Knowledge

Underfloor air distribution

Source 📝

258:
coming into contact with warmer than air concrete slab and raised floor. According to a modeling study, air temperature rise can be quite significant (as much as 5 °C or 9 °F) and subsequently, compared to an idealized simulated UFAD case with no air temperature rise, elevated diffuser air temperatures can lead to higher supply airflow rate and increased fan and chiller energy consumption. The same study found that air temperature rise in summer is higher than in winter and it also depends on the climate. The ground floor with a slab on grade has less temperature rise compared to middle and top floors, and an increase of the supply air temperature causes a decrease in the temperature rise. The temperature rise is not significantly affected by the perimeter zone orientation, the internal heat gain and the window-to-wall ratio. Supply plenum air temperature rise, thus, has implications on the energy saving potential of UFAD systems and their ability to meet cooling requirements with supply temperatures above those of conventional overhead systems. Current research suggests that both energy and thermal performance can be improved in UFAD systems by ducting air to perimeter zones where loads tend to be the greatest. Critics suggest however that such underfloor ducting reduces the benefit of having a low-pressure plenum space, as well as adding design and installation complications when fitting ducts between floor tile pedestals.
201:
thereby producing for the system with a raised floor higher peak cooling loads compared to the system without a raised floor. In the OH system, particularly in perimeter zones, part of the incoming solar heat gain is stored in the floor slab during the day, thus reducing peak zone cooling loads, and released at night when the system is off. In a UFAD system, the presence of the raised flooring transforms the solar absorbing massive floor slab into a lighter weight material, leading to relatively higher peak zone cooling loads. A modeling study based on EnergyPlus simulations showed that, generally, UFAD has a peak cooling load 19% higher than an overhead cooling load and 22% and 37% of the total zone UFAD cooling load goes to the supply plenum in the perimeter and interior, respectively.
299:) (0.1 inch of water column) or less. UFAD is particularly suitable for buildings with high height ceilings, where the energy saving effect is more pronounced due to thermal stratification. Because UFAD is accomplished by supplying air through a raised floor using different types of distribution configurations and outlets, the key issue for efficient performance of the system is to ensure thermal stratification. The inefficient operation of the UFAD system virtually deteriorated the potential savings presumed from such a system. Also, the investigation of energy saving has shown that this amount varies for buildings located in different climates, suggesting further studies should investigate this factor prior to designing a suitable HVAC system. 174:. In comparison to classic displacement ventilation (DV) systems that deliver air at low velocities, typical UFAD systems deliver air through floor diffusers with higher supply air velocities. In addition to increasing the amount of mixing (and therefore potentially diminishing the ventilation performance compared to DV systems), these more powerful supply air conditions can have significant impacts on room air stratification and thermal comfort in the occupied zone. Therefore, the control and optimization of this stratification is crucial to system design and sizing, energy-efficient operation, and comfort performance of UFAD systems. 17: 147: 233:
zone cooling load and the fraction of the cooling load assigned to the underfloor plenum. It also requires users to input the supply air temperature either at the diffuser or at the duct but with the ratio of plenum flowrate to zonal supply flowrate. The tool allows users to select from three type of diffusers and is applicable to seven type of buildings, including office, classroom, workshop, restaurant, retail shop, conference room and auditorium.
250: 275: 167:
thermostat setpoints compared to traditional overhead systems. The optimal ventilation strategy controls the supply outlets to limit the mixing of supply air with room air to just below the breathing height of the space. Above this height, stratified and more polluted air is allowed to occur. The air that the occupant breathes will have a lower concentration of contaminants compared to conventional uniformly mixed systems.
267: 64:, and health; reduced energy use and static pressures; and reduced floor-to-floor height in new construction. An under-floor air distribution concept combined with a ceiling-distributed returns ventilation layout (UFAD-CDR) can dramatically reduce the risk of airborne transmission at both high and low ACHs. The UFAD system was originally introduced in the 1950s for rooms with high heat loads and 342:
such as small non-residential buildings, wet spaces like restrooms and pool areas, kitchens and dining areas and gymnasiums, because UFAD may result in especially difficult or costly in design. UFAD systems may also be used with other HVAC systems, like displacement ventilation, overhead air distribution systems, radiant ceiling or chilled beam systems to get better performance.
178:
velocity in the occupied zone, while linear diffusers created the highest velocity in the occupied zone, disturbing thermal stratification and posing a potential draft risk. Additionally, floor diffusers add an element of personal control within the reach of the occupant, as users can adjust the amount of air that is delivered by the diffuser though rotating the diffuser top.
237:
gain for both interior and perimeter zones of a typical multi-story office buildings using UFAD system. The CBE tool allows the user to select from four different plenum configurations (series, reverse series, independent and common) and three floor-diffusers (swirl, square and linear bar grill). An online version of the design tool is publicly available at
192: 257:
Plenum supply air temperature rise is the increase of the conditioned air due to convective heat gain as it travels through the underfloor supply plenum from the plenum inlet to the floor diffusers. This phenomenon is also named thermal decay. Plenum air temperature rise is caused by cool supply air
55:
and stratification phenomenon: the conditioned air is supplied directly to the occupied zone (OZ). The thermal plumes generated by the occupants and other heat sources introduce the conditioned air to absorb the heat and humidity and then bring the contaminated air to the upper zone (UZ).  At a
365:
usually locate both the supply and return air ducts at the ceiling level. Supply air is supplied at velocities higher than typically acceptable for human comfort and the air temperature may be lower, higher, or the same as desired room temperature depending on the cooling/heating load. High-speed
236:
The CBE UFAD design tool based on extensive research is able to predict the cooling load for UFAD system with the input of the design cooling load calculated for the same building with an overhead system. It also predicts the airflow rate, room temperature stratification, and the plenum temperature
200:
Cooling load profiles for UFAD systems and overhead systems are different, mainly due to the thermal storage effect of the lighter-weight raised floor panels compared to the heavier mass of a structural floor slab. The mere presence of the raised floor reduces the ability of the slab to store heat,
166:
where they are exhausted through the return air ducts. The temperature stratification created by the UFAD system has implication for space setpoints. Most of an occupant's body is in an area that is colder than the temperature at the thermostat height; therefore, current practice recommends raising
392:
of warm air and the thermal plumes generated by heat sources as cooler air is delivered from lower elevations. While similar, UFAD tends to encourage more mixing within the occupied zone and provide local air supply, which enables it to increase air motion in the space and prevent the sensation of
205:
cooling load of an overhead (well-mixed) system. UCLR is determined by zone type, floor level and the zone orientation. The Supply Plenum Fraction (SPF), Zone Fraction (ZF) and Return Plenum Fraction (RPF) are developed similarly to calculate the supply plenum, zone and return plenum cooling load.
