Knowledge

Strong interaction

Source 📝

718: 1435: 38: 1690: 550: 410: 1702: 62: 506:, no matter how much farther the distance between the quarks. As the separation between the quarks grows, the energy added to the pair creates new pairs of matching quarks between the original two; hence it is impossible to isolate quarks. The explanation is that the amount of work done against a force of 475:
in electromagnetism, which is neutral, the gluon carries a color charge. Quarks and gluons are the only fundamental particles that carry non-vanishing color charge, and hence they participate in strong interactions only with each other. The strong force is the expression of the gluon interaction with
526:
The elementary quark and gluon particles involved in a high energy collision are not directly observable. The interaction produces jets of newly created hadrons that are observable. Those hadrons are created, as a manifestation of mass–energy equivalence, when sufficient energy is deposited into a
569:
While color confinement implies that the strong force acts without distance-diminishment between pairs of quarks in compact collections of bound quarks (hadrons), at distances approaching or greater than the radius of a proton, a residual force (described below) remains. It manifests as a force
236:, while neutrons were electrically neutral. By the understanding of physics at that time, positive charges would repel one another and the positively charged protons should cause the nucleus to fly apart. However, this was never observed. New physics was needed to explain this phenomenon. 490:
The strong force acts between quarks. Unlike all other forces (electromagnetic, weak, and gravitational), the strong force does not diminish in strength with increasing distance between pairs of quarks. After a limiting distance (about the size of a
636:. The rapid decrease with distance of the attractive residual force and the less rapid decrease of the repulsive electromagnetic force acting between protons within a nucleus, causes the instability of larger atomic nuclei, such as all those with 514:
is enough to create particle–antiparticle pairs within a very short distance. The energy added to the system by pulling two quarks apart would create a pair of new quarks that will pair up with the original ones. In QCD, this phenomenon is called
629:
Unlike the strong force, the residual strong force diminishes with distance, and does so rapidly. The decrease is approximately as a negative exponential power of distance, though there is no simple expression known for this; see
671:(GUT) aim to describe the strong interaction and the electroweak interaction as aspects of a single force, similarly to how the electromagnetic and weak interactions were unified by the Glashow–Weinberg–Salam model into 810: 171:
on this scale, the residual strong interaction obeys a distance-dependent behavior between nucleons that is quite different from when it is acting to bind quarks within hadrons. There are also differences in the
926:
The idiot physicists, unable to come up with any wonderful Greek words anymore, call this type of polarization by the unfortunate name of 'color', which has nothing to do with color in the normal sense.
