Knowledge

Subduction zone metamorphism

Source 📝

50:. Arc magmas account for more than 20% of terrestrially produced magmas and are produced by the dehydration of minerals within the subducting slab as it descends into the mantle and are accreted onto the base of the overriding continental plate. Subduction zones host a unique variety of rock types formed by the high-pressure, low-temperature conditions a subducting slab encounters during its descent. The metamorphic conditions the slab passes through in this process generates and alters water bearing (hydrous) mineral phases, releasing water into the mantle. This water lowers the melting point of mantle rock, initiating melting. Understanding the timing and conditions in which these dehydration reactions occur, is key to interpreting mantle melting, volcanic arc magmatism, and the formation of continental crust. 54: 94:; however, the pelagic sediments may be accreted onto the forearc-hanging wall and not subducted. Most metamorphic phase transitions that occur within the subducting slab are prompted by the dehydration of hydrous mineral phases. The breakdown of hydrous mineral phases typically occurs at depths greater than 10 km. Each of these metamorphic facies is marked by the presence of a specific stable mineral assemblage, recording the metamorphic conditions undergone by the subducting slab. Transitions between facies cause hydrous minerals to dehydrate at certain pressure-temperature conditions and can therefore be tracked to melting events in the mantle beneath a volcanic arc. 430: 20: 358: 459:. Omphacitic pyroxene is an augite-jadeite solution. At Eclogite facies conditions, plagioclase is no longer stable. The albite component breaks down during glaucophane producing reactions and its sodium becomes incorporated into glaucophane and pyroxene. This reaction is written below. The breakdown of glaucophane is an important water producing reaction at about 600 °C, and over 1 GPa that can trigger significant mantle melting and volcanism. 372:, namely, glaucophane, for which the blueschist facies is named. Lawsonite is also diagnostic of blueschist facies and occurs in association with glaucophane. Glaucophane forming reactions are listed below. Glaucophane producing reactions are significant because they can either release water or produce the hydrous phase, lawsonite through the breakdown of hydrous phyllosilicates. At high blueschist facies pressures, albite may break down to form 438: 565:
two contrasting metamorphic facies series: one is blueschist to eclogite facies series that was produced by subducting metamorphism at low thermal gradients of <10 °C/km, and the other is amphibolite to granulite facies series that was produced by rifting metamorphism at high thermal gradients of >30 °C/km.
548:
were envisaged as a set of parallel metamorphic rock units parallel to a subduction zone displaying two contrasting metamorphic conditions and thus two distinctive mineral assemblages. Nearest to the trench is a zone of low temperature, high pressure metamorphic conditions characterized by blueschist
532:
Transition into the eclogite facies is proposed to be the source of earthquakes at depths greater than 70 km. These earthquakes are caused by the contraction of the slab as minerals transition into more compact crystal structures. The depth of these earthquakes on the subducting slab is known as
564:
However, further studies show the common occurrence of paired metamorphic belts in continental interiors, resulting in controversy on their origin. Based on inspection of extreme metamorphism and post-subduction magmatism at convergent plate margins, paired metamorphic belts are further extended to
207:
are emplaced at shallow levels. Lawsonite does not release water until approximately 300 km depth and is the last hydrous mineral to do so. Metamorphic dehydration reactions are prominent within the subducting slab during subduction, giving rise to liquid phases that contain fluid-mobile trace
253:
are microporous silicate minerals that can be produced by the reaction of pore fluids with basalt and pelagic sediments. The zeolite facies conditions typically only affect pelitic sediments undergoing burial, but is commonly displayed by the production of zeolite minerals within the vesicles of
469:
Another important water producing reaction that occurs during the eclogite facies is the dehydration of the hydrous phyllosilicate phlogopite by the reaction below. This reaction can also trigger significant mantle melting and volcanism. Aside from triggering mantle melt, this reaction may also
513:
Serpentine is another important water bearing phase that breaks down at eclogite facies conditions. Antigorite breaks down at 600–700 °C and between 2–5 GPa. Antigorite contains 13 wt.% water and therefore causes substantial mantle melting. The reaction is listed below.