341:
Specific space considerations should be taken when using UFAD systems in laboratories because of its critical room pressurization requirements and potential migration of chemicals into the access floor plenum due to spillage. UFAD systems are not recommended in some specific facilities or spaces,
282:
Leakage in UFAD supply plenums can be a major cause for inefficiency in a UFAD system. There are two types of leakage—leakage into the space and leakage into pathways that bypass the space. The first category of leakage does not result in an energy penalty because air is getting to the zone it is
232:
ASHRAE Research Project (RP-1522) developed a simplified tool that predicts the vertical temperature difference between the head and ankle of occupants, the supply air flow rate for one plenum zone, number of diffusers and the air distribution effectiveness. The tool requires users to specify the
204:
Center for the Built Environment developed a new index UFAD cooling load ratio (UCLR), which is defined by the ratio of the peak cooling load calculated for UFAD to the peak cooling load calculated for a well-mixed system, to calculate the UFAD cooling load for each zone with the traditional peak
177:
Many factors, including the ceiling height, diffuser characteristics, number of diffusers, supply air temperature, total flow rate, cooling load and conditioning mode affect the ventilation efficiency of UFAD systems. Swirl and perforated-floor-panel diffusers have been shown to create a low air
68:
systems for cable and equipment management (e.g. computer rooms, control centers, etc.). The system was introduced into office buildings in the 1970s in West Germany, with the addition of occupant-controlled localized supply diffusers. Nowadays UFAD system has achieved considerable acceptance in
142:
Thermal stratification is the result of processes which layer the internal air in accordance with relative density. The resulting air stratum is a vertical gradient with high-density and cooler air below and low-density and warmer air above. Due to the naturally convective movement of air,
369:
A well-engineered UFAD systems have several potential advantages over traditional overhead systems, such as layout flexibility, improved thermal comfort, improved ventilation efficiency and indoor air quality, improved energy efficiency in suitable climates and reduced life cycle costs.
283:
intended to cool. The second category of leakage increases fan energy in order to maintain a constant plenum pressure, resulting in increased energy use. Careful consideration needs to be paid in the construction phase of UFAD systems to ensure a well-sealed plenum.
56:
certain plane in the room, the airflow rate returned to the UZ is equal to the supply air. The plane divides the room into OZ and UZ and leads to thermal stratification: the hot and contaminated air is concentrated in the UZ, and the air in the OZ is cool and fresh.
393:
stagnant air conditions, often associated with poor air quality. The major practical differences are that in UFAD, air is supplied at a higher velocity through smaller-size supply outlets than in DV, and the supply outlets are usually controlled by the occupants.
125:
are used as the supply outlets. The most common UFAD configuration consists of a central air handling unit delivering air through a pressurized plenum and into the space through floor diffusers. Other approaches may incorporate fan powered
80:
are desirable for cable management. UFAD is appropriate for a number of different building types including commercials, schools, churches, airports, museums, libraries, etc. Notable buildings using the UFAD system in North America include
47:
system to supply conditioned air to supply outlets (usually floor diffusers), located at or near floor level within the occupied space. Air returns from the room at ceiling level or the maximum allowable height above the occupied zone.
195:
Schematic flow diagram of calculation procedure showing transformation from cooling load calculated for an overhead mixing system into a UFAD cooling load, and then divided between the supply plenum, zone (room), and return
59:
UFAD can bring several potential advantages over traditional overhead systems, including reduced life-cycle building costs; improved thermal comfort, occupant satisfaction, and productivity; improved ventilation efficiency,
387:
systems (DV) work on similar principals as UFAD systems. DV systems deliver cool air into the conditioned space at or near the floor level and return air at the ceiling level. This works by utilizing the natural
1990:
Xue, Guangqing; Lee, Kisup; Jiang, Zheng; Chen, Qingyan (2012). "Thermal environment in indoor spaces with under-floor air distribution systems: Part 2. Determination of design parameters (1522-RP)".
291:
The energy assessment of UFAD systems has not been extensive, but some studies indicates potential energy savings due the lower pressure drop and lower air flow rate. Typical plenum pressures are 25
2185: 131: 902: 3497: 1075: 785: 1975:
Lee, Kisup; Xue, Guangqing (June 2012). "Establishment of Design Procedures to Predict Room Airflow Requirements in Partially Mixed Room Air Distribution Systems".
842: 93:. Careful considerations need to be made in the construction phase of UFAD systems to ensure a well-sealed plenum to avoid air leakage in UFAD supply plenums. 3447: 909: 3477: 499: 3608: 1304: 105:
to filter and condition air to the appropriate supply conditions so it can be delivered to the occupied zone. While overhead systems typically use
158:. In a UFAD design, conditioned air stays in the lower, occupied part of the room, while heat sources such as occupants and equipment generate 3492: 150:
Air stratification capitalizes on thermal buoyancy to layer high quality supply air at occupant level and leave unoccupied air unconditioned.
1552: 1253: 1082: 852: 792: 563: 506: 1763:
Hanzawa, H.; Higuci, M. (1996), "Air flow distribution in a low-height underfloor air distribution plenum of an air conditioning system",
1495: 1196: 1139: 968: 734: 677: 1433: 1311: 1025: 1372: 620: 449: 2985: 2234: 1909: 1907: 955: 1904: 3487: 3419: 1365: 884: 3292: 1747: 1610: 424: 86: 2181:
Professional and Trade groups that provide research funding and publish standards or guides regarding UFAD systems include:
3452: 3414: 213:
There are two available design tools for determining zone airflow rate requirements for UFAD system, one is developed at
3275: 3317: 3030: 2566: 2295: 226: 2386: 709: 222: 3467: 3281: 2661: 1426: 330:
that have large cooling loads from electronic equipment and requirements for routing power and data cables. The
2225: 2036:"Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance" 538: 90: 3628: 3429: 3373: 3368: 2945: 2473: 1361: 3623: 2990: 2541: 2462: 2421: 1892:
Lee, K.S.; Jiang, Z.; Chen, Q. (2009), "Air distribution effectiveness with stratified air distribution",
122: 3618: 3333: 3135: 2581: 2499: 2411: 2275: 1114: 652: 82: 3482: 3363: 3070: 2835: 2679: 1000: 28: 2107: 1947:"Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems" 1916:"Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems" 1635: 3613: 3535: 3394: 3358: 3160: 2790: 2745: 2673: 2525: 2468: 121:) above the structural concrete slab, although lower heights are possible. Specially designed floor 3582: 3404: 3100: 2700: 2479: 2370: 2355: 2169: 2075:"Laboratory testing of a displacement ventilation diffuser for underfloor air distribution systems" 1465: 379: 171: 159: 3577: 3502: 3424: 3353: 3297: 3229: 3125: 3040: 2950: 2915: 2391: 1246: 3567: 3529: 3409: 3120: 2551: 1171: 1070: 320: 52: 2108:"Energy analysis of under-floor air distribution (UFAD) system: An office building case study" 1693: 3587: 3265: 3224: 2940: 2611: 2431: 2203: 608: 351: 296: 154:
UFAD systems capitalize on the natural stratification that occurs when warm air rises due to
3633: 3389: 3379: 3323: 3260: 3155: 2735: 2684: 2250: 1848:, U9513, Department of Building Technology and Structural Engineering, Aalborg University, 1404: 494: 442: 1737: 146: 109:
to distribute the air, UFAD systems use the underfloor plenum formed by installation of a
8: 3255: 3245: 3219: 3005: 2667: 2576: 2546: 2446: 2416: 2310: 2270: 2145: 481: 270:
UFAD leakage that does not contribute to cooling, leading to wasted increased fan energy.
238: 1735: 127: 3518: 3462: 3399: 3176: 3055: 3050: 2840: 2651: 2636: 2218: 2055: 2007: 1299: 1057: 61: 3090: 3045: 2800: 2795: 2725: 2621: 2457: 2260: 2127: 1849: 1743: 1713: 1655: 1616: 1606: 1343: 214: 2059: 2011: 1914:
Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom (February–March 2011).
