Knowledge

Bacterioplankton

Source πŸ“

1085:(DOM) is available in many forms in the ocean, and is responsible for supporting the growth of bacteria and microorganisms in the ocean. The two main sources of this dissolved organic matter are; decomposition of higher trophic level organisms like plants and fish, and secondly DOM in runoffs that pass through soil with high levels of organic material. It is important to note that the age and quality of the DOM is important for its usability by microbes. The majority of the DOM in the oceans is refractory or semi-labile and is not available for biodegradation. As mentioned above the microbial pump is responsible for the production of refractory DOM which is unavailable for biodegradation and remains dissolved in the oceans for thousands of years. The turnover of labile DOM organic material is quite high due to scarcity, this is important for the support of multiple trophic levels in the microbial community. The uptake and respiration of DOM by heterotrophs closes the cycle by producing CO 760: 1243: 38: 4004: 1196: 929: 521: 728: 1234:
experiments show that protozoan grazing has a positive effect on bacterioplankton production suggesting that nitrogen regeneration by Protozoa could be highly important for bacterial growth. Eukaryotic inhibitors did not prove to be useful to determine protozoan grazing rates on bacterioplankton, however they may help understand control mechanisms in the microbial food web.
1163:). Upon predation or death, particulate silica is released from diatoms but they need to be dissolved for recycling and reuptake by diatoms, otherwise silica will be exported out and deposited into sediment. Hence, the productivity of diatoms will be limited by silicon if dissolution rates are slow. However, it is known that bacterioplankton (i.e. members of 1259:
High temperatures caused by seasonality increases stratification and preventing vertical turbulent mixing which increases competition for light that favours buoyant cyanobacteria. Higher temperatures also reduce the viscosity of water which allows faster movement which also favors buoyant species of
1207:
grazing, and availability of substrate. Bacterial abundance and productivity are consistently related to algal abundance and productivity as well as organic carbon. Additionally, phosphorus directly influences both algal and bacterial abundance and in turn, algae and bacteria directly influence each
1263:
Climate studies are also indicating that with increasing hot waves the likelihood of detrimental cyanobacterial blooms will become more of a threat to eutrophic freshwater systems. Other implications of the increasing average air temperature due to climate change is that there might be an expansion
850:
Heterotrophic bacterioplankton rely on the available concentration of dissolved organic matter in the water column. Usually these organisms are saprophytic, absorbing nutrients from their surroundings. These heterotrophs also play a key role in the microbial loop and the remineralization of organic
837:
a and b and carotenoids. Green bacteria have different light harvesting pigments consisting of bacteriochlorophyll c, d and e. These organisms do not produce oxygen through photosynthesis or use water as a reducing agent. Many of these organisms use sulfur, hydrogen or other compounds as an energy
1273:
Further, as discussed in the biogeochemical cycling section, plankton are responsible for the recycling and movement of essential nutrients (i.e. nitrogen/carbon/DOM) which are essential building blocks for many of the organisms co-existing with bacterioplankton in these ecosystems. These recycled
911:
in the ocean occurs through the microbial pump. The microbial pump is responsible for the production of old recalcitrant dissolved organic carbon (DOC) which is >100 years old. Plankton in the ocean are incapable of breaking down this recalcitrant DOC and thus it remains in the oceans for 1000s
809:
is a very small in size and is found mainly in the euphotic zone of tropical waters. Factors including light, nutrients, and temperature can cause cyanobacteria to proliferate and form harmful blooms. Cyanobacteria blooms can cause hypoxia and produce high levels of toxins, impacting other aquatic
1233:
With using prokaryotic inhibitors seasonally, there is a positive relationship between bacterial abundance and heterotrophic nanoplankton grazing rates and only 40-45 % of bacterioplankton production was observed to be consumed by phagotrophic Protozoa. Additionally, eukaryotic inhibitory
1224:
estuary, particularly in the summer. The amplitude of these fluctuations increases in response to artificial eutrophication with inorganic nutrients and decreases in response to predation. Losses of bacterioplankton by grazing is indirectly related to carbon balances and directly related to
1136:
results in the integration of carbon and sulfur into the organism itself as opposed to releasing the elements back to the environment. Bacterioplankton DMSP degradation is thought to be prevalent in marine surface waters, although the spatial distribution of the two aforementioned routes of
775:
are a large group of photosynthetic bacterioplankton, often growing as cells or in filamentous colonies. These organisms are the dominant group of bacterioplankton using oxygenic photosynthesis in aquatic ecosystems. Cyanobacteria, along with photosynthetic eukaryotes, are responsible for
1187:) significantly promote the dissolution of particulate silica, thus maintaining the significant biogenic silica production in the ocean photic zone. It is also suggested that this process helps regulate diatom productivity and its corresponding biogeochemical effects. 1208:
other's abundance In extremely oligotrophic environments, both bacterial and algal growth is limited by phosphorus, but because bacteria are better competitors they obtain a larger portion of the inorganic substrate and increase in abundance more rapidly than algae.
906:
and other nutrients into their biomass during photosynthesis. At the time of their death these phytoplankton, along with their incorporated carbon, sink to the bottom of the ocean where the carbon remains for thousands of years. The other biologically mediated
1229:
inhibitors. A surplus of substrate would cause increased flagellate biomass, increased grazing on bacterioplankton and therefore decreased bacterial biomass overall. Predation of ciliates is analogous to predation by flagellates on bacteria as well.
832:
Other photosynthetic bacterioplankton, including purple and green bacteria, undergo anoxygenic photosynthesis in anaerobic conditions. The pigments synthesized in these organisms are sensitive to oxygen. In purple bacteria the major pigments include
776:
approximately half of the total global primary production making them key players in the food web. They use photosynthesis to generate energy in the form of organic compounds and produce oxygen as a byproduct. Major light harvesting pigments include
1132:, plays a role in regulating global climate. Increased production of sulfate aerosols from DMS oxidation are capable of promoting cooling on a global scale, via the promotion of cloud formation. In contrast, the demethylation pathway from DMSP to 627:
in marine and aquatic ecosystems. They are both primary producers and primary consumers in these ecosystems and drive global biogeochemical cycling of elements essential for life (e.g., carbon and nitrogen). Many bacterioplankton species are
1219:
in laboratory experiments demonstrate that they are adapted to predation on bacteria-sized particles and occur in concentrations to control bacterial biomass. Tight fluctuations in numbers of bacteria and flagellates have been found in a
1255:
bloom in the year 2000 in Swan River estuary, Australia, and the Oostvaarderplassen in the Netherlands in 2003. The detrimental effects of these blooms can range from heart malformation in fish to constraining copepod reproduction.
1250:
Bacterioplankton such as cyanobacteria are able to have toxic blooms in eutrophic lakes which can lead to the death of many organisms such as fish, birds, cattle, pets and humans. A few examples of these harmful blooms is the
1581:
Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, et al. (1992-02-01). "Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b".
1819:
Kopylov AI, Kosolapov DB, Degermendzhy NN, Zotina TA, Romanenko AV (April 2002). "Phytoplankton, bacterial production and protozoan bacterivory in stratified, brackish-water Lake Shira (Khakasia, Siberia)".
912:
years without being respired. The two pumps work simultaneously, and the balance between them is believed to vary based on the availability of nutrients. Overall, the oceans act as a sink for atmospheric CO
2913:"Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical pacific ocean" 1246:
A large harmful bloom of cyanobacteria, more commonly known as blue-green algae, spread across the lake in green filaments and strands that are clearly visible in this simulated-natural-colour image.
902:(BCP). The biological carbon pump is a vertical transmission pump driven mainly by the sinking of organic rich particles. Bacterial phytoplankton near the surface incorporate atmospheric CO 3560:
Huisman J, Sharples J, Stroom J, Visser PM, Kardinaal WE, Verspagen JM, et al. (2004). "Changes in turbulent mixing shift competition for light between phytoplankton species".
2365:
Ray M, Manu S, Rastogi G, Umapathy G (April 2024). "Cyanobacterial Genomes from a Brackish Coastal Lagoon Reveal Potential for Novel Biogeochemical Functions and Their Evolution".
3782:
Srifa A, Phlips EJ, Cichra MF, Hendrickson JC (2016). "Phytoplankton dynamics in a subtropical lake dominated by cyanobacteria: Cyanobacteria 'Like it hot' and sometimes dry".
1144:-like gene in certain cyanobacteria genomes, suggesting DMSP producing ability. However, there has yet to be empirical confirmation of DMSP synthesis in cyanobacteria. 3011:
Bidle KD, Brzezinski MA, Long RA, Jones JL, Azam F (September 2003). "Diminished efficiency in the oceanic silica pump caused by bacteria-mediated silica dissolution".