549:
to eclogite facies assemblages. This assemblage is associated with subduction along the trench and low heat flow. Nearest the arc is a zone of high temperature-low pressure metamorphic conditions characterized by amphibolite to granulite facies mineral assemblages such as
338:, which is associated with blueschist facies. The onset of a low-pressure phase of lawsonite is the most significant marker of prehnite-pumpellyite facies metamorphism. The occurrence of lawsonite is significant because lawsonite contains 11 wt.% H 106:
formed at mid-ocean ridges. The subducting oceanic crust consists of four major units. The topmost unit is a thin cap of pelagic sediments up to 0.3 km thick composed of siliceous and calcareous shells, meteoric dusts, and variable amounts of
208:
elements due to the breakdown of hydrous minerals such as phengite, lawsonite and zoisite. This forms a unique type of trace element distribution pattern for arc magma. Arc magmas and the continental crust formed from arc magmas are enriched in
89:
and prehnite-pumpellyite facies assemblages may or may not be present, thus the onset of metamorphism may only be marked by blueschist facies conditions. Subducting slabs are composed of basaltic crust topped with
199:
O). Phlogopite does not release water until approximately 200 km depth whereas amphibole releases water at approximately 75 km depth. Serpentine is also an important hydrous phase (13 wt% H
102:
Arc magmas are produced by partial melting of metasomatic domains in the mantle wedge, which have reacted with liquid phases derived from dehydration melting of minerals contained in the subducting
334:
may occur at higher grade. Aside from albite, these characteristic minerals are water bearing, and may contribute to mantle melting. These minerals are also vital in the formation of
1045:
Noll, P.D.; et al. (1995). "The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron".
798:
Zheng, Y.-F., Chen, R.-X., 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. Journal of Asian Earth Sciences 145, 46-73.
228:
fluids released from the slab mobilize these elements and allow them to be incorporated into arc magmas, distinguishing arc magmas from those produced at mid-ocean ridges and
155:
Every year, 1–2 x 10 trillion kilograms of water descends into subduction zones. Approximately 90–95% of that water is contained in hydrous minerals, including
663:"Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes" 290:
of the subducting slab, such as gabbro and basaltic sheeted dikes, remain stable until greater depth, when the sodium endmember of plagioclase feldspar,
254:
vesicular basalt. The glassy rinds on pillow basalts are also susceptible to metamorphism under zeolite facies conditions, which produces the zeolites
717: 488:
into the mantle that can trigger partial melting of the slab and of the overlying mantle. The breakdown reaction of lawsonite is listed below.
1341:
Brown, M., 2006. A duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34, 961–964.
65:
is characterized by a stable mineral assemblage specific to a pressure-temperature range and specific starting material. Subduction zone
1307:
Oxburgh, E.R.; et al. (February 10, 1971). "Origin of Paired Metamorphic Belts and Crustal Dilation in Island Arc Regions".
1247: 1179: 986: 913:
Peacock, Simon M. (1 January 2004). "Thermal Structure and Metamorphic Evolution of Subducting Slabs". In Eiler, John (ed.).
828: 596: 53: 1002:
Zheng, YongFei; Chen, RenXu; Xu, Zheng; Zhang, ShaoBing (20 January 2016). "The transport of water in subduction zones".
853: 922: 70: 707:
Zheng, Y.-F., Chen, Y.-X., 2016. Continental versus oceanic subduction zones. National Science Review 3, 495-519.