1739:
UFAD GUIDE Design, Construction and Operation of Underfloor Air Distribution Systems
3557: 3312: 3307: 2890: 2596: 2494: 2489: 2484: 2401: 2123: 2119: 2086: 2051: 2047: 1999: 1958: 1927: 1772: 1705: 1647: 1527: 1482: 1184: 1127: 660: 432: 2091: 2074: 1962: 1931: 1651: 334:
Underfloor Air Distribution Design Guide suggests that any building considering a
3552: 3524: 3166: 3080: 3075: 3020: 3010: 3000: 2930: 2870: 2785: 2770: 2591: 2586: 2561: 2556: 2426: 2350: 2003: 1673:
Bauman, Fred; Webster, Tom (Jun 2001). "Outloof of underfloor air distribution".
308: 73: 2174:
The Center for the Built Environment (CBE), University of California, Berkeley.
3302: 3199: 2975: 2955: 2920: 2855: 2775: 2616: 2606: 2515: 2365: 2335: 2290: 2285: 2035: 1915: 824: 316: 40: 2033: 1825:
Bauman, Fred; Daly, Allan (2003), "Underfloor Air Distribution Design Guide",
1709: 1545: 3602: 3384: 3235: 3130: 3095: 2865: 2860: 2815: 2810: 2656: 2631: 2626: 2601: 2571: 2441: 2340: 2320: 2300: 2211: 2131: 1913: 1853: 1717: 1694:"Influence of indoor airflow on airborne disease transmission in a classroom" 1659: 1605:. American Society of Heating, Refrigerating and Air-Conditioning Engineers. 1567: 1554: 1540: 1510: 1497: 1448: 1435: 1387: 1374: 1326: 1313: 1268: 1255: 1241: 1211: 1198: 1154: 1141: 1097: 1084: 1040: 1027: 1008: 983: 970: 924: 911: 867: 854: 837: 807: 794: 749: 736: 692: 679: 665: 635: 622: 578: 565: 551: 521: 508: 464: 451: 437: 292: 1867: 1620: 162:, which carry the warm air and heat source generated pollutants towards the 3562: 3240: 3140: 3115: 3110: 3105: 3035: 2970: 2850: 2820: 2760: 2755: 2730: 2641: 2520: 2436: 2360: 2345: 2330: 1946: 1792: 1487: 389: 335: 312: 155: 110: 77: 65: 44: 170:
The theoretical behavior of UFAD systems is based on the plume theory for
3572: 3214: 3171: 3145: 3085: 3065: 3060: 2935: 2895: 2880: 2825: 2750: 2720: 2715: 2531: 2396: 2315: 2186:
American Society of Heating, Refrigerating and Air-Conditioning Engineers
1794:
How low can you go? Air flow performance of low-height underfloor plenums
1228: 1189: 1132: 1018: 722: 670: 327: 323: 106: 102: 3328: 3250: 3181: 3150: 3025: 2995: 2925: 2875: 2845: 2830: 2805: 2710: 2510: 2406: 2325: 2265: 1844:
Nielsen, P. V. (1996), "Displacement Ventilation – Theory and Design",
1777: 1535: 1294: 1236: 1065: 960: 892: 832: 780: 775: 727: 717: 546: 489: 1989: 191: 3287: 2965: 2960: 2910: 2885: 2740: 2536: 1945:
Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom (2011),
1478: 1356: 1285: 556: 3270: 3204: 2705: 2505: 2305: 2280: 2255: 2197:
The Air-Conditioning, Heating, and Refrigeration Institute (AHRI)
2170:
Slides from a Center for the Built Environment workshop about UFAD.
1421: 1417: 950: 603: 249: 32: 2034:
Kwang Ho, Lee; Stefano Schiavon; Fred Bauman; Tom Webster (2012).
1634:
Zhang, Kai; Zhang, Xiaosong; Li, Shuhong; Jin, Xing (2014-12-01).
274: 208: 130:
at the outlets, underfloor ducts, desktop vents or connections to
2780: 2452: 2106:
Alajmi, Ali F.; Abou-Ziyan, Hosny Z.; El-Amer, Wid (2013-09-01).
2073:
Raftery, Paul; Bauman, Fred; Schiavon, Stefano; Epp, Tom (2015).
1736:
ASHRAE Technical Resource Group On Underfloor Air Design (2013).
1179: 941: 766: 311:, particularly highly-reconfigurable and open plan offices where 266: 163: 76:, particularly highly-reconfigurable and open plan offices where 20:
Diagram of air movement in an underfloor air distribution system
3457: 3209: 3015: 2765: 2175: 1473: 1412: 1122: 1013: 897: 396: 331: 218: 16: 2233: 2194:
Air-Conditioning and Refrigeration Technology Institute (ARTI)
366:
turbulent air jets incoming supply air mix with the room air.
345: 3472: 2905: 1692:
Zabihi, Mojtaba; Li, Ri; Brinkerhoff, Joshua (1 March 2024).
1351: 114: 315:
are desirable for cable management. UFAD is also common in
143:
stratification is used predominantly in cooling conditions.
2980: 2900: 613: 137: 118: 36: 2198: 221:
Research Project (RP-1522). The other one is developed at
2189: 595: 2072: 1944: 2105: 1938: 1868:"Underfloor air distribution: thermal stratification" 278:
UFAD leakage into the space, contributing to cooling.