3680:
SchΓ€r C, Vidale PL, LΓΌthi D, Frei C, HΓ€berli C, Liniger MA, et al. (January 2004). "The role of increasing temperature variability in European summer heatwaves".
869:
is a diverse and widely-distributed clade which makes up a significant contribution of marine bacterioplankton, accounting up to roughly 20% of coastal waters and 15%
4602: 1633:
Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (July 1988). "A novel free-living prochlorophyte abundant in the oceanic euphotic zone".
1028:
is anammox. Anammox, a process in which ammonia is combined with nitrite in order to produce diatomic nitrogen and water, could account for 30–50% of production of N
861:
clade, are the most abundant bacterioplankton in the oceans. Members of this group are found in waters with low nutrient availability and are preyed on by protists.
756:. Differences between these processes can be seen in the byproducts produced, the primary electron donor, and the light harvesting pigments used for energy capture. 1863:
Morris RM, RappΓ© MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, et al. (December 2002). "SAR11 clade dominates ocean surface bacterioplankton communities".
4622: 3522:
Walsby AE, Hayes PK, Boje R, Stal LJ (July 1997). "The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea".
3443:
Zi J, Pan X, MacIsaac HJ, Yang J, Xu R, Chen S, et al. (January 2018). "Cyanobacteria blooms induce embryonic heart failure in an endangered fish species".
2410:"The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis" 916:
but also release some carbon back into the atmosphere. This occurs when bacterioplankton and other organisms in the ocean consume organic matter and respire CO
1495:
Colyer CL, Kinkade CS, Viskari PJ, Landers JP (June 2005). "Analysis of cyanobacterial pigments and proteins by electrophoretic and chromatographic methods".
976:). This ammonia can then be assimilated into organic matter like amino and nucleic acids, by both photoautrophic and heterotrophic plankton, it can also be 4658: 3428:
Kardinaal WE, Visser PM. "Cyanotoxines Drijven tot Overlast: Inventarisatie van Microcystine Concentraties 2000–2004 in Nederlandse Oppervlakte Wateren".
504: 1260:
cyanobacteria. These species are also very competitive with the ability to create a surface cover preventing light to reach deeper species of plankton.
2321:
Reimann J, Jetten MS, Keltjens JT (2015). "Metal Enzymes in "Impossible" Microorganisms Catalyzing the Anaerobic Oxidation of Ammonium and Methane".
2504:"Dynamics and characterization of refractory dissolved organic matter produced by a pure bacterial culture in an experimental predator-prey system" 2868:
Moran MA, GonzΓ‘lez JM, Kiene RP (July 2003). "Linking a Bacterial Taxon to Sulfur Cycling in the Sea: Studies of the Marine Roseobacter Group".
4612: 1024:
which is then released back into the atmosphere thus closing the cycle. Another important process involved in the regeneration of atmospheric N
2610:
Howard EC, Sun S, Biers EJ, Moran MA (September 2008). "Abundant and diverse bacteria involved in DMSP degradation in marine surface waters".
952:). There are many different nitrogen metabolism strategies employed by bacterioplankton. Starting with molecular nitrogen in the atmosphere (N 699:
depends on environmental variables like temperature, nutrient availability and predation. Like other small plankton, the bacterioplankton are
2559:
Kirchman DL, Suzuki Y, Garside C, Ducklow HW (1991). "High turnover rates of dissolved organic carbon during a spring phytoplankton bloom".
3296:"Trophic interactions between heterotrophic Protozoa and bacterioplankton in estuarine water analyzed with selective metabolic inhibitors" 1040: 552: 1274:
nutrients can be reused by primary producers, thus increasing the efficiency of the biological food web and minimizing energy waste.
936:
The nitrogen cycle in the oceans is mediated by microorganisms, many of which are bacteria, performing multiple conversions such as:
1538:
Johnson PW, Sieburth JM (September 1979). "Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass1".
874: 4018: 1270:
can be derived with a variety of methods including direct counts, flow cytometry, and conclusions drawn from metabolic measures.
2706:"Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria" 4542: 3933: 3638:"The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations" 3843: 1383: 759: 1066:, suggesting possible alternative strategies of acquiring nitrogen under varying environmental conditions. Nonetheless, the 668:
in the medium and taken directly from there, or bacteria may live and grow in association with particulate material such as
1070:
gene is also known to play a role in nitrogen assimilation and further studies are required to ascertain the function of
3897: 873:
surface oceans. Although many are heterotrophic, some are capable of performing a unique form of photosynthesis called
3244:"Trophic interactions between heterotrophic nanoflagellates and bacterioplankton in manipulated seawater enclosures1" 2813:"Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide" 2338: 2199: 2133: 1479: 1284: 1267: 696: 1215:
environments, heterotrophic nano-flagellates are the most probable consumers of bacterial cell production. Cultured
4643: 3393:
Atkins R, Rose T, Brown RS, Robb M (2001). "The Microcystis cyanobacteria bloom in the Swan River--February 2000".
829:
is an example of cyanobacteria that is capable of fixing nitrogen through an alternative photosynthetic pathway.
3870: 545: 3111:"Ecology of Heterotrophic Microflagellates. IV. Quantitative Occurrence and Importance as Bacterial Consumers" 2968:
Bidle KD, Azam F (February 1999). "Accelerated dissolution of diatom silica by marine bacterial assemblages".
890:
Atmospheric carbon is sequestered into the ocean by three main pumps which have been known for 30 years: the
609: 408: 2151:"Biological or microbial carbon pump? The role of phytoplankton stoichiometry in ocean carbon sequestration" 4607: 448: 2190:
Follows M, Oguz T, et al. (North Atlantic Treaty Organization. Scientific Affairs Division.) (2004).
4532: 4043: 2071:"The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean" 137: 3158:
Porter KG, Sherr EB, Sherr BF, Pace M, Sanders RW (August 1985). "Protozoa in Planktonic Food Webs1,2".
37: 4522: 4023: 3988: 3430:
Report for the National Institute for Inland Water Management and Wastewater Treatment, the Netherlands
1113: 823:
uses specialized cells called heterocysts to physically separate nitrogen fixation and photosynthesis.
732: 499: 231: 106: 1112:, are known to contribute significantly towards the sulfur cycle, primarily through the metabolism of 247: 4577: 3731:
Stott PA, Stone DA, Allen MR (December 2004). "Human contribution to the European heatwave of 2003".
753: 538: 463: 236: 664:, and obtain energy by consuming organic material produced by other organisms. This material may be 4653: 4239: 4111: 4098: 1082: 748:
of aquatic food webs, supplying organic compounds to higher trophic levels. These bacteria undergo
665: 4517: 4497: 3963: 765: 484: 453: 130: 3195:"Population dynamics and trophic coupling in pelagic microorganisms in eutrophic coastal waters" 3059:"Large-scale variability and interactions among phytoplankton, bacterioplankton, and phosphorus" 2911:
Cui Y, Suzuki S, Omori Y, Wong SK, Ijichi M, Kaneko R, et al. (June 2015). Drake HL (ed.).
1242: 4527: 4379: 3890: 1264:
of the cyanobacterial bloom season, extending from earlier in the spring to later in the fall.
1128:. The formation of DMS contributes to the sulfur flux into the atmosphere and according to the 458: 331: 4572: 4399: 4342: 4077: 3943: 2225:"Trichodesmium--a widespread marine cyanobacterium with unusual nitrogen fixation properties" 1772:"Trichodesmium--a widespread marine cyanobacterium with unusual nitrogen fixation properties" 945: 3637: 4648: 4324: 4124: 4028: 3993: 3791: 3740: 3689: 3652: 3608: 3569: 3452: 3359: 3307: 3255: 3206: 3122: 3070: 3020: 2977: 2924: 2877: 2824: 2777: 2717: 2619: 2568: 2515: 2462: 2408:
Malm S, Tiffert Y, Micklinghoff J, Schultze S, Joost I, Weber I, et al. (April 2009).
2374: 2284: 2082: 2070: 2020: 1927: 1872: 1736: 1642: 1591: 1547: 1420: 1342: 908: 792:. The majority of cyanobacteria found in marine environments are represented by the genera 388: 152: 735:
of seawater stained with a green dye to reveal bacterial cells and smaller viral particles
8: 4567: 4502: 4269: 4258: 4135: 4118: 3488:"Consequences of a cyanobacteria bloom for copepod reproduction, mortality and sex ratio" 2499: 2296: 2275:
Zehr JP, Kudela RM (2011). "Nitrogen cycle of the open ocean: from genes to ecosystems".