480:
Lawsonite remains stable up to 1080 °C and 9.4 GPa. The breakdown of lawsonite releases massive amounts of
1357: 123:, that represent cooled magma conduits. The bottom units represent the crystallized magma chamber, feeding the 448:
is typically encountered around 80–100 km depth and is characterized by the presence of green omphacitic
636: 616: 1123:
Pawley, A. R. (May 3, 1994). "The pressure and temperature stability limits of lawsonite: Implications for H
433:
Transition from blueschist to eclogite facies rock, containing glaucophane, omphacitic pyroxene, and garnet
311: 721: 1072:
Liou, Juhn (1979). "Zeolite facies metamorphism of basaltic rocks from the East Taiwan Ophiolite".
561:. This assemblage is associated with high heat flow generated by melting beneath the volcanic arc. 545: 534: 963: 1195:
Maekawa, Hliokazu (August 5, 1993). "Blueschist metamorphism in an active subduction zone".
882: 115:, formed by the quenching of basaltic magma as it erupts into ocean water. Under the pillow 1316: 1272: 1204: 1136: 1011: 917:. Geophysical Monograph Series. Vol. 138. American Geophysical Union. pp. 12–15. 878: 674: 295: 120: 19: 8: 1362: 1320: 1276: 1208: 1140: 1015: 678: 384:
under blueschist conditions. Other common minerals of blueschist facies metabasites are
1220: 1152: 1104: 1027: 773: 746: 690: 310:
At paths up to 220–320 °C and below 4.5 kbars, subducting slabs may encounter the
62: 1284: 1297:
Miyashiro, A., 1961. Evolution of metamorphic belts. Journal of Petrology 2, 277–311.
1243: 1175: 1156: 1058: 1031: 982: 950: 918: 849: 824: 778: 694: 592: 365: 229: 91: 40: 235: 1324: 1280: 1224: 1212: 1144: 1100: 1054: 1019: 886: 768: 758: 682: 631: 204: 184: 869:
Bebout, Grey E. (May 31, 2007). "Metamorphic Chemical Geodynamics of Subduction".
550: 445: 279: 263: 124: 32: 28: 23:
Melt production and accretion of melt onto continental crust in a subduction zone
429: 203:
O) that is only present in oceanic crust formed at a slow spreading ridge where
890: 246: 172: 1023: 686: 1351: 1091:
Frey, M.; et al. (1991). "A new petrogenetic grid for low-metabasites".
720:. San Diego State University Department of Geological Science. Archived from 558: 393: 287: 103: 36: 1328: 763: 938: 782: 302:
replaces the zeolite heulandite and the phyllosilicate chlorite is common.
225: 127:
at which the crust was formed. It is composed of 1–5 km thick layered
108: 66: 44: 1263:
Green, Harry (September 1994). "Solving the Paradox of Deep Earthquakes".
357: 342:
O which is released at higher grade and can initiate significant melting.
335: 319: 136: 1148: 554: 518: 510: 500: 385: 331: 299: 267: 255: 78: 1216: 522: 492: 403: 381: 369: 323: 275: 249:
conditions (50–150 °C and 1–5 km depth) during subduction.
168: 164: 449: 397: 389: 315: 271: 259: 250: 221: 160: 144: 132: 82: 437: 377: 373: 327: 236:
Facies transitions and dehydration reactions of a subducting slab
217: 180: 116: 112: 86: 74: 662: 617:"The subduction factory: How it operates in the evolving Earth" 456: 453: 441:
Eclogite facies rock, containing omphacitic pyroxene and garnet
291: 283: 187:. The most significant hydrous minerals are lawsonite (11 wt% H 140: 128: 16:
Changes of rock due to pressure and heat near a subduction zone
496: 209: 47: 111:. The next unit is composed of 0.3–0.7 km thick pillow 417:
Pumpellyite + Chlorite + Albite = Glaucophane + Epidote + H
361:
Blueschist containing the sodic blue amphibole, glaucophane
298:. Also at greater depth in the zeolite facies, the zeolite 213: 176: 156: 747:"Slab melting versus slab dehydration in subduction zones" 131:
atop <7 km thick layer of ultramafic rocks (e.g.