27:(UFAD) is an air distribution strategy for providing 1790: 1691: 43:located between the structural concrete slab and a 1865: 1791:Bauman, Fred; Pecora, Paolo; Webster, Tom (1999), 1636:"Review of underfloor air distribution technology" 307:Underfloor air distribution is frequently used in 1974: 1731: 1729: 1727: 3600: 2029: 2027: 2025: 2023: 2021: 1797:, Center for the Built Environment, UC Berkeley 1633: 1603:Underfloor Air Distribution (UFAD) Design Guide 209:UFAD design tools for zone airflow requirements 51:The UFAD system takes advantage of the thermal 1820: 1818: 1816: 1814: 1812: 1810: 1808: 1806: 1804: 1724: 261: 244: 181: 39:system. UFAD systems use an underfloor supply 2219: 2018: 1866:Webster, T.; Bauman, Fred; Reese, J. (2002). 1762: 1672: 338:for cable distribution should consider UFAD. 1891: 397:List of notable buildings using UFAD systems 1801: 1784: 373: 346:UFAD compared to other distribution systems 3609:Heating, ventilation, and air conditioning 2986:High efficiency glandless circulating pump 2235:Heating, ventilation, and air conditioning 2226: 2212: 1824: 1600: 2090: 1839: 1837: 1835: 1776: 113:. The plenum generally sits 0.3 and 0.46 3420:Mold growth, assessment, and remediation 885:Robert E. Coyle United States Courthouse 273: 265: 248: 190: 145: 138:UFAD air distribution and stratification 15: 1843: 3601: 1977:ASHRAE Research Project Report RP-1522 1887: 1885: 1832: 1756: 253:Heat transfer pathways in UFAD system. 132:Personal Environmental Control Systems 3293:Programmable communicating thermostat 2207: 1601:Bauman, Fred S.; Daly, Allan (2003). 96: 3415:Mechanical, electrical, and plumbing 1765:AIJ Journal of Technology and Design 1596: 1594: 903:Moore Ruble Yudell, Gruen Associates 356: 186: 1882: 13: 3276:Minimum efficiency reporting value 2148:. Center for the Built Environment 1859: 286: 14: 3645: 3318:Standard temperature and pressure 3031:Packaged terminal air conditioner 2567:Passive daytime radiative cooling 2296:Heat pump and refrigeration cycle 2163: 1591: 227:University of California Berkeley 69:Europe, South Africa, and Japan. 2387:Absorption-compression heat pump 2112:Energy Conversion and Management 239:Center for the Built Environment 223:Center for the Built Environment 3282:Normal temperature and pressure 2662:Vapor-compression refrigeration 2138: 2099: 2066: 1983: 1968: 1427:Kuwabara Payne McKenna Blumberg 302: 2124:10.1016/j.enconman.2013.04.003 2052:10.1016/j.apenergy.2011.09.011 1685: 1666: 1627: 539:San Francisco Federal Building 91:San Francisco Federal Building 1: 3430:Testing, adjusting, balancing 3374:Building information modeling 3369:Building services engineering 2946:Ground-coupled heat exchanger 2474:Demand controlled ventilation 2422:Building insulation materials 2092:10.1016/j.enbuild.2015.09.005 1963:10.1016/j.enbuild.2010.10.017 1932:10.1016/j.enbuild.2010.10.017 1652:10.1016/j.enbuild.2014.09.011 1585: 1546:Pelli Clarke Pelli Architects 671:Renzo Piano Building Workshop 2991:High-pressure cut-off switch 2542:Ice storage air conditioning 2463:Dedicated outdoor air system 2176:http://www.cbe.berkeley.edu/ 2004:10.1080/10789669.2012.710058 1076:B.H. Bocook, Architects, Inc 7: 3334:Thermostatic radiator valve 3136:Thermostatic radiator valve 2647:Underfloor air distribution 2582:Radiant heating and cooling 2500:Energy recovery ventilation 2412:Automobile air conditioning 2276:Domestic energy consumption 653:The New York Times Building 262:Air leakage in UFAD plenums 245:Plenum air temperature rise 182:Application Characteristics 83:The New York Times Building 35:as part of the design of a 25:Underfloor air distribution 10: 3650: 3483:Institute of Refrigeration 3364:Architectural technologist 2836:Electrostatic precipitator 2146:"UFAD Technology Overview" 1568:37.7899000°N 122.3969000°W 1511:49.2790889°N 123.1160222°W 1327:33.6571981°N 117.7469452°W 1269:37.7861556°N 122.4062694°W 1212:33.4715861°N 112.0732889°W 1155:36.1125278°N 115.1759472°W 1098:37.4252417°N 122.1939000°W 1001:Ray and Maria Stata Center 868:37.7901500°N 122.3969500°W 808:38.5759750°N 121.5049028°W 786:Pickard Chilton Architects 750:34.0560417°N 118.2445750°W 579:37.7797472°N 122.4122583°W 522:37.8697139°N 122.2662583°W 377: 349: 31:and space conditioning in 3545: 3536:Volatile organic compound 3511: 3438: 3395:Environmental engineering 3359:Architectural engineering 3342: 3190: 3161:Ultra-low particulate air 2746:Automatic balancing valve 2693: 2674:Variable refrigerant flow 2526:Heat recovery ventilation 2469:Deep water source cooling 2379: 2241: 1710:10.1007/s12273-023-1097-y 1449:49.8927750°N 97.1463056°W 1388:23.126750°N 113.3176000°E 1041:42.3620417°N 71.0897944°W 984:42.2443361°N 83.4329250°W 693:40.7565056°N 73.9903194°W 636:39.0864722°N 94.5839861°W 3583:Template:Home automation 3405:Kitchen exhaust cleaning 3101:Solar-assisted heat pump 2701:Air conditioner inverter 2480:Displacement ventilation 2371:Vapour pressure of water 2356:Thermal destratification 1573:37.7899000; -122.3969000 1516:49.2790889; -123.1160222 1466:Vancouver Public Library 1332:33.6571981; -117.7469452 1274:37.7861556; -122.4062694 1217:33.4715861; -112.0732889 1160:36.1125278; -115.1759472 1103:37.4252417; -122.1939000 873:37.7901500; -122.3969500 813:38.5759750; -121.5049028 755:34.0560417; -118.2445750 596:Internal Revenue Service 584:37.7797472; -122.4122583 527:37.8697139; -122.2662583 465:40.755722°N 73.9841139°W 385:Displacement Ventilation 380:Displacement ventilation 374:Displacement ventilation 3578:World Refrigeration Day 3425:Refrigerant reclamation 3354:Architectural acoustics 3298:Programmable thermostat 3230:Clean air delivery rate 3126:Thermal expansion valve 3041:Pressurisation ductwork 2951:Ground source heat pump 2392:Absorption refrigerator 2199:http://www.ahrinet.org/ 1742:. W. Stephen Comstock. 