1179: 1108: 857: 834: 472: 393: 311: 3795: 3744: 3693: 3656: 3612: 3573: 3456: 3363: 3311: 3259: 3210: 3126: 3074: 3024: 2981: 2928: 2881: 2828: 2781: 2721: 2623: 2572: 2519: 2466: 2378: 2323:
Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases
2288: 2086: 2024: 1931: 1876: 1740: 1646: 1595: 1551: 1424: 3832: 3807: 3764: 3713: 3597:"Algal games: the vertical distribution of phytoplankton in poorly mixed water columns" 3375: 3325: 3224: 3171: 3140: 2945: 2912: 2681: 2654: 2592: 2536: 2503: 2249: 2224: 2125: 2041: 2008: 1981: 1956: 1896: 1845: 1796: 1771: 1752: 1709: 1697: 1666: 1615: 1520: 1444: 1389: 745: 477: 413: 295: 2845: 2812: 1043:(DNRA) activity in certain cyanobacteria. Namely, the study found the presence of the 920:, and as a result of the solubility equilibrium between the ocean and the atmosphere. 4462: 4457: 4452: 4274: 4193: 4038: 3958: 3883: 3839: 3756: 3705: 3539: 3535: 3468: 3410: 3371: 3273: 3175: 3088: 3036: 2993: 2950: 2893: 2850: 2836: 2793: 2743: 2738: 2705: 2686: 2635: 2631: 2584: 2541: 2480: 2431: 2390: 2344: 2334: 2300: 2254: 2240: 2205: 2195: 2172: 2129: 2098: 2046: 2032: 1986: 1888: 1837: 1801: 1787: 1713: 1701: 1658: 1607: 1563: 1512: 1475: 1436: 1409:"Primary production of the biosphere: integrating terrestrial and oceanic components" 1379: 1063: 1017: 937: 814: 781: 673: 525: 418: 199: 125: 3811: 3768: 3379: 2729: 1849: 1756: 1619: 1524: 1448: 744:
Photosynthetic bacterioplankton are responsible for a large proportion of the total
4404: 4384: 4308: 4182: 4129: 3865: 3799: 3748: 3717: 3697: 3660: 3616: 3577: 3531: 3499: 3460: 3402: 3367: 3315: 3263: 3214: 3167: 3130: 3078: 3028: 2985: 2940: 2932: 2885: 2840: 2832: 2785: 2733: 2725: 2676: 2666: 2627: 2596: 2576: 2531: 2523: 2470: 2421: 2382: 2326: 2292: 2244: 2236: 2162: 2121: 2090: 2036: 2028: 1976: 1968: 1935: 1900: 1880: 1829: 1791: 1783: 1744: 1693: 1670: 1650: 1599: 1555: 1504: 1467: 1428: 1393: 1371: 1302: 1155:
are a major group of phytoplankton in which most have a requirement for silicon as
1117: 1048: 852: 685: 624: 120: 3464: 47: 4512: 4389: 4215: 4199: 4187: 4003: 3928: 2094: 1916:"Bacterial production in fresh and saltwater ecosystems: a cross-system overview" 1748: 1432: 1337: 1156: 1129: 941: 899: 891: 800: 681: 650: 443: 341: 300: 290: 183: 2330: 1471: 4582: 4313: 4228: 4104: 2386: 2325:. Metal Ions in Life Sciences. Vol. 15. Springer, Cham. pp. 257–313. 1221: 1169: 895: 749: 637: 633: 403: 383: 351: 256: 188: 98: 84: 3803: 3621: 3596: 3268: 3243: 3083: 3058: 3032: 1833: 1559: 1508: 1375: 1203:
Variations in bacterioplankton abundance are usually a result of temperature,
4637: 4592: 4562: 4447: 4442: 4169: 4146: 4083: 4053: 4048: 3277: 3179: 3092: 3040: 2997: 2897: 2797: 2671: 2588: 2484: 2176: 2102: 1841: 1705: 1662: 1611: 1567: 1322: 1309: 1289: 1121: 977: 961: 839: 825: 794: 772: 716: 677: 656: 645: 641: 577: 356: 210: 142: 55: 3504: 3487: 2209: 2167: 2150: 1408: 838:
source to drive photosynthesis. Most of these bacterioplankton are found in
805:
is cosmopolitan, having been reported across temperate and tropical waters.
4587: 4482: 4409: 4364: 4336: 4233: 4209: 4058: 3983: 3953: 3948: 3938: 3760: 3709: 3543: 3472: 3414: 3346:
JΓΆhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008).
2954: 2889: 2854: 2765: 2747: 2690: 2639: 2545: 2435: 2426: 2409: 2394: 2348: 2304: 2258: 2050: 1990: 1892: 1805: 1516: 1295: 1212: 1133: 1125: 1036: 398: 346: 336: 276: 172: 147: 74: 69: 3406: 1972: 1440: 4552: 4537: 4487: 4352: 4176: 3973: 3968: 3923: 3665: 2936: 2527: 1332: 1316: 1204: 1173: 1098: 1052: 870: 865: 785: 777: 704: 669: 494: 489: 438: 378: 370: 281: 60: 3860: 3752: 3701: 3329: 3242:
BjΓΈrnsen PK, Riemann B, Horsted SJ, Nielsen TG, Pock-Sten J (May 1988).
3228: 3144: 1884: 1195: 928: 4437: 4374: 4303: 4295: 4093: 4088: 4033: 3486:
EngstrΓΆm-Γ–st J, Brutemark A, Vehmaa A, Motwani NH, Katajisto T (2015).
3320: 3295: 3219: 3194: 3135: 3110: 2475: 2450: 1940: 1915: 1603: 1226: 1216: 1060: 957: 789: 689: 661: 617: 204: 115: 2766:"Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate" 727: 4507: 4492: 4432: 4414: 4394: 4369: 4330: 4318: 4158: 2789: 2580: 1654: 1165: 712: 700: 629: 569: 3581: 4557: 4263: 4222: 4204: 3978: 3915: 3906: 2069:
Legendre L, Rivkin RB, Weinbauer MG, Guidi L, Uitz J (2015-05-01).
1327: 1160: 1124:
by bacterioplankton, in which both have contrasting effects on the
819: 708: 613: 573: 220: 29: 16:
Bacterial component of the plankton that drifts in the water column
3485: 2989: 1818: 4617: 4547: 4424: 4163: 1406: 992:
for energy production by nitrifying bacteria. Finally the use of
949: 2149:
Polimene L, Sailley S, Clark D, Mitra A, Allen JI (2017-03-01).
1407:
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (July 1998).
1116:(DMSP). DMSP can be catabolized either via means of cleavage to 1055:. Moreover, the study indicated that the cyanobacteria that had 4279: 4250: 2407: 2223:
Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ (May 2013).
1770:
Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ (May 2013).
1462:
Peschek GA, Bernroitner M, Sari S, Pairer M, Obinger C (2011).
1199:
Schematic of the food chain in the freshwaters of Lake Ontario.
1152: 215: 177: 3347: 2764:
Charlson RJ, Lovelock JE, Andreae MO, Warren SG (April 1987).
3345: 3241: 2763: 2497: 1103: 932:
A schematic showing the cycling of nitrogen within the ocean.
605: 590: 582: 3781: 3294:
Sherr BF, Sherr EB, Andrew TL, Fallon RD, Newell SY (1986).
2558: 2451:"A cross-system analysis of labile dissolved organic carbon" 2068: 1632: 1580: 1461: 1140:
Similar to DNRA, the same study indicated the presence of a
4597: 3875: 3559: 2655:"Bacterial Catabolism of Dimethylsulfoniopropionate (DMSP)" 1494: 1047:
gene, which is a marker for DNRA function, in the families
763:
Transmission electron micrograph showing the cyanobacteria
640:. Photosynthetic bacterioplankton are often categorized as 3348:"Summer heatwaves promote blooms of harmful cyanobacteria" 1039:
of 83 species of cyanobacteria has suggested the possible
576:
that drifts in the water column. The name comes from the
2148: 3010: 1729:
Critical Reviews in Environmental Science and Technology
1862: 3293: 2364: 2222: 1957:"Evolutionary ecology of the marine Roseobacter clade" 1769: 2320: 1684:
Reynolds CS, Walsby AE (1975-11-01). "Water-Blooms".