467:. Color charge is analogous to electromagnetic charge, but it comes in three types (±red, ±green, and ±blue) rather than one, which results in different rules of behavior. These rules are described by 282:, although it has no relation to visible color. Quarks with unlike color charge attract one another as a result of the strong interaction, and the particle that mediates this was called the 679:, wherein the strength of the strong force diminishes at higher energies (or temperatures). The theorized energy where its strength becomes equal to the electroweak interaction is the 817: 779: 425:
is used since the strong interaction is the "strongest" of the four fundamental forces. At a distance of 10 m, its strength is around 100 times that of the
274:. The strong attraction between nucleons was the side-effect of a more fundamental force that bound the quarks together into protons and neutrons. The theory of 841: 614:
The residual strong force is thus a minor residuum of the strong force that binds quarks together into protons and neutrons. This same force is much weaker
270:
were composed of elementary particles. Zweig called the elementary particles "aces" while Gell-Mann called them "quarks"; the theory came to be called the
1320: 334:
of massive particles instead of emitting their constituents (quarks and gluons) as freely moving particles. This property of the strong force is called
1177: 136:
is the result of the strong interaction energy; the individual quarks provide only about 1% of the mass of a proton. At the range of 10 m (1
1464: 974: 736: 294:
The strong interaction is observable at two ranges, and mediated by different force carriers in each one. On a scale less than about 0.8 
1572: 731: 196:, although it is often mediated by the weak interaction. Artificially, the energy associated with the nuclear force is partially released in 479:
All quarks and gluons in QCD interact with each other through the strong force. The strength of interaction is parameterized by the strong
909: 224:
Before 1971, physicists were uncertain as to how the atomic nucleus was bound together. It was known that the nucleus was composed of
1706: 1449: 683:. However, no Grand Unified Theory has yet been successfully formulated to describe this process, and Grand Unification remains an 1313: 1170: 519:; as a result only hadrons, not individual free quarks, can be observed. The failure of all experiments that have searched for 1567: 1141: 1118: 1096: 1066: 1003: 958: 919: 684: 643:
Although the nuclear force is weaker than the strong interaction itself, it is still highly energetic: transitions produce
53:
elongates until it reaches a point where it "snaps" and the energy added to the system results in the formation of a quark–
17: 626:) are much weaker than the electromagnetic forces that hold electrons in association with the nucleus, forming the atoms. 1650: 306:
together to form protons, neutrons, and other hadrons. On a larger scale, up to about 3 fm, the force is carried by
1306: 417:
of the strong interaction, from left to right: (a) gluon radiation, (b) gluon splitting and (c,d) gluon self-coupling.
1728: 1474: 1163: 527:
quark–quark bond, as when a quark in one proton is struck by a very fast quark of another impacting proton during a
1655: 239:
A stronger attractive force was postulated to explain how the atomic nucleus was bound despite the protons' mutual
159:
In the context of atomic nuclei, the force binds protons and neutrons together to form a nucleus and is called the
717: 117:
particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the
1738: 849: 1615: 1506: 1454: 1665: 647:. The mass of a nucleus is significantly different from the summed masses of the individual nucleons. This 1054: 651:
is due to the potential energy associated with the nuclear force. Differences between mass defects power
125: 1620: 240: 1009:. Department of Applied Mathematics and Theoretical Physics, University of Cambridge. Archived from 982: 1733: 1625: 680: 595:. This "residual strong force", acting indirectly, transmits gluons that form part of the virtual 1694: 1539: 1407: 1397: 1221: 1186: 1080: 703: 699: 672: 98: 463:. Gluons are thought to interact with quarks and other gluons by way of a type of charge called 1412: 1385: 1259: 741: 532: 468: 437: 331: 275: 950: 870:
Wilczek, Frank (1982). "Quantum chromodynamics: The modern theory of the strong interaction".
1660: 1534: 1501: 1282: 795: 426: 1610: 1549: 1544: 1518: 1365: 879: 751: 668: 557:
constituents shown, to illustrate how the fundamental strong interaction gives rise to the
528: 45:, a property of the strong interaction. If energy is supplied to the quarks as shown, the 8: 1577: 1272: 623: 429:, some 10 times as great as that of the weak force, and about 10 times that of 37: 891: 883: 1605: 1130: 1085: 756: 676: 414: 1155: 1039: 1491: 1137: 1114: 1092: 1062: 954: 943: 915: 695: 607:, which, in turn, transmit the force between nucleons that holds the nucleus (beyond 516: 480: 335: 330:, and is so strong that if hadrons are struck by high-energy particles, they produce 42: 1670: 1417: 1402: 1343: 1277: 1231: 1226: 887: 796:"The four forces: the strong interaction Duke University Astrophysics Dept website" 632: 255: 149: 145: 82: 65:
An animation of the strong interaction between a proton and a neutron, mediated by
1010: 1592: 1459: 905: 656: 233: 201: 181: 78: 1630: 1329: 1106: 1076: 775: 723: 652: 449: 441: 319: 177: 173: 459:
The force carrier particle of the strong interaction is the gluon, a massless
1722: 1600: 1559: 1214: 637: 572: 558: 544: 502: 213: 197: 160: 118: 61: 1582: 1513: 1422: 1380: 1370: 484: 464: 445: 279: 259: 1496: 1390: 1358: 1353: 1254: 648: 622:
them, in the same way that electromagnetic forces between neutral atoms (
483:. This strength is modified by the gauge color charge of the particle, a 460: 430: 271: 31: 774:
Relative strength of interaction varies with distance. See for instance
746: 608: 520: 295: 137: 1087:
Quarks and Leptons: An Introductory Course in Modern Particle Physics
644: 600: 209: 54: 549: 1675: 1287: 691: 553:
A diagram (shown by the animation in the lead) with the individual
248: 1348: 1298: 1238: 1190: 409: 315: 247:, which was believed to be a fundamental force that acted on the 229: 205: 193: 153: 141: 133: 110: 1132:
The Last Sorcerers: The Path from Alchemy to the Periodic Table
592: 492: 472: 311: 263: 225: 192:. Nuclear fission allows for decay of radioactive elements and 168: 129: 114: 106: 1198: 604: 588: 562: 554: 453: 307: 303: 299: 283: 267: 102: 70: 50: 46: 184:. Nuclear fusion accounts for most energy production in the 144:), the strong force is approximately 100 times as strong as 975:"Quark–gluon plasma is the most primordial state of matter" 596: 561:. Straight lines are quarks, while multi-colored loops are 323: 298:(roughly the radius of a nucleon), the force is carried by 189: 66: 471:(QCD), the theory of quark–gluon interactions. Unlike the 444:
of particle physics. Mathematically, QCD is a non-abelian
185: 167:). Because the force is mediated by massive, short lived 1185: 618:
neutrons and protons, because it is mostly neutralized
495:) has been reached, it remains at a strength of about 212:-based fission weapons and in fusion weapons like the 570:
between the "colorless" hadrons, and is known as the
289: 57:
pair. Thus single quarks are never seen in isolation.
713: 30:"Color force" redirects here. For the company, see 1129: 1084: 942: 326:. In the former context, it is often known as the 587:The nuclear force acts between hadrons, known as 523:is considered to be evidence of this phenomenon. 1720: 702:separated from the strong force. Accordingly, a 811:"Chapter 4 Nuclear Processes, The Strong Force" 706:is hypothesized to have existed prior to this. 675:. The strong interaction has a property called 1465:Mathematical formulation of the Standard Model 936: 934: 737:Mathematical formulation of the Standard Model 69:. The colored small double circles inside are 1314: 1171: 872:Annual Review of Nuclear and Particle Science 732:Mathematical formulation of quantum mechanics 1075: 278:explains that quarks carry what is called a 931: 914:. Princeton University Press. p. 136. 911:QED: The Strange Theory of Light and Matter 842:"Lesson 13: Binding energy and mass defect" 1321: 1307: 1178: 1164: 266:, which include protons and neutrons, and 1053: 1037: 243:. This hypothesized force was called the 940: 816:. University of Illinois. Archived from 565:(the carriers of the fundamental force). 548: 408: 60: 36: 27:Binding of quarks in subatomic particles 904: 869: 846:Furry Elephant physics educational site 14: 1721: 1127: 790: 788: 1302: 1159: 140:, slightly more than the radius of a 1701: 1105: 1059:Introduction to Elementary Particles 232:and that protons possessed positive 176:of the nuclear force with regard to 892:10.1146/annurev.ns.32.120182.001141 785: 640:larger than 82 (the element lead). 24: 1328: 1111:Modern Elementary Particle Physics 1031: 808: 780:"The strength of the known forces" 538: 290:Behavior of the strong interaction 25: 1750: 1151: 476:other quark and gluon particles. 436:The strong force is described by 404: 342:Two layers of strong interaction 1700: 1689: 1688: 1433: 716: 1616:Causal dynamical triangulation 996: 967: 898: 863: 834: 802: 768: 662: 13: 1: 1455:Spontaneous symmetry breaking 762: 690:If GUT is correct, after the 152:, and 10 times as strong as 148:, 10 times as strong as the 7: 945:Quarks: The Stuff of Matter 709: 685:unsolved problem in physics 10: 1755: 542: 251:that make up the nucleus. 219: 29: 1684: 1643: 1621:Canonical quantum gravity 1591: 1558: 1527: 1484: 1473: 1442: 1431: 1336: 1268: 1247: 1197: 1091:. John Wiley & Sons. 1061:. John Wiley & Sons. 580:(and historically as the 448:based on a local (gauge) 241:electromagnetic repulsion 1729:Fundamental interactions 1626:Superfluid vacuum theory 1187:Fundamental interactions 1038:Christman, J.R. (2001). 949:. Basic Books. pp.  681:grand unification energy 1408:Quantum electrodynamics 1398:Electroweak interaction 1222:Electroweak interaction 704:grand unification epoch 673:electroweak interaction 318:) together to form the 99:fundamental interaction 1739:Quantum chromodynamics 1386:Quantum chromodynamics 1136:. Joseph Henry Press. 1042:The Strong Interaction 742:Nuclear binding energy 669:Grand Unified Theories 566: 469:quantum chromodynamics 438:quantum chromodynamics 418: 276:quantum chromodynamics 74: 58: 1502:Cosmological constant 1283:Philosophy of physics 1004:"3. The Strong Force" 941:Fritzsch, H. (1983). 