1454:49.8927750; -97.1463056 1247:Bohlin Cywinski Jackson 1046:42.3620417; -71.0897944 989:42.2443361; -83.4329250 698:40.7565056; -73.9903194 641:39.0864722; -94.5839861 363:overhead mixing systems 3568:Glossary of HVAC terms 3530:Sick building syndrome 3410:Mechanical engineering 3121:Smoke exhaust ductwork 2552:Mixed-mode ventilation 2190:http://www.ashrae.org/ 1393:23.126750; 113.3176000 1172:Phoenix Public Library 710:Caltrans District 7 HQ 470:40.755722; -73.9841139 279: 271: 254: 197: 151: 72:UFAD is often used in 21: 3588:Template:Solar energy 3266:Intelligent buildings 3225:Carbon dioxide sensor 2612:Room air distribution 2432:Central solar heating 843:Studios Architecture 425:Bank of America Tower 352:Room air distribution 277: 269: 252: 194: 149: 101:UFAD systems rely on 87:Bank of America Tower 19: 3629:Environmental design 3390:Duct leakage testing 3380:Deep energy retrofit 3324:Thermographic camera 3261:Infrared thermometer 2736:Air source heat pump 2685:Water heat recycling 2251:Air changes per hour 2079:Energy and Buildings 1951:Energy and Buildings 1920:Energy and Buildings 1640:Energy and Buildings 1405:Manitoba Hydro Tower 1115:Bellagio Show Palace 925:36.7377°N 119.7838°W 3624:Low-energy building 3256:HVAC control system 3246:Home energy monitor 3220:Building automation 3006:Inverter compressor 2668:Variable air volume 2577:Passive ventilation 2547:Kitchen ventilation 2447:Constant air volume 2417:Autonomous building 1992:HVAC&R Research 1894:ASHRAE Transactions 1698:Building Simulation 1564: /  1507: /  1490:& DA architects 1445: /  1384: /  1323: /  1265: /  1208: /  1151: /  1094: /  1037: /  980: /  921: /  864: /  804: /  746: /  689: /  632: /  575: /  518: /  482:David Brower Center 461: /  443:Cook+Fox Architects 3619:Floor construction 3519:Indoor air quality 3463:ASTM International 3400:Hydronic balancing 3177:Wood-burning stove 3056:Radiator reflector 2841:Evaporative cooler 2652:Underfloor heating 2637:Thermal insulation 1778:10.3130/aijt.2.200 1058:Hewlett Foundation 956:Van Buren Township 930:36.7377; -119.7838 500:Solomon E.T.C.-WRT 280: 272: 255: 198: 152: 103:air handling units 97:System description 62:indoor air quality 22: 3596: 3595: 3512:Health and safety 3091:Scroll compressor 3046:Process duct work 2801:Convection heater 2796:Condensing boiler 2726:Air-mixing plenum 2622:Solar combisystem 2458:Cross ventilation 2261:Building envelope 1749:978-1-936504-49-7 1612:978-1-931862-21-9 1583: 1582: 1344:Pearl River Tower 357:Overhead (mixing) 215:Purdue University 187:UFAD cooling load 3641: 3614:Building biology 3558:Building science 3313:Smart thermostat 3308:Room temperature 2891:Fireplace insert 2597:Radon mitigation 2495:Electric heating 2490:District heating 2485:District cooling 2402:Air conditioning 2228: 2221: 2214: 2205: 2204: 2158: 2157: 2155: 2153: 2142: 2136: 2135: 2103: 2097: 2096: 2094: 2070: 2064: 2063: 2031: 2016: 2015: 1998:(6): 1192–1201. 1987: 1981: 1980: 1972: 1966: 1965: 1942: 1936: 1935: 1926:(2–3): 517–528. 1911: 1902: 1901: 1889: 1880: 1879: 1863: 1857: 1856: 1841: 1830: 1829: 1822: 1799: 1798: 1788: 1782: 1781: 1780: 1760: 1754: 1753: 1733: 1722: 1721: 1689: 1683: 1682: 1670: 1664: 1663: 1631: 1625: 1624: 1598: 1579: 1578: 1576: 1575: 1574: 1569: 1565: 1562: 1561: 1560: 1557: 1528:Salesforce Tower 1522: 1521: 1519: 1518: 1517: 1512: 1508: 1505: 1504: 1503: 1500: 1460: 1459: 1457: 1456: 1455: 1450: 1446: 1443: 1442: 1441: 1438: 1399: 1398: 1396: 1395: 1394: 1389: 1385: 1382: 1381: 1380: 1377: 1338: 1337: 1335: 1334: 1333: 1328: 1324: 1321: 1320: 1319: 1316: 1280: 1279: 1277: 1276: 1275: 1270: 1266: 1263: 1262: 1261: 1258: 1223: 1222: 1220: 1219: 1218: 1213: 1209: 1206: 1205: 1204: 1201: 1166: 1165: 1163: 1162: 1161: 1156: 1152: 1149: 1148: 1147: 1144: 1109: 1108: 1106: 1105: 1104: 1099: 1095: 1092: 1091: 1090: 1087: 1052: 1051: 1049: 1048: 1047: 1042: 1038: 1035: 1034: 1033: 1030: 995: 994: 992: 991: 990: 985: 981: 978: 977: 976: 973: 936: 935: 933: 932: 931: 926: 922: 919: 918: 917: 914: 879: 878: 876: 875: 874: 869: 865: 862: 861: 860: 857: 819: 818: 816: 815: 814: 809: 805: 802: 801: 800: 797: 761: 760: 758: 757: 756: 751: 747: 744: 743: 742: 739: 704: 703: 701: 700: 699: 694: 690: 687: 686: 685: 682: 647: 646: 644: 643: 642: 637: 633: 630: 629: 628: 625: 590: 589: 587: 586: 585: 580: 576: 573: 572: 571: 568: 533: 532: 530: 529: 528: 523: 519: 516: 515: 514: 511: 476: 475: 473: 472: 471: 466: 462: 459: 458: 457: 454: 401: 400: 309:office buildings 156:thermal buoyancy 117:(12 and 18  74:office buildings 3649: 3648: 3644: 3643: 3642: 3640: 3639: 3638: 3599: 3598: 3597: 3592: 3553:ASHRAE Handbook 3541: 3525:Passive smoking 3507: 3440: 3434: 3346: 3344: 3338: 3192: 3186: 3167:Whole-house fan 3081:Run-around coil 3076:Reversing valve 3021:Mechanical room 3011:Kerosene heater 3001:Infrared heater 2931:Gasoline heater 2871:Fan filter unit 2786:Condensate pump 2771:Centrifugal fan 2689: 2592:Radiant heating 2587:Radiant cooling 2562:Passive cooling 2557:Microgeneration 2427:Central heating 2375: 2351:Thermal comfort 2243: 2237: 2232: 2166: 2161: 2151: 2149: 2144: 2143: 2139: 2104: 2100: 2071: 2067: 2032: 2019: 1988: 1984: 1973: 1969: 1943: 1939: 1912: 1905: 1890: 1883: 1864: 1860: 1842: 1833: 1823: 1802: 1789: 1785: 1761: 1757: 1750: 1734: 1725: 1690: 1686: 1671: 1667: 1632: 1628: 