3679: 3157: 2448: 3521: 3392: 2609: 2006: 1361: 1359: 1268:
Estimates of bacterioplankton abundance and density
842:, including stagnant and hypersaline environments. 3831: 3594: 2910: 2867: 2704:GonzΓ‘lez JM, Kiene RP, Moran MA (September 1999). 2703: 2652: 810:organisms as well as causing illnesses in humans. 739: 3442: 2115: 845: 711:), and their numbers are also controlled through 672:. Bacterioplankton play critical roles in global 4635: 3192: 2007:Buchan A, GonzΓ‘lez JM, Moran MA (October 2005). 1356: 3730: 1913: 1537: 1683: 877:, which requires rather than produces oxygen. 3891: 3555: 3553: 3517: 3515: 3341: 3339: 855:(synonym SAR11), also known as members of an 546: 2009:"Overview of the marine roseobacter lineage" 1727:Agnihotri VK (2014). "Anabaena flos-aquae". 4659:Taxa named by Christian Gottfried Ehrenberg 3427: 2189: 1077: 1041:dissimilatory nitrate reduction to ammonium 660:. Other heterotrophic bacterioplankton are 598: 3898: 3884: 3838:. New Jersey, USA: Prentice Hall College. 3550: 3512: 3336: 2274: 1961:Microbiology and Molecular Biology Reviews 1237: 553: 539: 3664: 3620: 3503: 3319: 3267: 3218: 3134: 3082: 2967: 2944: 2844: 2737: 2680: 2670: 2535: 2474: 2449:SΓΈndergaard M, Middelboe M (1995-03-09). 2425: 2248: 2194:. Dordrecht: Kluwer Academic Publishers. 2166: 2040: 1980: 1939: 1795: 1726: 880: 3635: 2653:Reisch CR, Moran MA, Whitman WB (2011). 1954: 1365: 1241: 1194: 927: 758: 726: 596:), meaning "wanderer" or "drifter", and 3829: 3108: 1464:Bioenergetic Processes of Cyanobacteria 1190: 4636: 3056: 2917:Applied and Environmental Microbiology 2817:Applied and Environmental Microbiology 2759: 2757: 2710:Applied and Environmental Microbiology 2508:Applied and Environmental Microbiology 2360: 2358: 2013:Applied and Environmental Microbiology 1497:Analytical and Bioanalytical Chemistry 1466:. Springer, Dordrecht. pp. 3–70. 3879: 3289: 3287: 3104: 3102: 3052: 3050: 2316: 2314: 2270: 2268: 2064: 2062: 2060: 2002: 2000: 1096:Bacterioplankton, such as members of 2810: 2297:10.1146/annurev-marine-120709-142819 1914:Cole JJ, Findlay S, Pace ML (1988). 1137:degradation exhibit high variation. 851:compounds like carbon and nitrogen. 2754: 2355: 948:, and anaerobic ammonia oxidation ( 623:Bacterioplankton occupy a range of 608:term coined in the 19th century by 13: 3822: 3595:Klausmeier CA, Litchman E (2001). 3284: 3172:10.1111/j.1550-7408.1985.tb04036.x 3099: 3047: 2311: 2265: 2192:The ocean carbon cycle and climate 2126:10.1016/b978-0-08-095975-7.00604-5 2057: 1997: 1698:10.1111/j.1469-185x.1975.tb01060.x 1159:to form their cell wall (known as 813:Some Cyanobacteria are capable of 14: 4670: 3854: 2116:De La Rocha CL, Passow U (2014). 1955:Luo H, Moran MA (December 2014). 1285:Bacterioplankton counting methods 4002: 3871:Marine Bacterioplankton Database 3536:10.1046/j.1469-8137.1997.00754.x 3372:10.1111/j.1365-2486.2007.01510.x 3193:Andersen P, SΓΈrensen HM (1986). 2837:10.1128/AEM.68.12.5804-5815.2002 2632:10.1111/j.1462-2920.2008.01665.x 2241:10.1111/j.1574-6976.2012.00352.x 2033:10.1128/AEM.71.10.5665-5677.2005 1788:10.1111/j.1574-6976.2012.00352.x 1020:reduces the nitrogen back into N 964:into usable forms like ammonia ( 632:, and derive energy from either 520: 519: 36: 3861:Typical Marine bacterioplankton 3775: 3724: 3673: 3629: 3588: 3479: 3436: 3421: 3386: 3235: 3186: 3151: 3004: 2961: 2904: 2861: 2804: 2730:10.1128/AEM.65.9.3810-3819.1999 2697: 2646: 2603: 2552: 2491: 2442: 2401: 2277:Annual Review of Marine Science 2216: 2183: 2142: 2109: 1948: 1907: 1856: 1812: 1763: 1366:Mann NH, Carr NG, eds. (1992). 740:Photosynthetic bacterioplankton 722: 3300:Marine Ecology Progress Series 3199:Marine Ecology Progress Series 3115:Marine Ecology Progress Series 2455:Marine Ecology Progress Series 2367:Journal of Molecular Evolution 1920:Marine Ecology Progress Series 1720: 1677: 1626: 1574: 1531: 1488: 1455: 1400: 875:aerobic anoxygenic phototrophy 846:Heterotrophic bacterioplankton 1: 3934:High lipid content microalgae 3465:10.1016/j.aquatox.2017.11.007 1349: 610:Christian Gottfried Ehrenberg 409:Great Atlantic Sargassum Belt 3905: 3645:Geophysical Research Letters 3492:Journal of Plankton Research 3395:Water Science and Technology 2155:Journal of Plankton Research 2095:10.1016/j.pocean.2015.01.008 1749:10.1080/10643389.2013.803797 1433:10.1126/science.281.5374.237 591: 7: 4533:Fish diseases and parasites 4044:Photosynthetic picoplankton 3866:A list of Seawater Bacteria 3160:The Journal of Protozoology 2331:10.1007/978-3-319-12415-5_7 1472:10.1007/978-94-007-0388-9_1 1277: 1018:terminal electron acceptors 923: 138:Photosynthetic picoplankton 10: 4675: 4523:Dimethylsulfoniopropionate 4024:Heterotrophic picoplankton 3601:Limnology and Oceanography 3248:Limnology and Oceanography 3063:Limnology and Oceanography 3013:Limnology and Oceanography 2612:Environmental Microbiology 2387:10.1007/s00239-024-10159-y 1540:Limnology and Oceanography 1368:Photosynthetic Prokaryotes 1114:dimethylsulfoniopropionate 733:epifluorescence microscope 612:. They are found in both 583: 107:Heterotrophic picoplankton 4578:Marine primary production 4475: 4423: 4360: 4351: 4294: 4249: 4154: 4145: 4067: 4011: 4000: 3913: 3834:Introductory Oceanography 3804:10.1007/s10452-016-9565-4 3622:10.4319/lo.2001.46.8.1998 3269:10.4319/lo.1988.33.3.0409 3084:10.4319/lo.1990.35.7.1437 3033:10.4319/lo.2003.48.5.1855 2811:Yoch DC (December 2002). 2659:Frontiers in Microbiology 2502:, Taghon GL (June 2006). 2229:FEMS Microbiology Reviews 1776:FEMS Microbiology Reviews 1560:10.4319/lo.1979.24.5.0928 1509:10.1007/s00216-004-3020-4 1376:10.1007/978-1-4757-1332-9 1147: 1091: 885: 754:anoxygenic photosynthesis 464:Marine primary production 4498:Algal nutrient solutions 4240:Thalassiosira pseudonana 4112:Flavobacterium columnare 4099:Enteric redmouth disease 3057:Currie DJ (1990-11-01). 