1486:. 1474:. 1470:. 1447:. 1435:. 1431:. 1406:. 1384:. 1374:. 1366:. 1356:. 1346:12 1344:. 1340:. 1317:. 1305:. 1301:. 1278:. 1264:. 1260:. 1237:. 1229:. 1219:58 1217:. 1213:. 1190:. 1180:. 1168:. 1164:. 1141:. 1131:37 1129:. 1125:. 1113:^ 1099:. 1087:. 1083:. 1044:^ 1030:. 1002:^ 974:^ 429:, 265:. 125:, 1541:. 1529:: 1521:: 1494:. 1482:: 1455:. 1443:: 1416:. 1392:. 1360:: 1352:: 1325:. 1313:: 1286:. 1272:: 1266:3 1245:. 1233:: 1225:: 1198:. 1184:: 1176:: 1149:. 1137:: 1107:. 1095:: 1068:. 1038:. 996:. 838:c 816:s 812:k 787:c 780:s 776:k 772:= 767:s 718:G 700:c 694:G 689:G 679:= 674:G 654:a 636:c 630:a 625:a 615:= 610:a 578:a 531:G 505:| 499:a 483:G 474:| 470:= 431:b 423:G 419:c 401:c 392:2 389:3 379:b 376:G 373:= 305:F 303:( 297:U 290:U 283:U 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Solid solution strengthening"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
metallurgy
alloying
strength
metal
crystalline lattice
solid solution
local nonuniformity
dislocation
stress fields
solubility
phase
precipitation
intermetallic

Hume-Rothery rules
Pauling's rules
atomic size
Hume-Rothery rules
crystal structure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.