1613: 1599: 1592: 1588: 1572: 1570: 1566: 1563: 1558: 1555: 1553: 1551: 1550: 1515: 1513: 1509: 1506: 1501: 1498: 1496: 1494: 1493: 1453: 1451: 1447: 1444: 1439: 1436: 1434: 1432: 1431: 1392: 1390: 1386: 1383: 1378: 1375: 1373: 1371: 1370: 1331: 1329: 1325: 1322: 1317: 1314: 1312: 1310: 1309: 1273: 1271: 1267: 1264: 1259: 1256: 1254: 1252: 1251: 1216: 1214: 1210: 1207: 1202: 1199: 1197: 1195: 1194: 1159: 1157: 1153: 1150: 1145: 1142: 1140: 1138: 1137: 1102: 1100: 1096: 1093: 1088: 1085: 1083: 1081: 1080: 1045: 1043: 1039: 1036: 1031: 1028: 1026: 1024: 1023: 988: 986: 982: 979: 974: 971: 969: 967: 966: 929: 927: 923: 920: 915: 912: 910: 908: 907: 872: 870: 866: 863: 858: 855: 853: 851: 850: 812: 810: 806: 803: 798: 795: 793: 791: 790: 754: 752: 748: 745: 740: 737: 735: 733: 732: 697: 695: 691: 688: 683: 680: 678: 676: 675: 640: 638: 634: 631: 626: 623: 621: 619: 618: 583: 581: 577: 574: 569: 566: 564: 562: 561: 526: 524: 520: 517: 512: 509: 507: 505: 504: 469: 467: 463: 460: 455: 452: 450: 448: 447: 399: 382: 376: 359: 354: 348: 317:command centers 305: 289: 287:UFAD and energy 264: 247: 217:as part of the 211: 189: 184: 140: 99: 12: 11: 5: 3647: 3637: 3636: 3631: 3626: 3621: 3616: 3611: 3594: 3593: 3591: 3590: 3585: 3580: 3575: 3570: 3565: 3560: 3555: 3549: 3547: 3543: 3542: 3540: 3539: 3533: 3527: 3522: 3515: 3513: 3509: 3508: 3506: 3505: 3500: 3495: 3490: 3485: 3480: 3475: 3470: 3465: 3460: 3455: 3450: 3444: 3442: 3436: 3435: 3433: 3432: 3427: 3422: 3417: 3412: 3407: 3402: 3397: 3392: 3387: 3382: 3377: 3371: 3366: 3361: 3356: 3350: 3348: 3340: 3339: 3337: 3336: 3331: 3326: 3321: 3315: 3310: 3305: 3303:Psychrometrics 3300: 3295: 3290: 3285: 3279: 3273: 3268: 3263: 3258: 3253: 3248: 3243: 3238: 3233: 3227: 3222: 3217: 3212: 3207: 3202: 3200:Air flow meter 3196: 3194: 3188: 3187: 3185: 3184: 3179: 3174: 3169: 3164: 3158: 3153: 3148: 3143: 3138: 3133: 3128: 3123: 3118: 3113: 3108: 3103: 3098: 3093: 3088: 3083: 3078: 3073: 3068: 3063: 3058: 3053: 3048: 3043: 3038: 3033: 3028: 3023: 3018: 3013: 3008: 3003: 2998: 2993: 2988: 2983: 2978: 2976:Heating system 2973: 2968: 2963: 2958: 2956:Heat exchanger 2953: 2948: 2943: 2938: 2933: 2928: 2923: 2921:Gas compressor 2918: 2913: 2908: 2903: 2898: 2893: 2888: 2883: 2878: 2873: 2868: 2863: 2858: 2856:Expansion tank 2853: 2848: 2843: 2838: 2833: 2828: 2823: 2818: 2813: 2808: 2803: 2798: 2793: 2788: 2783: 2778: 2776:Ceramic heater 2773: 2768: 2763: 2758: 2753: 2748: 2743: 2738: 2733: 2728: 2723: 2718: 2713: 2708: 2703: 2697: 2695: 2691: 2690: 2688: 2687: 2682: 2677: 2671: 2665: 2659: 2654: 2649: 2644: 2639: 2634: 2629: 2624: 2619: 2617:Solar air heat 2614: 2609: 2607:Renewable heat 2604: 2599: 2594: 2589: 2584: 2579: 2574: 2569: 2564: 2559: 2554: 2549: 2544: 2539: 2534: 2529: 2523: 2518: 2516:Forced-air gas 2513: 2508: 2503: 2497: 2492: 2487: 2482: 2477: 2471: 2466: 2460: 2455: 2450: 2444: 2439: 2434: 2429: 2424: 2419: 2414: 2409: 2404: 2399: 2394: 2389: 2383: 2381: 2377: 2376: 2374: 2373: 2368: 2366:Thermodynamics 2363: 2358: 2353: 2348: 2343: 2338: 2336:Psychrometrics 2333: 2328: 2323: 2318: 2313: 2308: 2303: 2298: 2293: 2291:Gas compressor 2288: 2286:Fluid dynamics 2283: 2278: 2273: 2268: 2263: 2258: 2253: 2247: 2245: 2239: 2238: 2231: 2230: 2223: 2216: 2208: 2202: 2201: 2195: 2192: 2179: 2178: 2172: 2165: 2164:External links 2162: 2160: 2159: 2137: 2098: 2065: 2046:(1): 197–207. 2040:Applied Energy 2017: 1982: 1967: 1957:(2): 517–528, 1937: 1903: 1881: 1872:ASHRAE Journal 1858: 1831: 1800: 1783: 1755: 1748: 1723: 1704:(3): 355–370. 1684: 1675:ASHRAE Journal 1665: 1626: 1611: 1589: 1587: 1584: 1581: 1580: 1559:122°23′48.84″W 1548: 1543: 1538: 1533: 1530: 1524: 1523: 1491: 1485: 1476: 1471: 1468: 1462: 1461: 1429: 1424: 1415: 1410: 1407: 1401: 1400: 1368: 1359: 1354: 1349: 1346: 1340: 1339: 1307: 1305:LPA Architects 1302: 1297: 1292: 1289: 1282: 1281: 1260:122°24′22.57″W 1249: 1244: 1239: 1234: 1231: 1225: 1224: 1192: 1187: 1182: 1177: 1174: 1168: 1167: 1146:115°10′33.41″W 1135: 1130: 1125: 1120: 1117: 1111: 1110: 1089:122°11′38.04″W 1078: 1073: 1068: 1063: 1060: 1054: 1053: 1021: 1016: 1011: 1006: 1003: 997: 996: 964: 958: 953: 948: 945: 938: 937: 905: 900: 895: 890: 887: 881: 880: 859:122°23′49.02″W 848: 840: 835: 830: 827: 825:Foundry Square 821: 820: 799:121°30′17.65″W 788: 783: 778: 773: 770: 763: 762: 741:118°14′40.47″W 730: 725: 720: 715: 712: 706: 705: 673: 668: 663: 658: 655: 649: 648: 616: 611: 606: 601: 598: 592: 591: 570:122°24′44.13″W 559: 554: 549: 544: 541: 535: 534: 513:122°15′58.53″W 502: 497: 492: 487: 484: 478: 477: 445: 440: 435: 430: 427: 421: 420: 417: 414: 411: 408: 405: 398: 395: 378:Main article: 375: 372: 358: 355: 350:Main article: 347: 344: 304: 301: 288: 285: 263: 260: 246: 243: 210: 207: 188: 185: 183: 180: 160:thermal plumes 139: 136: 128:terminal units 98: 95: 9: 6: 4: 3: 2: 3646: 3635: 3632: 3630: 3627: 3625: 3622: 3620: 3617: 3615: 3612: 3610: 3607: 3606: 3604: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3556: 3554: 3551: 3550: 3548: 3544: 3537: 3534: 3531: 3528: 3526: 3523: 3520: 3517: 3516: 3514: 3510: 3504: 3501: 3499: 3496: 3494: 3491: 3489: 3486: 3484: 3481: 3479: 3476: 3474: 3471: 3469: 3466: 3464: 3461: 3459: 3456: 3454: 3451: 3449: 3446: 3445: 3443: 3441:organizations 3437: 3431: 3428: 3426: 3423: 3421: 3418: 3416: 3413: 3411: 3408: 3406: 3403: 3401: 3398: 3396: 3393: 3391: 3388: 3386: 3385:Duct cleaning 3383: 3381: 3378: 3375: 3372: 3370: 3367: 3365: 3362: 3360: 3357: 3355: 3352: 3351: 3349: 3341: 3335: 3332: 3330: 3327: 3325: 3322: 3319: 3316: 3314: 3311: 3309: 3306: 3304: 3301: 3299: 3296: 