2672:10.3389/fmicb.2011.00172 2118:Treatise on Geochemistry 2075:Progress in Oceanography 1584:Archives of Microbiology 1083:Dissolved organic matter 1078:Dissolved organic matter 4644:Biological oceanography 4518:Diel vertical migration 4034:Microphyte (microalgae) 4019:Eukaryotic picoplankton 3964:Paradox of the plankton 2870:Geomicrobiology Journal 2498:Gruber DF, Simjouw JP, 1834:10.1023/a:1015611023296 1238:Ecological significance 909:sequestration of carbon 766:Synechococcus elongatus 485:Paradox of the plankton 454:Diel vertical migration 4380:Gelatinous zooplankton 2890:10.1080/01490450303901 2427:10.1099/mic.0.023275-0 1247: 1200: 933: 900:biological carbon pump 881:Biogeochemical cycling 769: 736: 599: 332:Gelatinous zooplankton 4573:Marine microorganisms 4343:Velvet (fish disease) 4078:Aeromonas salmonicida 3944:Marine microorganisms 3505:10.1093/plankt/fbv004 3407:10.2166/wst.2001.0518 3352:Global Change Biology 2168:10.1093/plankt/fbw091 1973:10.1128/MMBR.00020-14 1245: 1198: 1059:are largely also non- 956:), which is fixed by 931: 762: 730: 4325:Pfiesteria piscicida 4125:Marine bacteriophage 4029:Marine microplankton 3666:10.1029/2003gl018857 2937:10.1128/AEM.03873-14 2528:10.1128/aem.02882-05 1343:Marine bacteriophage 1191:Trophic interactions 644:, and include major 389:Cyanobacterial bloom 153:Marine microplankton 4568:Ocean acidification 4503:Artificial seawater 4270:Coscinodiscophyceae 4136:Streptococcus iniae 4119:Pelagibacter ubique 3830:Thurman HV (1997). 3796:2016AqEco..50..163S 3753:10.1038/nature03089 3745:2004Natur.432..610S 3702:10.1038/nature02300 3694:2004Natur.427..332S 3657:2004GeoRL..31.2202B 3636:Beniston M (2004). 3613:2001LimOc..46.1998K 3574:2004Ecol...85.2960H 3524:The New Phytologist 3457:2018AqTox.194...78Z 3364:2008GCBio..14..495J 3312:1986MEPS...32..169S 3260:1988LimOc..33..409B 3211:1986MEPS...33...99A 3127:1982MEPS....9...35F 3075:1990LimOc..35.1437C 3025:2003LimOc..48.1855B 2982:1999Natur.397..508B 2929:2015ApEnM..81.4184C 2882:2003GmbJ...20..375M 2829:2002ApEnM..68.5804Y 2782:1987Natur.326..655C 2722:1999ApEnM..65.3810G 2624:2008EnvMi..10.2397H 2573:1991Natur.352..612K 2520:2006ApEnM..72.4184G 2467:1995MEPS..118..283S 2420:(Pt 4): 1332–1339. 2379:2024JMolE..92..121R 2289:2011ARMS....3..197Z 2120:. pp. 93–122. 2087:2015PrOce.134..432L 2025:2005ApEnM..71.5665B 1932:1988MEPS...43....1C 1885:10.1038/nature01240 1877:2002Natur.420..806M 1741:2014CREST..44.1995A 1647:1988Natur.334..340C 1596:1992ArMic.157..297C 1552:1979LimOc..24..928J 1425:1998Sci...281..237F 1185:Gammaproteobacteria 1180:Alphaproteobacteria 1109:Gammaproteobacteria 858:Alphaproteobacteria 835:bacteriochlorophyll 473:Ocean fertilization 394:Harmful algal bloom 312:Freshwater plankton 24:Part of a series on 3445:Aquatic Toxicology 3321:10.3354/meps032169 3220:10.3354/meps033099 3136:10.3354/meps009035 3109:Fenchel T (1982). 2476:10.3354/meps118283 1941:10.3354/meps043001 1686:Biological Reviews 1604:10.1007/bf00245165 1248: 1201: 1074:in cyanobacteria. 934: 770: 746:primary production 737: 414:Great Calcite Belt 4631: 4630: 4471: 4470: 4458:Siphonostomatoida 4453:Poecilostomatoida 4405:Crustacean larvae 4309:Choanoflagellates 4290: 4289: 4280:Bacillariophyceae 4275:Fragilariophyceae 4194:Emiliania huxleyi 4039:Nanophytoplankton 3959:Milky seas effect 3845:978-0-13-262072-7 3739:(7017): 610–614. 3688:(6972): 332–336. 3568:(11): 2960–2970. 2976:(6719): 508–512. 2923:(12): 4184–4194. 2823:(12): 5804–5815. 2776:(6114): 655–661. 2567:(6336): 612–614. 2019:(10): 5665–5677. 1871:(6917): 806–810. 1735:(18): 1995–2037. 1641:(6180): 340–343. 1419:(5374): 237–240. 1385:978-1-4757-1334-3 938:nitrogen fixation 815:nitrogen fixation 695:Bacterioplankton 674:nitrogen fixation 642:picophytoplankton 625:ecological niches 572:component of the 563: 562: 419:Milky seas effect 126:Nanophytoplankton 4666: 4385:Hunting copepods 4358: 4357: 4183:Chaetocerotaceae 4152: 4151: 4069:Bacterioplankton 4006: 3900: 3893: 3886: 3877: 3876: 3849: 3837: 3816: 3815: 3779: 3773: 3772: 3728: 3722: 3721: 3677: 3671: 3670: 3668: 3642: 3633: 3627: 3626: 3624: 3607:(8): 1998–2007. 3592: 3586: 3585: 3557: 3548: 3547: 3519: 3510: 3509: 3507: 3483: 3477: 3476: 3440: 3434: 3433: 3425: 3419: 3418: 3390: 3384: 3383: 3343: 3334: 3333: 3323: 3306:(2/3): 169–179. 3291: 3282: 3281: 3271: 3239: 3233: 3232: 3222: 3190: 3184: 3183: 3155: 3149: 3148: 3138: 3106: 3097: 3096: 3086: 3069:(7): 1437–1455. 3054: 3045: 3044: 3019:(5): 1855–1868. 3008: 3002: 3001: 2965: 2959: 2958: 2948: 2908: 2902: 2901: 2865: 2859: 2858: 2848: 2808: 2802: 2801: 2790:10.1038/326655a0 2761: 2752: 2751: 2741: 2716:(9): 3810–3819. 2701: 2695: 2694: 2684: 2674: 2650: 2644: 2643: 2618:(9): 2397–2410. 2607: 2601: 2600: 2581:10.1038/352612a0 2556: 2550: 2549: 2539: 2514:(6): 4184–4191. 2495: 2489: 2488: 2478: 2446: 2440: 2439: 2429: 2405: 2399: 2398: 2362: 2353: 2352: 2318: 2309: 2308: 2272: 2263: 2262: 2252: 2220: 2214: 2213: 2187: 2181: 2180: 2170: 2146: 2140: 2139: 2113: 2107: 2106: 2066: 2055: 2054: 2044: 2004: 1995: 1994: 1984: 1952: 1946: 1945: 1943: 1911: 1905: 1904: 1860: 1854: 1853: 1816: 1810: 1809: 1799: 1767: 1761: 1760: 1724: 1718: 1717: 1681: 1675: 1674: 1655:10.1038/334340a0 1630: 1624: 1623: 1578: 1572: 1571: 1535: 1529: 1528: 1492: 1486: 1485: 1459: 1453: 1452: 1404: 1398: 1397: 1363: 1303:Polynucleobacter 1049:Leptolyngbyaceae 1015: 1014: 1013: 1003: 1002: 1001: 991: 990: 989: 975: 974: 973: 853:Pelagibacterales 686:remineralisation 602: 594: 586: 585: 566:Bacterioplankton 555: 548: 541: 528: 523: 522: 184:coccolithophores 121:Microzooplankton 80:Bacterioplankton 40: 21: 20: 4674: 4673: 4669: 4668: 4667: 4665: 4664: 4663: 4654:Aquatic ecology 4634: 4633: 4632: 4627: 4558:Marine mucilage 4513:Biological pump 4467: 4419: 4390:Ichthyoplankton 4347: 4314:Dinoflagellates 4286: 4245: 4216:Nannochloropsis 4200:Eustigmatophyte 4188:Coccolithophore 4141: 4063: 4007: 3998: 3929:CLAW hypothesis 3909: 3904: 3857: 3852: 3846: 3825: 3823:Further reading 3820: 3819: 3784:Aquatic Ecology 3780: 3776: 3729: 3725: 3678: 3674: 3640: 3634: 3630: 3593: 3589: 3582:10.1890/03-0763 3558: 3551: 3520: 3513: 3484: 3480: 3441: 