314:, characterized by the presence of the hydrous chlorite, 224:
derived from the dehydration within the subducting slab.
637:
10.1130/1052-5173(2005)015[4:TSFHIO]2.0.CO;2
462:
Glaucophane + Paragonite = Pyrope + Jadeite + Quartz + H
330:
and the loss of the zeolites heulandite and laumontite.
150: 470:
trigger partial melting of the subducting slab itself.
413:
Tremolite + Chlorite + Albite = Glaucophane + Lawsonite
368:is characterized by the formation of a sodic, blue 85:facies stability zones of subducted oceanic crust. 147:). Oceanic crust is referred to as a metabasite. 1349: 1001: 908: 906: 904: 902: 900: 718:"How Volcanoes work – Subduction Zone Volcanism" 582: 580: 578: 57:Pressure-temperature pathway for subducted crust 1240:Principles of Igneous and Metamorphic Petrology 1172:Principles of Igneous and Metamorphic Petrology 979:Principles of Igneous and Metamorphic Petrology 821:Principles of Igneous and Metamorphic Petrology 794: 792: 751:Proceedings of the National Academy of Sciences 589:Principles of Igneous and Metamorphic Petrology 406:+ Chlorite + Albite = Glaucophane + Epidote + H 305: 897: 575: 1118: 1116: 1114: 814: 812: 810: 808: 806: 804: 789: 540: 31:is a region of the Earth's crust where one 1231: 1163: 970: 656: 654: 1129:Contributions to Mineralogy and Petrology 1111: 801: 772: 762: 667:Contributions to Mineralogy and Petrology 635: 610: 608: 473:Phlogopite + Diopside + Orthopyroxene = H 843: 660: 436: 428: 356: 52: 18: 1306: 1300: 1194: 1188: 912: 651: 614: 69:is characterized by a low temperature, 39:gets recycled back into the mantle and 1350: 1237: 1169: 1122: 976: 868: 818: 740: 738: 605: 586: 1262: 1256: 1065: 245:Basalts may first metamorphose under 151:Hydrous minerals of a subducting slab 1090: 1084: 1071: 1044: 1038: 931: 744: 661:Spandler, Carl; et al. (2003). 352: 35:moves under another tectonic plate; 871:Earth and Planetary Science Letters 823:. Prentice Hall. pp. 541–548. 735: 710: 591:. Prentice Hall. pp. 344–345. 345:Laumontite = Lawsonite + Quartz + H 71:high-ultrahigh pressure metamorphic 13: 1127:O recycling in subduction zones". 1105:10.1111/j.1525-1314.1991.tb00542.x 424: 380:will commonly pseudomorphose into 43:gets produced by the formation of 14: 1374: 1285:10.1038/scientificamerican0994-64 745:Mibe, Kenji; et al. (2011). 240: 937: 844:Reynolds, Stephen (2012-01-09). 97: 1335: 1309:Journal of Geophysical Research 1291: 1047:Geochimica et Cosmochimica Acta 995: 862: 1242:. Prentice Hall. p. 648. 1174:. Prentice Hall. p. 575. 1093:Journal of Metamorphic Geology 981:. Prentice Hall. p. 249. 837: 701: 1: 915:Inside the subduction factory 568: 1059:10.1016/0016-7037(95)00405-x 1004:Science China Earth Sciences 848:. McGraw-Hill. p. 124. 