698:of the universe, the 578:residual strong force 552: 531:experiment. However, 440:(QCD), a part of the 427:electromagnetic force 412: 165:residual strong force 64: 40: 1611:Loop quantum gravity 1550:Theory of everything 1545:Grand Unified Theory 1519:Neutrino oscillation 1366:Quantum field theory 752:Quantum field theory 624:van der Waals forces 582:strong nuclear force 535:have been observed. 529:particle accelerator 310:and binds nucleons ( 249:protons and neutrons 95:strong nuclear force 18:Strong Nuclear Force 1578:Split supersymmetry 1540:Kaluza–Klein theory 1413:Fermi's interaction 1273:Glossary of physics 1248:Hypothetical forces 1128:Morris, R. (2003). 979:About.com Education 884:1982ARNPS..32..177W 611:nucleus) together. 533:quark–gluon plasmas 343: 1606:Superstring theory 1376:Strong interaction 1207:Strong interaction 1016:on 22 October 2021 757:Yukawa interaction 677:asymptotic freedom 567: 419: 341: 89:, also called the 87:strong interaction 75: 59: 1716: 1715: 1639: 1638: 1514:Strong CP problem 1492:Hierarchy problem 1296: 1295: 1143:978-0-309-50593-2 1120:978-0-201-11749-3 1113:. Perseus Books. 1098:978-0-471-88741-6 1068:978-0-471-60386-3 960:978-0-465-06781-7 921:978-0-691-08388-9 700:electroweak force 696:electroweak epoch 517:color confinement 485:group-theoretical 481:coupling constant 402: 401: 336:color confinement 258:, and separately 43:color confinement 16:(Redirected from 1746: 1704: 1703: 1692: 1691: 1482: 1481: 1437: 1436: 1418:Weak hypercharge 1403:Weak interaction 1344:Particle physics 1323: 1316: 1309: 1300: 1299: 1278:Particle physics 1232:electromagnetism 1227:weak interaction 1180: 1173: 1166: 1157: 1156: 1147: 1135: 1124: 1102: 1090: 1072: 1055:Griffiths, David 1050: 1048: 1026: 1025: 1023: 1021: 1015: 1008: 1000: 994: 993: 991: 990: 981:. Archived from 971: 965: 964: 948: 938: 929: 928: 902: 896: 895: 867: 861: 860: 858: 857: 848:. Archived from 838: 832: 831: 829: 828: 822: 815: 806: 800: 799: 792: 783: 772: 726: 721: 720: 633:Yukawa potential 513: 511: 505: 500: 413:The fundamental 389: 370: 344: 340: 262:, proposed that 256:Murray Gell-Mann 174:binding energies 150:weak interaction 146:electromagnetism 83:particle physics 49:tube connecting 41:An animation of 21: 1754: 1753: 1749: 1748: 1747: 1745: 1744: 1743: 1734:Nuclear physics 1719: 1718: 1717: 1712: 1680: 1635: 1593:Quantum gravity 1587: 1554: 1523: 1476: 1469: 1460:Higgs mechanism 1438: 1434: 1429: 1332: 1327: 1297: 1292: 1264: 1243: 1199:Physical forces 1193: 1184: 1154: 1144: 1121: 1099: 1069: 1046: 1034: 1032:Further reading 1029: 1019: 1017: 1013: 1006: 1002: 1001: 997: 988: 986: 973: 972: 968: 961: 939: 932: 922: 903: 899: 868: 864: 855: 853: 840: 839: 835: 826: 824: 820: 813: 809:Ragheb, Magdi. 807: 803: 794: 793: 786: 773: 769: 765: 722: 715: 712: 694:and during the 665: 657:nuclear fission 547: 541: 539:Between hadrons 509: 507: 498: 496: 407: 387: 384:Residual Strong 368: 292: 234:electric charge 222: 202:nuclear weapons 182:nuclear fission 79:nuclear physics 35: 28: 23: 22: 15: 12: 11: 5: 1752: 1742: 1741: 1736: 1731: 1714: 1713: 1711: 1710: 1698: 1685: 1682: 1681: 1679: 1678: 1673: 1668: 1663: 1658: 1653: 1647: 1645: 1641: 1640: 1637: 1636: 1634: 1633: 1631:Twistor theory 1628: 1623: 1618: 1613: 1608: 1603: 1597: 1595: 1589: 1588: 1586: 1585: 1580: 1575: 1570: 1564: 1562: 1556: 1555: 1553: 1552: 1547: 1542: 1537: 1531: 1529: 1525: 1524: 1522: 1521: 1516: 1511: 1510: 1509: 1499: 1494: 1488: 1486: 1479: 1477:Standard Model 1471: 1470: 1468: 1467: 1462: 1457: 1452: 1446: 1444: 1440: 1439: 1432: 1430: 1428: 1427: 1426: 1425: 1420: 1415: 1410: 1405: 1395: 1394: 1393: 1388: 1383: 1373: 1368: 1363: 1362: 1361: 1356: 1351: 1340: 1338: 1334: 1333: 1330:Standard Model 1326: 1325: 1318: 1311: 1303: 1294: 1293: 1291: 1290: 1285: 1280: 1275: 1269: 1266: 1265: 1263: 1262: 1257: 1251: 1249: 1245: 1244: 1242: 1241: 1236: 1235: 1234: 1229: 1219: 1218: 1217: 1212: 1203: 1201: 1195: 1194: 1183: 1182: 1175: 1168: 1160: 1153: 1152:External links 1150: 1149: 1148: 1142: 1125: 1119: 1103: 1097: 1073: 1067: 1051: 1033: 1030: 1028: 1027: 995: 966: 959: 930: 920: 897: 878:(1): 177–209. 