3437: 3426: 3422: 3391: 3387: 3344: 3337: 3292: 3285: 3240: 3236: 3191: 3187: 3156: 3152: 3107: 3100: 3055: 3048: 3009: 3005: 2966: 2962: 2909: 2905: 2866: 2862: 2809: 2805: 2762: 2755: 2702: 2698: 2651: 2647: 2608: 2604: 2557: 2553: 2496: 2492: 2447: 2443: 2406: 2402: 2363: 2356: 2341: 2319: 2312: 2273: 2266: 2221: 2217: 2202: 2188: 2184: 2147: 2143: 2136: 2114: 2110: 2067: 2058: 2005: 1998: 1953: 1949: 1912: 1908: 1861: 1857: 1822:Aquatic Ecology 1817: 1813: 1768: 1764: 1725: 1721: 1682: 1678: 1631: 1627: 1579: 1575: 1536: 1532: 1493: 1489: 1482: 1460: 1456: 1405: 1401: 1386: 1364: 1357: 1352: 1347: 1338:Marine bacteria 1280: 1240: 1193: 1157:biogenic silica 1150: 1130:CLAW hypothesis 1118:dimethylsulfide 1094: 1088: 1080: 1064:nitrogen fixers 1035:An analysis on 1031: 1027: 1023: 1012: 1009: 1008: 1007: 1005: 1000: 997: 996: 995: 993: 988: 985: 984: 983: 981: 972: 969: 968: 967: 965: 955: 942:denitrification 926: 919: 915: 905: 892:solubility pump 888: 883: 848: 807:Prochlorococcus 803:. Synechococcus 801:Prochlorococcus 742: 725: 682:denitrification 651:Prochlorococcus 648:groups such as 559: 518: 511: 510: 509: 468: 444:CLAW hypothesis 433: 425: 424: 423: 373: 363: 362: 361: 342:Ichthyoplankton 326: 318: 317: 316: 307: 291:Marine plankton 286: 271: 263: 262: 261: 252: 243: 227: 207: 195: 189:dinoflagellates 180: 167: 159: 158: 157: 111: 101: 91: 90: 89: 65: 50: 17: 12: 11: 5: 4672: 4662: 4661: 4656: 4651: 4646: 4629: 4628: 4626: 4625: 4620: 4615: 4610: 4605: 4600: 4595: 4590: 4585: 4583:Pseudoplankton 4580: 4575: 4570: 4565: 4560: 4555: 4550: 4545: 4540: 4535: 4530: 4525: 4520: 4515: 4510: 4505: 4500: 4495: 4490: 4485: 4479: 4477: 4476:Related topics 4473: 4472: 4469: 4468: 4466: 4465: 4460: 4455: 4450: 4445: 4440: 4435: 4429: 4427: 4425:Copepod orders 4421: 4420: 4418: 4417: 4412: 4407: 4402: 4397: 4392: 4387: 4382: 4377: 4372: 4367: 4361: 4355: 4349: 4348: 4346: 4345: 4340: 4333: 4328: 4321: 4316: 4311: 4306: 4300: 4298: 4292: 4291: 4288: 4287: 4285: 4284: 4283: 4282: 4277: 4272: 4261: 4255: 4253: 4247: 4246: 4244: 4243: 4236: 4231: 4229:Prasinophyceae 4226: 4219: 4212: 4207: 4202: 4197: 4190: 4185: 4180: 4173: 4166: 4161: 4155: 4149: 4143: 4142: 4140: 4139: 4132: 4127: 4122: 4115: 4108: 4105:Flavobacterium 4101: 4096: 4091: 4086: 4081: 4073: 4071: 4065: 4064: 4062: 4061: 4056: 4051: 4046: 4041: 4036: 4031: 4026: 4021: 4015: 4013: 4009: 4008: 4001: 3999: 3997: 3996: 3991: 3986: 3981: 3976: 3971: 3966: 3961: 3956: 3951: 3946: 3941: 3936: 3931: 3926: 3920: 3918: 3911: 3910: 3903: 3902: 3895: 3888: 3880: 3874: 3873: 3868: 3863: 3856: 3855:External links 3853: 3851: 3850: 3844: 3826: 3824: 3821: 3818: 3817: 3790:(2): 163–174. 3774: 3723: 3672: 3628: 3587: 3549: 3530:(3): 407–417. 3511: 3498:(2): 388–398. 3478: 3435: 3420: 3401:(9): 107–114. 3385: 3358:(3): 495–512. 3335: 3283: 3254:(3): 409–420. 3234: 3185: 3166:(3): 409–415. 3150: 3098: 3046: 3003: 2960: 2903: 2876:(4): 375–388. 2860: 2803: 2753: 2696: 2645: 2602: 2551: 2490: 2441: 2400: 2373:(2): 121–137. 2354: 2339: 2310: 2283:(1): 197–225. 2264: 2235:(3): 286–302. 2215: 2200: 2182: 2141: 2134: 2108: 2056: 1996: 1967:(4): 573–587. 1947: 1906: 1855: 1828:(2): 205–218. 1811: 1782:(3): 286–302. 1762: 1719: 1692:(4): 437–481. 1676: 1625: 1590:(3): 297–300. 1573: 1546:(5): 928–935. 1530: 1503:(3): 559–569. 1487: 1480: 1454: 1399: 1384: 1354: 1353: 1351: 1348: 1346: 1345: 1340: 1335: 1330: 1325: 1320: 1313: 1306: 1299: 1292: 1287: 1281: 1279: 1276: 1239: 1236: 1192: 1189: 1170:Flavobacterium 1149: 1146: 1093: 1090: 1086: 1079: 1076: 1032:in the ocean. 1029: 1025: 1021: 1010: 998: 986: 970: 953: 925: 922: 917: 913: 903: 896:carbonate pump 887: 884: 882: 879: 847: 844: 782:phycoerytherin 741: 738: 731:Image from an 724: 721: 717:bacteriophages 690:methanogenesis 646:cyanobacterial 638:chemosynthesis 634:photosynthesis 568:refers to the 561: 560: 558: 557: 550: 543: 535: 532: 531: 530: 529: 513: 512: 508: 507: 502: 497: 492: 487: 482: 481: 480: 469: 467: 466: 461: 456: 451: 446: 441: 435: 434: 432:Related topics 431: 430: 427: 426: 422: 421: 416: 411: 406: 404:Eutrophication 401: 396: 391: 386: 384:Critical depth 381: 375: 374: 369: 368: 365: 364: 360: 359: 354: 352:Pseudoplankton 349: 344: 339: 334: 328: 327: 324: 323: 320: 319: 315: 314: 308: 306: 305: 304: 303: 298: 287: 285: 284: 279: 273: 272: 269: 268: 265: 264: 260: 259: 253: 251: 250: 244: 242: 241: 240: 239: 228: 226: 225: 224: 223: 218: 213: 211:foraminiferans 208: 196: 194: 193: 192: 191: 186: 181: 169: 168: 165: 164: 161: 160: 156: 155: 150: 145: 140: 135: 134: 133: 123: 118: 112: 110: 109: 103: 102: 97: 96: 93: 92: 88: 87: 82: 77: 72: 66: 64: 63: 58: 52: 51: 46: 45: 42: 41: 33: 32: 26: 25: 15: 9: 6: 4: 3: 2: 4671: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4641: 4639: 4624: 4621: 4619: 4616: 4614: 4611: 4609: 4606: 4604: 4601: 4599: 4596: 4594: 4593:Tychoplankton 4591: 4589: 4586: 4584: 4581: 4579: 4576: 4574: 4571: 4569: 4566: 4564: 4563:Microbial mat 4561: 4559: 4556: 4554: 4551: 4549: 4546: 4544: 4541: 4539: 4536: 4534: 4531: 4529: 4526: 4524: 4521: 4519: 4516: 4514: 4511: 4509: 4506: 4504: 4501: 4499: 4496: 4494: 4491: 4489: 4486: 4484: 4481: 4480: 4478: 4474: 4464: 4461: 4459: 4456: 4454: 4451: 4449: 4448:Monstrilloida 4446: 4444: 4443:Harpacticoida 4441: 4439: 4436: 4434: 4431: 4430: 4428: 4426: 4422: 4416: 4413: 4411: 4408: 4406: 4403: 4401: 4400:Marine larvae 4398: 4396: 4393: 4391: 4388: 4386: 4383: 4381: 4378: 4376: 4373: 4371: 4368: 4366: 4363: 4362: 4359: 4356: 4354: 4350: 4344: 4341: 4339: 4338: 4334: 4332: 4329: 4327: 4326: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4301: 4299: 4297: 4293: 4281: 4278: 4276: 4273: 4271: 4267: 4266: 4265: 4262: 4260: 4257: 4256: 4254: 4252: 4251:Diatom orders 4248: 4242: 4241: 4237: 4235: 4232: 4230: 4227: 4225: 4224: 4220: 4218: 4217: 4213: 4211: 4208: 4206: 4203: 4201: 4198: 4196: 4195: 4191: 4189: 4186: 4184: 4181: 4179: 4178: 4174: 4172: 4171: 4170:Bacteriastrum 4167: 4165: 4162: 4160: 4157: 4156: 4153: 4150: 4148: 