294:, replaces detrital igneous 7: 941:; et al. "Ophiolite". 615:Tatsumi, Yoshiyuki (2005). 312:prehnite-pumpellyite facies 306:Prehnite-pumpellyite facies 10: 1379: 891:10.1016/j.epsl.2007.05.050 1024:10.1007/s11430-015-5258-4 687:10.1007/s00410-003-0495-5 195:O) and amphibole (2 wt% H 1238:Winter, John D. (2010). 1170:Winter, John D. (2010). 977:Winter, John D. (2010). 945:. McGraw-Hill Education. 819:Winter, John D. (2010). 587:Winter, John D. (2010). 546:Paired metamorphic belts 541:Paired metamorphic belts 77:, prehnite-pumpellyite, 1329:10.1029/jb076i005p01315 883:2007E&PSL.260..373B 764:10.1073/pnas.1010968108 191:O), phlogopite (2 wt% H 442: 434: 362: 58: 24: 1358:Metamorphic petrology 1074:American Mineralogist 440: 432: 360: 56: 22: 296:plagioclase feldspar 121:sheeted dike complex 1321:1971JGR....76.1315O 1277:1994SciAm.271c..64G 1265:Scientific American 1209:1993Natur.364..520M 1141:1994CoMP..118...99P 1016:2016ScChD..59..651Z 679:2003CoMP..146..205S 535:Wadati–Benioff zone 400:, and pumpellyite. 1149:10.1007/BF00310614 443: 435: 396:, quartz, albite, 363: 63:metamorphic facies 59: 25: 1249:978-0-321-59257-6 1203:(6437): 520–523. 1181:978-0-321-59257-6 988:978-0-321-59257-6 958:Missing or empty 846:Exploring Geology 830:978-0-321-59257-6 757:(20): 8177–8182. 598:978-0-321-59257-6 366:Blueschist facies 353:Blueschist facies 92:pelagic sediments 73:path through the 41:continental crust 1370: 1342: 1339: 1333: 1332: 1315:(5): 1315–1327. 1304: 1298: 1295: 1289: 1288: 1260: 1254: 1253: 1235: 1229: 1228: 1217:10.1038/364520a0 1192: 1186: 1185: 1167: 1161: 1160: 1120: 1109: 1108: 1088: 1082: 1081: 1069: 1063: 1062: 1042: 1036: 1035: 999: 993: 992: 974: 968: 967: 961: 956: 954: 946: 935: 929: 928: 910: 895: 894: 866: 860: 859: 841: 835: 834: 816: 799: 796: 787: 786: 776: 766: 742: 733: 732: 730: 729: 714: 708: 705: 699: 698: 658: 649: 648: 646: 644: 639: 621: 612: 603: 602: 584: 551:aluminosilicates 487: 205:ultramafic rocks 1378: 1377: 1373: 1372: 1371: 1369: 1368: 1367: 1348: 1347: 1346: 1345: 1340: 1336: 1305: 1301: 1296: 1292: 1261: 1257: 1250: 1236: 1232: 1193: 1189: 1182: 1168: 1164: 1126: 1121: 1112: 1089: 1085: 1070: 1066: 1043: 1039: 1000: 996: 989: 975: 971: 959: 957: 948: 947: 936: 932: 925: 911: 898: 867: 863: 856: 842: 838: 831: 817: 802: 797: 790: 743: 736: 727: 725: 716: 715: 711: 706: 702: 659: 652: 642: 640: 619: 613: 606: 599: 585: 576: 571: 543: 528: 506: 485: 481: 476: 465: 446:Eclogite facies 427: 425:Eclogite facies 420: 414: 409: 355: 348: 341: 308: 282:plus secondary 280:montmorillonite 264:phyllosilicates 243: 238: 202: 198: 194: 190: 153: 125:mid-ocean ridge 100: 29:subduction zone 17: 12: 11: 5: 1376: 1366: 1365: 1360: 1344: 1343: 1334: 1299: 1290: 1255: 1248: 1230: 1187: 1180: 1162: 1124: 1110: 1083: 1064: 1053:(4): 587–611. 