862: 833: 801: 784: 776:Matt Strassler 766: 764: 761: 760: 759: 754: 749: 744: 739: 734: 728: 727: 724:Physics portal 711: 708: 667:The so-called 664: 661: 653:nuclear fusion 638:atomic numbers 543:Main article: 540: 537: 450:symmetry group 442:Standard Model 406: 405:Within hadrons 403: 400: 399: 396: 393: 390: 385: 381: 380: 377: 374: 371: 365: 361: 360: 357: 354: 351: 348: 291: 288: 221: 218: 178:nuclear fusion 101:that confines 26: 9: 6: 4: 3: 2: 1751: 1740: 1737: 1735: 1732: 1730: 1727: 1726: 1724: 1709: 1708: 1699: 1697: 1696: 1687: 1686: 1683: 1677: 1674: 1672: 1669: 1667: 1664: 1662: 1659: 1657: 1654: 1652: 1649: 1648: 1646: 1642: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1601:String theory 1599: 1598: 1596: 1594: 1590: 1584: 1581: 1579: 1576: 1574: 1571: 1569: 1566: 1565: 1563: 1561: 1560:Supersymmetry 1557: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1532: 1530: 1526: 1520: 1517: 1515: 1512: 1508: 1505: 1504: 1503: 1500: 1498: 1495: 1493: 1490: 1489: 1487: 1483: 1480: 1478: 1472: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1447: 1445: 1441: 1424: 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1400: 1399: 1396: 1392: 1389: 1387: 1384: 1382: 1379: 1378: 1377: 1374: 1372: 1369: 1367: 1364: 1360: 1357: 1355: 1352: 1350: 1347: 1346: 1345: 1342: 1341: 1339: 1335: 1331: 1324: 1319: 1317: 1312: 1310: 1305: 1304: 1301: 1289: 1286: 1284: 1281: 1279: 1276: 1274: 1271: 1270: 1267: 1261: 1258: 1256: 1253: 1252: 1250: 1246: 1240: 1237: 1233: 1230: 1228: 1225: 1224: 1223: 1220: 1216: 1213: 1210: 1209: 1208: 1205: 1204: 1202: 1200: 1196: 1192: 1188: 1181: 1176: 1174: 1169: 1167: 1162: 1161: 1158: 1145: 1139: 1134: 1133: 1126: 1122: 1116: 1112: 1108: 1104: 1100: 1094: 1089: 1088: 1082: 1078: 1074: 1070: 1064: 1060: 1056: 1052: 1045: 1043: 1040:"MISN-0-280: 1036: 1035: 1012: 1005: 999: 985:on 2017-01-18 984: 980: 976: 970: 962: 956: 952: 947: 946: 937: 935: 927: 923: 917: 913: 912: 907: 906:Feynman, R.P. 901: 893: 889: 885: 881: 877: 873: 866: 852:on 2023-05-28 851: 847: 843: 837: 823:on 2012-12-18 819: 812: 805: 797: 791: 789: 781: 777: 771: 767: 758: 755: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 729: 725: 719: 714: 707: 705: 701: 697: 693: 688: 686: 682: 678: 674: 670: 660: 658: 654: 650: 646: 641: 639: 635: 634: 627: 625: 621: 617: 612: 610: 606: 602: 598: 594: 590: 585: 583: 579: 575: 574: 573:nuclear force 564: 560: 559:nuclear force 556: 551: 546: 545:Nuclear force 536: 534: 530: 524: 522: 518: 504: 494: 488: 486: 482: 477: 474: 470: 466: 462: 457: 455: 451: 447: 443: 439: 434: 432: 428: 424: 416: 411: 397: 394: 391: 386: 383: 382: 378: 375: 372: 366: 363: 362: 358: 355: 352: 349: 346: 345: 339: 337: 333: 329: 325: 321: 317: 313: 309: 305: 301: 297: 287: 285: 281: 277: 273: 269: 265: 261: 257: 252: 250: 246: 242: 237: 235: 231: 227: 217: 215: 214:hydrogen bomb 211: 207: 203: 199: 198:nuclear power 195: 191: 187: 183: 179: 175: 170: 166: 162: 161:nuclear force 157: 155: 151: 147: 143: 139: 135: 131: 127: 122: 