4147:Phytoplankton 4144: 4138: 4137: 4133: 4131: 4128: 4126: 4123: 4121: 4120: 4116: 4114: 4113: 4109: 4107: 4106: 4102: 4100: 4097: 4095: 4092: 4090: 4087: 4085: 4084:Cyanobacteria 4082: 4080: 4079: 4075: 4074: 4072: 4070: 4066: 4060: 4057: 4055: 4054:Picoeukaryote 4052: 4050: 4049:Picobiliphyte 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4027: 4025: 4022: 4020: 4017: 4016: 4014: 4010: 4005: 3995: 3992: 3990: 3987: 3985: 3982: 3980: 3977: 3975: 3972: 3970: 3967: 3965: 3962: 3960: 3957: 3955: 3952: 3950: 3947: 3945: 3942: 3940: 3937: 3935: 3932: 3930: 3927: 3925: 3922: 3921: 3919: 3917: 3912: 3908: 3901: 3896: 3894: 3889: 3887: 3882: 3881: 3878: 3872: 3869: 3867: 3864: 3862: 3859: 3858: 3847: 3841: 3836: 3835: 3828: 3827: 3813: 3809: 3805: 3801: 3797: 3793: 3789: 3785: 3778: 3770: 3766: 3762: 3758: 3754: 3750: 3746: 3742: 3738: 3734: 3727: 3719: 3715: 3711: 3707: 3703: 3699: 3695: 3691: 3687: 3683: 3676: 3667: 3662: 3658: 3654: 3651:(2): L02202. 3650: 3646: 3639: 3632: 3623: 3618: 3614: 3610: 3606: 3602: 3598: 3591: 3583: 3579: 3575: 3571: 3567: 3563: 3556: 3554: 3545: 3541: 3537: 3533: 3529: 3525: 3518: 3516: 3506: 3501: 3497: 3493: 3489: 3482: 3474: 3470: 3466: 3462: 3458: 3454: 3450: 3446: 3439: 3431: 3424: 3416: 3412: 3408: 3404: 3400: 3396: 3389: 3381: 3377: 3373: 3369: 3365: 3361: 3357: 3353: 3349: 3342: 3340: 3331: 3327: 3322: 3317: 3313: 3309: 3305: 3301: 3297: 3290: 3288: 3279: 3275: 3270: 3265: 3261: 3257: 3253: 3249: 3245: 3238: 3230: 3226: 3221: 3216: 3212: 3208: 3205:(2): 99–109. 3204: 3200: 3196: 3189: 3181: 3177: 3173: 3169: 3165: 3161: 3154: 3146: 3142: 3137: 3132: 3128: 3124: 3120: 3116: 3112: 3105: 3103: 3094: 3090: 3085: 3080: 3076: 3072: 3068: 3064: 3060: 3053: 3051: 3042: 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3007: 2999: 2995: 2991: 2990:10.1038/17351 2987: 2983: 2979: 2975: 2971: 2964: 2956: 2952: 2947: 2942: 2938: 2934: 2930: 2926: 2922: 2918: 2914: 2907: 2899: 2895: 2891: 2887: 2883: 2879: 2875: 2871: 2864: 2856: 2852: 2847: 2842: 2838: 2834: 2830: 2826: 2822: 2818: 2814: 2807: 2799: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2760: 2758: 2749: 2745: 2740: 2735: 2731: 2727: 2723: 2719: 2715: 2711: 2707: 2700: 2692: 2688: 2683: 2678: 2673: 2668: 2664: 2660: 2656: 2649: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2606: 2598: 2594: 2590: 2586: 2582: 2578: 2574: 2570: 2566: 2562: 2555: 2547: 2543: 2538: 2533: 2529: 2525: 2521: 2517: 2513: 2509: 2505: 2501: 2500:Seitzinger SP 2494: 2486: 2482: 2477: 2472: 2468: 2464: 2460: 2456: 2452: 2445: 2437: 2433: 2428: 2423: 2419: 2415: 2411: 2404: 2396: 2392: 2388: 2384: 2380: 2376: 2372: 2368: 2361: 2359: 2350: 2346: 2342: 2340:9783319124148 2336: 2332: 2328: 2324: 2317: 2315: 2306: 2302: 2298: 2294: 2290: 2286: 2282: 2278: 2271: 2269: 2260: 2256: 2251: 2246: 2242: 2238: 2234: 2230: 2226: 2219: 2211: 2207: 2203: 2201:9781402020872 2197: 2193: 2186: 2178: 2174: 2169: 2164: 2160: 2156: 2152: 2145: 2137: 2135:9780080983004 2131: 2127: 2123: 2119: 2112: 2104: 2100: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2065: 2063: 2061: 2052: 2048: 2043: 2038: 2034: 2030: 2026: 2022: 2018: 2014: 2010: 2003: 2001: 1992: 1988: 1983: 1978: 1974: 1970: 1966: 1962: 1958: 1951: 1942: 1937: 1933: 1929: 1925: 1921: 1917: 1910: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1859: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1815: 1807: 1803: 1798: 1793: 1789: 1785: 1781: 1777: 1773: 1766: 1758: 1754: 1750: 1746: 1742: 1738: 1734: 1730: 1723: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1680: 1672: 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1640: 1636: 1629: 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1577: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1541: 1534: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1491: 1483: 1481:9789400703520 1477: 1473: 1469: 1465: 1458: 1450: 1446: 1442: 1438: 1434: 1430: 1426: 1422: 1418: 1414: 1410: 1403: 1395: 1391: 1387: 1381: 1377: 1373: 1369: 1362: 1360: 1355: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1323:Phytoplankton 1321: 1319: 1318: 1314: 1312: 1311: 1310:Limnohabitans 1307: 1305: 1304: 1300: 1298: 1297: 1293: 1291: 1290:Cyanobacteria 1288: 1286: 1283: 1282: 1275: 1271: 1269: 1265: 1261: 1257: 1254: 1244: 1235: 1231: 1228: 1223: 1218: 1214: 1209: 1206: 1197: 1188: 1186: 1182: 1181: 1176: 1175: 1171: 1167: 1162: 1158: 1154: 1145: 1143: 1138: 1135: 1131: 1127: 1123: 1122:demethylation 1119: 1115: 1111: 1110: 1105: 1101: 1100: 1089: 1084: 1075: 1073: 1069: 1065: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1033: 1019: 979: 963: 962:trichodesmium 959: 951: 947: 943: 939: 930: 921: 910: 901: 897: 893: 878: 876: 872: 868: 867: 862: 860: 859: 854: 843: 841: 840:anoxic waters 836: 830: 828: 827: 826:Trichodesmium 822: 821: 816: 811: 808: 804: 802: 797: 796: 795:Synechococcus 791: 787: 783: 779: 774: 773:Cyanobacteria 768: 767: 761: 757: 755: 751: 747: 734: 729: 720: 718: 714: 710: 706: 702: 698: 693: 691: 687: 683: 679: 678:nitrification 675: 671: 667: 663: 659: 658: 657:Synechococcus 653: 652: 647: 643: 639: 635: 631: 626: 621: 619: 615: 611: 607: 603: 601: 595: 593: 587: 579: 578:Ancient Greek 575: 571: 567: 556: 551: 549: 544: 542: 537: 536: 534: 533: 527: 517: 516: 515: 514: 506: 503: 501: 498: 496: 493: 491: 488: 486: 483: 479: 476: 475: 474: 471: 470: 465: 462: 460: 457: 455: 452: 450: 447: 445: 442: 440: 437: 436: 429: 428: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 376: 372: 367: 366: 358: 357:Tychoplankton 355: 353: 350: 348: 345: 343: 340: 338: 335: 333: 330: 329: 322: 321: 313: 310: 309: 302: 299: 297: 294: 293: 292: 289: 288: 283: 280: 278: 275: 274: 267: 266: 258: 255: 254: 249: 246: 245: 238: 237:cyanobacteria 235: 234: 233: 230: 229: 222: 219: 217: 214: 212: 209: 206: 203: 202: 201: 198: 197: 190: 187: 185: 182: 179: 176: 175: 174: 171: 170: 163: 162: 154: 151: 149: 146: 144: 143:Picoeukaryote 141: 139: 136: 132: 129: 128: 127: 124: 122: 119: 117: 114: 113: 108: 105: 104: 100: 95: 94: 86: 85:Virioplankton 83: 81: 78: 76: 73: 71: 68: 67: 62: 59: 57: 56:Phytoplankton 54: 53: 49: 44: 43: 39: 35: 34: 31: 28: 27: 23: 22: 19: 4588:Stromatolite 4483:Aeroplankton 4410:Salmon louse 4365:Chaetognatha 4337:Symbiodinium 4335: 4323: 4238: 4234:Raphidophyte 4221: 4214: 4210:Stramenopile 4192: 4175: 4168: 4134: 4117: 4110: 4103: 4076: 4068: 4059:Picoplankton 3984:Spring bloom 3954:Mycoplankton 3949:Meroplankton 3939:Holoplankton 3833: 3787: 3783: 3777: 3736: 3732: 3726: 3685: 3681: 3675: 3648: 3644: 3631: 3604: 3600: 3590: 3565: 3561: 3527: 3523: 3495: 3491: 3481: 3448: 3444: 3438: 3429: 3423: 3398: 3394: 3388: 3355: 3351: 3303: 3299: 3251: 3247: 3237: 3202: 3198: 3188: 3163: 3159: 3153: 3121:(1): 35–42. 