3294: 3291: 3289: 3286: 3283: 3280: 3277: 3274: 3272: 3269: 3267: 3264: 3262: 3259: 3257: 3254: 3252: 3249: 3247: 3244: 3242: 3239: 3237: 3236:Control valve 3234: 3231: 3228: 3226: 3223: 3221: 3218: 3216: 3213: 3211: 3208: 3206: 3203: 3201: 3198: 3197: 3195: 3189: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3162: 3159: 3157: 3156:Turning vanes 3154: 3152: 3149: 3147: 3144: 3142: 3139: 3137: 3134: 3132: 3131:Thermal wheel 3129: 3127: 3124: 3122: 3119: 3117: 3114: 3112: 3109: 3107: 3104: 3102: 3099: 3097: 3096:Solar chimney 3094: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3072: 3069: 3067: 3064: 3062: 3059: 3057: 3054: 3052: 3049: 3047: 3044: 3042: 3039: 3037: 3034: 3032: 3029: 3027: 3024: 3022: 3019: 3017: 3014: 3012: 3009: 3007: 3004: 3002: 2999: 2997: 2994: 2992: 2989: 2987: 2984: 2982: 2979: 2977: 2974: 2972: 2969: 2967: 2964: 2962: 2959: 2957: 2954: 2952: 2949: 2947: 2944: 2942: 2939: 2937: 2934: 2932: 2929: 2927: 2924: 2922: 2919: 2917: 2914: 2912: 2909: 2907: 2904: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2866:Fan coil unit 2864: 2862: 2859: 2857: 2854: 2852: 2849: 2847: 2844: 2842: 2839: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2817: 2814: 2812: 2811:Cooling tower 2809: 2807: 2804: 2802: 2799: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2734: 2732: 2729: 2727: 2724: 2722: 2719: 2717: 2714: 2712: 2709: 2707: 2704: 2702: 2699: 2698: 2696: 2692: 2686: 2683: 2681: 2678: 2675: 2672: 2669: 2666: 2663: 2660: 2658: 2657:Vapor barrier 2655: 2653: 2650: 2648: 2645: 2643: 2640: 2638: 2635: 2633: 2632:Solar heating 2630: 2628: 2627:Solar cooling 2625: 2623: 2620: 2618: 2615: 2613: 2610: 2608: 2605: 2603: 2602:Refrigeration 2600: 2598: 2595: 2593: 2590: 2588: 2585: 2583: 2580: 2578: 2575: 2573: 2572:Passive house 2570: 2568: 2565: 2563: 2560: 2558: 2555: 2553: 2550: 2548: 2545: 2543: 2540: 2538: 2535: 2533: 2530: 2527: 2524: 2522: 2519: 2517: 2514: 2512: 2509: 2507: 2504: 2501: 2498: 2496: 2493: 2491: 2488: 2486: 2483: 2481: 2478: 2475: 2472: 2470: 2467: 2464: 2461: 2459: 2456: 2454: 2451: 2448: 2445: 2443: 2442:Chilled water 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2384: 2382: 2378: 2372: 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2352: 2349: 2347: 2344: 2342: 2341:Sensible heat 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2321:Noise control 2319: 2317: 2314: 2312: 2309: 2307: 2304: 2302: 2301:Heat transfer 2299: 2297: 2294: 2292: 2289: 2287: 2284: 2282: 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2248: 2246: 2240: 2236: 2229: 2224: 2222: 2217: 2215: 2210: 2209: 2206: 2200: 2196: 2193: 2191: 2187: 2184: 2183: 2182: 2177: 2173: 2171: 2168: 2167: 2147: 2141: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2102: 2093: 2088: 2084: 2080: 2076: 2069: 2061: 2057: 2053: 2049: 2045: 2041: 2037: 2030: 2028: 2026: 2024: 2022: 2013: 2009: 2005: 2001: 1997: 1993: 1986: 1978: 1971: 1964: 1960: 1956: 1952: 1948: 1941: 1933: 1929: 1925: 1921: 1917: 1910: 1908: 1899: 1895: 1888: 1886: 1877: 1873: 1869: 1862: 1855: 1851: 1847: 1840: 1838: 1836: 1828: 1821: 1819: 1817: 1815: 1813: 1811: 1809: 1807: 1805: 1796: 1795: 1787: 1779: 1774: 1770: 1766: 1759: 1751: 1745: 1741: 1740: 1732: 1730: 1728: 1719: 1715: 1711: 1707: 1703: 1699: 1695: 1688: 1680: 1676: 1669: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1630: 1622: 1618: 1614: 1608: 1604: 1597: 1595: 1590: 1577: 1556:37°47′23.64″N 1549: 1547: 1544: 1542: 1541:San Francisco 1539: 1537: 1534: 1531: 1529: 1526: 1525: 1520: 1502:123°6′57.68″W 1499:49°16′44.72″N 1492: 1489: 1486: 1484: 1480: 1477: 1475: 1472: 1469: 1467: 1464: 1463: 1458: 1437:49°53′33.99″N 1430: 1428: 1425: 1423: 1419: 1416: 1414: 1411: 1408: 1406: 1403: 1402: 1397: 1379:113°19′3.36″E 1369: 1367: 1363: 1360: 1358: 1355: 1353: 1350: 1347: 1345: 1342: 1341: 1336: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1290: 1287: 1284: 1283: 1278: 1257:37°47′10.16″N 1250: 1248: 1245: 1243: 1242:San Francisco 1240: 1238: 1235: 1232: 1230: 1227: 1226: 1221: 1203:112°4′23.84″W 1200:33°28′17.71″N 1193: 1191: 1188: 1186: 1183: 1181: 1178: 1175: 1173: 1170: 1169: 1164: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1118: 1116: 1113: 1112: 1107: 1086:37°25′30.87″N 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1061: 1059: 1056: 1055: 1050: 1029:42°21′43.35″N 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1004: 1002: 999: 998: 993: 975:83°25′58.53″W 972:42°14′39.61″N 965: 962: 959: 957: 954: 952: 949: 946: 943: 940: 939: 934: 906: 904: 901: 899: 896: 894: 891: 888: 886: 883: 882: 877: 856:37°47′24.54″N 849: 847: 846: 841: 839: 838:San Francisco 836: 834: 831: 828: 826: 823: 822: 817: 796:38°34′33.51″N 789: 787: 784: 782: 779: 777: 774: 771: 768: 765: 764: 759: 731: 729: 726: 724: 721: 719: 716: 713: 711: 708: 707: 702: 684:73°59′25.15″W 681:40°45′23.42″N 674: 672: 669: 667: 664: 662: 659: 656: 654: 651: 650: 645: 617: 615: 612: 610: 607: 605: 602: 599: 597: 594: 593: 588: 567:37°46′47.09″N 560: 558: 555: 553: 552:San Francisco 550: 548: 545: 542: 540: 537: 536: 531: 510:37°52′10.97″N 503: 501: 498: 496: 493: 491: 488: 485: 483: 480: 479: 474: 446: 444: 441: 439: 438:New York City 436: 434: 431: 428: 426: 423: 422: 418: 415: 412: 409: 406: 403: 402: 394: 391: 386: 381: 371: 367: 364: 361:Conventional 353: 343: 339: 337: 333: 329: 325: 322: 318: 314: 313:raised floors 310: 300: 298: 295:(0.0036  294: 284: 276: 268: 259: 251: 242: 240: 234: 230: 228: 224: 220: 216: 206: 202: 193: 179: 175: 173: 168: 165: 161: 157: 148: 144: 135: 133: 129: 124: 120: 116: 112: 108: 104: 94: 92: 88: 84: 79: 78:raised