120: 119:nuclear force 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 72: 68: 63: 56: 52: 48: 44: 39: 33: 19: 1705: 1693: 1583:Supergravity 1443:Constituents 1423:Weak isospin 1381:Color charge 1375: 1371:Gauge theory 1260:Quintessence 1206: 1131: 1110: 1086: 1081:Martin, A.D. 1058: 1041: 1018:. Retrieved 1011:the original 998: 987:. Retrieved 983:the original 978: 969: 944: 925: 910: 900: 875: 871: 865: 854:. Retrieved 850:the original 845: 836: 825:. Retrieved 818:the original 804: 770: 689: 666: 642: 631: 628: 619: 615: 613: 586: 581: 577: 571: 568: 525: 489: 478: 465:color charge 458: 446:gauge theory 435: 422: 420: 327: 293: 280:color charge 260:George Zweig 253: 245:strong force 244: 238: 223: 164: 158: 124:Most of the 123: 113:, and other 94: 91:strong force 90: 86: 76: 1644:Experiments 1535:Technicolor 1497:Dark matter 1391:Quark model 1359:Higgs boson 1354:Gauge boson 1255:Fifth force 1239:Gravitation 1211:fundamental 663:Unification 649:mass defect 521:free quarks 461:gauge boson 431:gravitation 388:1–3 fm 369:0.8 fm 347:Interaction 328:color force 272:quark model 154:gravitation 32:Color Force 1723:Categories 1651:Gran Sasso 1475:Beyond the 1450:CKM matrix 1337:Background 1107:Kane, G.L. 1077:Halzen, F. 1020:10 January 989:2017-01-16 856:2023-10-03 827:2023-10-03 778:'s essay, 763:References 747:QCD matter 645:gamma rays 609:hydrogen-1 487:property. 302:and holds 204:, both in 188:and other 138:femtometer 421:The word 415:couplings 254:In 1964, 210:plutonium 55:antiquark 1695:Category 1676:Tevatron 1528:Theories 1485:Evidence 1349:Fermions 1288:Universe 1215:residual 1109:(1987). 1083:(1984). 1057:(1987). 908:(1985). 710:See also 692:Big Bang 398:nucleus 316:neutrons 230:neutrons 194:isotopes 111:neutrons 1707:Commons 1671:Super-K 1507:problem 1191:physics 951:167–168 880:Bibcode 616:between 593:baryons 512: N 452:called 379:hadron 359:result 356:carrier 320:nucleus 312:protons 264:baryons 226:protons 220:History 206:uranium 180:versus 142:nucleon 134:neutron 107:protons 97:, is a 1140:  1117:  1095:  1065:  957:  918:  620:within 605:mesons 603:  589:mesons 563:gluons 501:  493:hadron 473:photon 423:strong 392:hadron 364:Strong 322:of an 308:mesons 304:quarks 300:gluons 268:mesons 169:mesons 130:proton 115:hadron 103:quarks 85:, the 71:gluons 51:quarks 1573:NMSSM 1047:(PDF) 1014:(PDF) 1007:(PDF) 821:(PDF) 814:(PDF) 555:quark 454:SU(3) 395:meson 376:gluon 373:quark 367:< 350:range 284:gluon 190:stars 128:of a 105:into 67:pions 47:gluon 1568:MSSM 1138:ISBN 1115:ISBN 1093:ISBN 1063:ISBN 1022:2023 955:ISBN 916:ISBN 655:and 599:and 591:and 353:held 332:jets 324:atom 314:and 228:and 200:and 163:(or 126:mass 81:and 1666:SNO 1661:LHC 1656:INO 1189:of 888:doi 584:). 576:or 510:000 499:000 208:or 186:Sun 132:or 93:or 77:In 1725:: 1079:; 977:. 953:. 933:^ 924:. 886:. 876:32 874:. 844:. 787:^ 687:. 659:. 508:10 497:10 456:. 433:. 338:. 296:fm 286:. 216:. 156:. 121:. 109:, 1322:e 1315:t 1308:v 1179:e 1172:t 1165:v 1146:. 1123:. 1101:. 1071:. 1049:. 1044:" 1024:. 992:. 963:. 894:. 890:: 882:: 859:. 830:. 798:. 782:. 601:ρ 597:π 503:N 73:. 34:. 20:)

Index

Strong Nuclear Force
Color Force

color confinement
gluon
quarks
antiquark

pions
gluons
nuclear physics
particle physics
fundamental interaction
quarks
protons
neutrons
hadron
nuclear force
mass
proton
neutron
femtometer
nucleon
electromagnetism
weak interaction
gravitation
nuclear force
mesons
binding energies
nuclear fusion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