1037: 1010:(4): 651–682. 994: 987: 969: 943:Access Science 930: 923: 896: 861: 855:978-0073524122 854: 836: 829: 800: 788: 734: 709: 700: 673:(2): 205–222. 650: 604: 597: 573: 572: 570: 567: 559:orthopyroxenes 542: 539: 526: 504: 483: 474: 463: 426: 423: 418: 407: 354: 351: 346: 339: 307: 304: 286:. Crystalline 247:zeolite facies 242: 241:Zeolite facies 239: 237: 234: 200: 196: 192: 188: 152: 149: 119:is a basaltic 99: 96: 33:tectonic plate 15: 9: 6: 4: 3: 2: 1375: 1364: 1361: 1359: 1356: 1355: 1353: 1338: 1330: 1326: 1322: 1318: 1314: 1310: 1303: 1294: 1286: 1282: 1278: 1274: 1270: 1266: 1259: 1251: 1245: 1241: 1234: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1191: 1183: 1177: 1173: 1166: 1158: 1154: 1150: 1146: 1142: 1138: 1135:(1): 99–108. 1134: 1130: 1119: 1117: 1115: 1106: 1102: 1098: 1094: 1087: 1079: 1075: 1068: 1060: 1056: 1052: 1048: 1041: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 998: 990: 984: 980: 973: 965: 952: 944: 940: 934: 926: 924:9781118668573 920: 916: 909: 907: 905: 903: 901: 892: 888: 884: 880: 876: 872: 865: 857: 851: 847: 840: 832: 826: 822: 815: 813: 811: 809: 807: 805: 795: 793: 784: 780: 775: 770: 765: 760: 756: 752: 748: 741: 739: 724:on 2018-12-29 723: 719: 713: 704: 696: 692: 688: 684: 680: 676: 672: 668: 664: 657: 655: 638: 633: 629: 625: 618: 611: 609: 600: 594: 590: 583: 581: 579: 574: 566: 562: 560: 556: 552: 547: 538: 536: 530: 524: 520: 517:Antigorite = 515: 512: 508: 502: 498: 494: 489: 478: 471: 467: 460: 458: 455: 451: 447: 439: 431: 422: 415: 411: 405: 401: 399: 395: 394:stilpnomelane 391: 387: 383: 379: 375: 371: 367: 359: 350: 343: 337: 333: 329: 325: 321: 317: 313: 303: 301: 297: 293: 289: 288:igneous rocks 285: 281: 277: 273: 269: 265: 261: 257: 252: 248: 233: 231: 227: 223: 219: 215: 211: 206: 186: 182: 178: 174: 170: 166: 162: 158: 148: 146: 142: 138: 134: 130: 126: 122: 118: 114: 110: 105: 104:oceanic crust 98:Oceanic crust 95: 93: 88: 84: 80: 76: 72: 68: 64: 55: 51: 49: 46: 42: 38: 37:oceanic crust 34: 30: 21: 1337: 1312: 1308: 1302: 1293: 1271:(3): 64–71. 1268: 1264: 1258: 1239: 1233: 1200: 1196: 1190: 1171: 1165: 1132: 1128: 1096: 1092: 1086: 1077: 1073: 1067: 1050: 1046: 1040: 1007: 1003: 997: 978: 972: 942: 933: 914: 877:(3–4): 375. 874: 870: 864: 845: 839: 820: 754: 750: 726:. Retrieved 722:the original 712: 703: 670: 666: 641:. Retrieved 627: 623: 588: 563: 544: 531: 516: 509: 491:Lawsonite = 490: 479: 472: 468: 461: 444: 416: 412: 402: 388:, chlorite, 376:and quartz. 364: 344: 309: 262:and hydrous 244: 226:Hydrothermal 154: 109:volcanic ash 101: 67:metamorphism 60: 26: 1099:: 497–509. 