floors 75: 70: 67: 66:raised floors 63: 57: 54: 49: 46: 42: 38: 34: 30: 26: 18: 3563:Fireproofing 3347:and services 3343:Professions, 3241:Gas detector 3141:Trickle vent 3116:Smoke damper 3111:Smoke canopy 3106:Space heater 3036:Plenum space 2971:Heating film 2851:Exhaust hood 2821:Dehumidifier 2761:Blast damper 2756:Barrier pipe 2731:Air purifier 2646: 2642:Thermosiphon 2521:Free cooling 2437:Chilled beam 2361:Thermal mass 2346:Stack effect 2331:Particulates 2311:Infiltration 2242:Fundamental 2180: 2150:. Retrieved 2140: 2115: 2111: 2101: 2082: 2078: 2068: 2043: 2039: 1995: 1991: 1985: 1976: 1970: 1954: 1950: 1940: 1923: 1919: 1897: 1893: 1875: 1871: 1861: 1845: 1826: 1793: 1786: 1768: 1764: 1758: 1738: 1701: 1697: 1687: 1678: 1674: 1668: 1643: 1639: 1629: 1602: 1488:Moshe Safdie 1440:97°8′46.70″W 1288:Headquarters 1143:36°6′45.10″N 1032:71°5′23.26″W 844: 738:34°3′21.75″N 627:94°35′2.35″W 624:39°5′11.30″N 456:73°59′2.81″W 453:40°45′20.6″N 419:Coordinates 384: 383: 368: 362: 360: 340: 336:raised floor 328:Server rooms 324:data centers 306: 303:Applications 290: 281: 256: 235: 231: 212: 203: 199: 176: 169: 153: 141: 111:raised floor 100: 71: 58: 50: 45:raised floor 24: 23: 3634:Ventilation 3573:Warm Spaces 3215:Blower door 3193:and control 3191:Measurement 3172:Windcatcher 3146:Trombe wall 3086:Sail switch 3066:Refrigerant 3061:Recuperator 2936:Grease duct 2896:Freeze stat 2881:Fire damper 2751:Back boiler 2721:Air ionizer 2716:Air handler 2680:Ventilation 2532:Hybrid heat 2397:Air barrier 2316:Latent heat 2188:, (ASHRAE) 1771:: 200–205, 1646:: 180–186. 1571: / 1514: / 1452: / 1391: / 1376:23°7′36.3″N 1330: / 1318:117°44′49″W 1272: / 1229:Apple Store 1215: / 1190:Will Bruder 1158: / 1133:Will Bruder 1101: / 1044: / 1019:Frank Gehry 987: / 928: / 916:119°47′02″W 871: / 811: / 753: / 723:Los Angeles 696: / 639: / 609:Kansas City 582: / 525: / 468: / 416:Architects 29:ventilation 3603:Categories 3329:Thermostat 3251:Humidistat 3182:Zone valve 3151:TurboSwing 3026:Oil heater 2996:Humidifier 2926:Gas heater 2876:Fan heater 2846:Evaporator 2831:Economizer 2806:Compressor 2711:Air filter 2694:Components 2511:Forced-air 2407:Antifreeze 2380:Technology 2326:Outgassing 2266:Convection 1586:References 1315:33°39′26″N 1071:Menlo Park 961:SmithGroup 913:36°44′16″N 781:Sacramento 728:Thom Mayne 404:Structure 172:DV systems 3439:Industry 3288:OpenTherm 2966:Heat pump 2961:Heat pipe 2911:Fume hood 2886:Fireplace 2791:Condenser 2741:Attic fan 2537:Hydronics 2132:0196-8904 2118:: 78–85. 2085:: 82–91. 1854:0902-8005 1718:1996-8744 1660:0378-7788 1479:Vancouver 1357:Guangzhou 1286:Taco Bell 557:Morphosis 225:(CBE) at 123:diffusers 33:buildings 3546:See also 3271:LonWorks 3205:Aquastat 3071:Register 3051:Radiator 2706:Air door 2506:Firestop 2306:Humidity 2281:Enthalpy 2271:Dilution 2256:Bake-out 2244:concepts 2060:54035654 2012:15848165 1621:54615153 1418:Winnipeg 1128:Paradise 666:New York 495:Berkeley 410:Country 390:buoyancy 3345:trades, 2916:Furnace 2781:Chiller 2453:Coolant 1185:Phoenix 942:Visteon 767:CalPERS 293:pascals 196:plenum. 164:ceiling 3498:SMACNA 3458:ASHRAE 3278:(MERV) 3232:(CADR) 3210:BACnet 3163:(ULPA) 3016:Louver 2941:Grille 2816:Damper 2766:Boiler 2664:(VCRS) 2465:(DOAS) 2152:27 Nov 2130:  2058:  2010:  1852:  1827:ASHRAF 1746:  1716:  1658:  1619:  1609:  1474:Canada 1413:Canada 1300:Irvine 1014:Boston 898:Fresno 845:et al. 332:ASHRAE 219:ASHRAE 115:metres 41:plenum 3538:(VOC) 3532:(SBS) 3521:(IAQ) 3478:CIBSE 3473:BSRIA 3376:(BIM) 3320:(STP) 3284:(NTP) 2906:Freon 2676:(VRF) 2670:(VAV) 2528:(HRV) 2502:(ERV) 2476:(DCV) 2449:(CAV) 2056:S2CID 2008:S2CID 1366:AS+GG 1352:China 1348:2011 413:City 407:Year 107:ducts 53:plume 3493:LEED 3453:AMCA 3448:AHRI 2981:HEPA 2901:Flue 2826:Duct 2154:2013 2128:ISSN 1878:(5). 1850:ISSN 1744:ISBN 1714:ISSN 1681:(6). 1656:ISSN 1617:OCLC 1607:ISBN 1532:2017 1470:1995 1409:2009 1364:and 1291:2009 1233:1993 1176:1995 1119:1998 1062:2002 1005:2003 947:2004 889:2005 829:2005 772:2005 714:2005 657:2007 614:BNIM 600:2007 543:2007 486:2009 429:2009 326:and 89:and 37:HVAC 3503:UMC 3488:IIR 3468:BRE 2861:Fan 2120:doi 2087:doi 2083:108 2048:doi 2000:doi 1959:doi 1928:doi 1900:(2) 1898:115 1773:doi 1706:doi 1648:doi 1362:SOM 963:JJR 297:psi 3605:: 2126:. 2116:73 2114:. 2110:. 2081:. 2077:. 2054:. 2044:91 2042:. 2038:. 2020:^ 2006:. 1996:18 1994:. 1955:43 1953:, 1949:, 1924:43 1922:. 1918:. 1906:^ 1896:, 1884:^ 1876:44 1874:. 1870:. 1834:^ 1803:^ 1767:, 1726:^ 1712:. 1702:17 1700:. 1696:. 1679:43 1677:. 1654:. 1644:85 1642:. 1638:. 1615:. 1593:^ 1536:CA 1483:BC 1481:, 1422:MB 1420:, 1295:CA 1237:CA 1180:AZ 1123:NV 1066:CA 1009:MA 951:MI 944:HQ 893:CA 833:CA 776:CA 769:HQ 718:CA 661:NY 604:MO 547:CA 490:CA 433:NY 321:IT 319:, 241:. 229:. 134:. 119:in 85:, 2227:e 2220:t 2213:v 2156:. 2134:. 2122:: 2095:. 2089:: 2062:. 2050:: 2014:. 2002:: 1979:. 1961:: 1934:. 1930:: 1846:U 1775:: 1769:3 1752:. 1720:. 1708:: 1662:. 1650:: 1623:.

Index

Diagram of underfloor air distribution showing cool, fresh air moving through the underfloor plenum and supplied via floor diffusers and desktop vents. Warm, stale air is exhausted at the ceiling
ventilation
buildings
HVAC
plenum
raised floor
plume
indoor air quality
raised floors
office buildings
raised floors
The New York Times Building
Bank of America Tower
San Francisco Federal Building
air handling units
ducts
raised floor
metres
in
diffusers
terminal units
Personal Environmental Control Systems

thermal buoyancy
thermal plumes
ceiling
DV systems

Purdue University
ASHRAE

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.