643:December 3, 336:glaucophane 320:pumpellyite 137:harzburgite 1363:Subduction 1352:Categories 960:|url= 939:Liou, Juhn 728:2015-01-11 569:References 555:cordierite 519:Forsterite 511:Antigorite 501:Stishovite 386:paragonite 332:Actinolite 318:, albite, 300:laumontite 268:celadonite 256:heulandite 185:serpentine 79:blueschist 1157:128408585 1032:130912355 695:140693326 624:GSA Today 523:Enstatite 493:Grossular 477:O + Melt 404:Tremolite 382:aragonite 370:amphibole 324:tremolite 276:kaolinite 169:lawsonite 165:amphibole 951:cite web 783:21536910 630:(7): 4. 452:and red 450:pyroxene 398:sericite 390:titanite 316:prehnite 272:smectite 266:such as 260:stilbite 251:Zeolites 230:hotspots 222:antimony 173:chlorite 161:phengite 145:chromite 133:wehrlite 83:eclogite 1317:Bibcode 1273:Bibcode 1225:4315927 1205:Bibcode 1137:Bibcode 1012:Bibcode 879:Bibcode 774:3100975 675:Bibcode 378:Calcite 374:jadeite 328:epidote 218:arsenic 181:zoisite 117:basalts 113:basalts 87:Zeolite 75:zeolite 1246:  1223:  1197:Nature 1178:  1155:  1030:  985:  921:  852:  827:  781:  771:  693:  595:  557:, and 457:garnet 454:pyrope 326:, and 292:albite 284:quartz 220:, and 183:, and 143:, and 141:dunite 129:gabbro 81:, and 48:magmas 1221:S2CID 1153:S2CID 1028:S2CID 691:S2CID 620:(PDF) 497:Topaz 278:, or 210:boron 1244:ISBN 1176:ISBN 983:ISBN 964:help 919:ISBN 850:ISBN 825:ISBN 779:PMID 645:2014 593:ISBN 533:the 214:lead 177:talc 157:mica 1325:doi 1281:doi 1269:271 1213:doi 1201:364 1145:doi 1133:118 1101:doi 1055:doi 1020:doi 887:doi 875:260 769:PMC 759:doi 755:108 683:doi 671:146 632:doi 525:+ H 503:+ H 258:or 45:arc 1354:: 1323:. 1313:76 1311:. 1279:. 1267:. 1219:. 1211:. 1199:. 1151:. 1143:. 1131:. 1113:^ 1095:. 1078:64 1076:. 1051:60 1049:. 1026:. 1018:. 1008:59 1006:. 955:: 953:}} 949:{{ 899:^ 885:. 873:. 803:^ 791:^ 777:. 767:. 753:. 749:. 737:^ 689:. 681:. 669:. 665:. 653:^ 628:15 626:. 622:. 607:^ 577:^ 553:, 537:. 529:O 521:+ 507:O 499:+ 495:+ 466:O 421:O 410:O 392:, 349:O 322:, 274:, 270:, 232:. 216:, 212:, 179:, 175:, 171:, 167:, 163:, 159:, 139:, 135:, 61:A 27:A 1331:. 1327:: 1319:: 1287:. 1283:: 1275:: 1252:. 1227:. 1215:: 1207:: 1184:. 1159:. 1147:: 1139:: 1125:2 1107:. 1103:: 1097:9 1080:. 1061:. 1057:: 1034:. 1022:: 1014:: 991:. 966:) 962:( 927:. 893:. 889:: 881:: 858:. 833:. 785:. 761:: 731:. 697:. 685:: 677:: 647:. 634:: 601:. 527:2 505:2 486:O 484:2 482:H 475:2 464:2 419:2 408:2 347:2 340:2 201:2 197:2 193:2 189:2

Index


subduction zone
tectonic plate
oceanic crust
continental crust
arc
magmas

metamorphic facies
metamorphism
high-ultrahigh pressure metamorphic
zeolite
blueschist
eclogite
Zeolite
pelagic sediments
oceanic crust
volcanic ash
basalts
basalts
sheeted dike complex
mid-ocean ridge
gabbro
wehrlite
harzburgite
dunite
chromite
mica
phengite
amphibole

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.