3118: 3114: 3066: 3062: 3016: 3012: 3006: 2973: 2969: 2963: 2920: 2916: 2906: 2873: 2869: 2863: 2820: 2816: 2806: 2773: 2769: 2713: 2709: 2699: 2662: 2658: 2648: 2615: 2611: 2605: 2564: 2560: 2554: 2511: 2507: 2493: 2458: 2454: 2444: 2417: 2414:Microbiology 2413: 2403: 2370: 2366: 2322: 2280: 2276: 2232: 2228: 2218: 2191: 2185: 2158: 2154: 2144: 2117: 2111: 2078: 2074: 2016: 2012: 1964: 1960: 1950: 1923: 1919: 1909: 1868: 1864: 1858: 1825: 1821: 1814: 1779: 1775: 1765: 1732: 1728: 1722: 1689: 1685: 1679: 1638: 1634: 1628: 1587: 1583: 1576: 1543: 1539: 1533: 1500: 1496: 1490: 1463: 1457: 1416: 1412: 1402: 1367: 1315: 1308: 1301: 1296:Pelagibacter 1294: 1272: 1266: 1262: 1258: 1252: 1249: 1232: 1210: 1202: 1184: 1178: 1164: 1151: 1141: 1139: 1134:methanethiol 1126:sulfur cycle 1107: 1097: 1095: 1081: 1071: 1067: 1056: 1044: 1034: 946:assimilation 935: 889: 864: 863: 856: 849: 831: 824: 818: 817:. The genus 812: 806: 799: 793: 778:chlorophylls 771: 764: 743: 723:Major groups 694: 662:saprotrophic 655: 649: 622: 597: 589: 581: 565: 564: 399:Spring bloom 347:Meroplankton 337:Holoplankton 277:Aeroplankton 205:radiolarians 148:Picoplankton 79: 75:Mycoplankton 70:Mixoplankton 48:Trophic mode 18: 4649:Planktology 4553:Manta trawl 4538:Heterotroph 4488:Algaculture 4353:Zooplankton 4296:Flagellates 4177:Chaetoceros 4130:SAR11 clade 3989:Thin layers 3974:Planktology 3969:Planktivore 3924:Algal bloom 2461:: 283–294. 2081:: 432–450. 1333:Zooplankton 1317:Roseobacter 1253:Microcystis 1227:prokaryotic 1217:flagellates 1205:zooplankton 1174:Bacteroides 1099:Roseobacter 1053:Nostocaceae 1037:metagenomes 958:diazotrophs 871:mixed layer 866:Roseobacter 790:carotenoids 786:phycocyanin 705:zooplankton 670:marine snow 630:autotrophic 500:Thin layers 495:Planktology 490:Planktivore 439:Algaculture 379:Algal bloom 325:Other types 296:prokaryotes 282:Geoplankton 166:By taxonomy 61:Zooplankton 4638:Categories 4548:Macroalgae 4508:Autotrophs 4438:Cyclopoida 4375:Ctenophora 4304:Brevetoxin 4094:Cyanotoxin 4089:Cyanobiont 1350:References 1211:In marine 1061:heterocyst 898:, and the 709:protozoans 618:freshwater 270:By habitat 200:Protozoans 131:calcareous 116:Microalgae 4493:Algal mat 4433:Calanoida 4415:Sea louse 4395:Jellyfish 4370:Ciguatera 4331:Saxitoxin 4319:Flagellum 4268:Classes: 4259:Centrales 4159:Auxospore 3451:: 78–85. 3278:1939-5590 3180:1550-7408 3093:1939-5590 3041:0024-3590 2998:0028-0836 2898:0149-0451 2798:0028-0836 2589:1476-4687 2485:0171-8630 2177:0142-7873 2103:0079-6611 1842:1386-2588 1714:221529895 1706:1469-185X 1663:1476-4687 1612:0302-8933 1568:1939-5590 1222:eutrophic 1166:Cytophaga 1120:(DMS) or 978:nitrified 713:infection 707:(usually 697:abundance 666:dissolved 600:bacterium 570:bacterial 4264:Pennales 4223:Navicula 4205:Frustule 3979:Red tide 3916:plankton 3907:Plankton 3812:10528364 3769:13882658 3761:15577907 3710:14716318 3544:33863010 3473:29169051 3432:: 23 pp. 3415:11419118 3380:54079634 3330:24824977 3229:24821288 3145:24814568 2955:25862229 2855:12450799 2748:10473380 2691:21886640 2640:18510552 2546:16751530 2436:19332834 2395:38489069 2349:25707470 2305:21329204 2259:22928644 2210:54974524 2051:16204474 1991:25428935 1926:: 1–10. 1893:12490947 1850:20520535 1806:22928644 1757:84472933 1620:32682912 1525:35388030 1517:15714301 1449:45140824 1328:Plankton 1278:See also 1161:frustule 960:such as 924:Nitrogen 820:Anabaena 750:oxygenic 703:upon by 614:seawater 592:planktos 584:πλανκτος 574:plankton 526:Category 301:protists 232:Bacteria 221:ciliates 30:Plankton 4618:MOCNESS 4528:f-ratio 4463:More... 4164:Axodine 4012:By size 3994:More... 3792:Bibcode 3741:Bibcode 3718:4431020 3690:Bibcode 3653:Bibcode 3609:Bibcode 3570:Bibcode 3562:Ecology 3453:Bibcode 3360:Bibcode 3308:Bibcode 3256:Bibcode 3207:Bibcode 3123:Bibcode 3071:Bibcode 3021:Bibcode 2978:Bibcode 2946:4524131 2925:Bibcode 2878:Bibcode 2825:Bibcode 2778:Bibcode 2718:Bibcode 2682:3155054 2665:: 172. 2620:Bibcode 2597:4285758 2569:Bibcode 2537:1489638 2516:Bibcode 2463:Bibcode 2375:Bibcode 2285:Bibcode 2250:3655545 2083:Bibcode 2042:1265941 2021:Bibcode 1982:4248658 1928:Bibcode 1901:4360530 1873:Bibcode 1797:3655545 1737:Bibcode 1671:4373102 1643:Bibcode 1592:Bibcode 1548:Bibcode 1441:9657713 1421:Bibcode 1413:Science 1394:6924271 1213:pelagic 1153:Diatoms 950:anammox 459:f-ratio 257:Viruses 248:Archaea 216:amoebae 178:diatoms 99:By size 4613:AusCPR 4603:C-MORE 3914:About 3842:  3810:  3767:  3759:  3733:Nature 3716:  3708:  3682:Nature 3542:  3471:  3413:  3378:  3328:  3276:  3227:  3178:  3143:  3091:  3039:  2996:  2970:Nature 2953:  2943:  2896:  2853:  2846:134419 2843:  2796:  2770:Nature 2746:  2736:  2689:  2679:  2638:  2595:  2587:  2561:Nature 2544:  2534:  2483:  2434:  2393:  2347:  2337:  2303:  2257:  2247:  2208:  2198:  2175:  2132:  2101:  2049:  2039:  1989:  1979:  1899:  1891:  1865:Nature 1848:  1840:  1804:  1794:  1755:  1712:  1704:  1669:  1661:  1635:Nature 1618:  1610:  1566:  1523:  1515:  1478:  1447:  1439:  1392:  1382:  1183:, and 1148:Silica 1106:, and 1092:Sulfur 894:, the 886:Carbon 701:preyed 524:  505:NAAMES 371:Blooms 3808:S2CID 3765:S2CID 3714:S2CID 3641:(PDF) 3376:S2CID 3326:JSTOR 3225:JSTOR 3141:JSTOR 2739:99705 2593:S2CID 2161:(2). 1897:S2CID 1846:S2CID 1753:S2CID 1710:S2CID 1667:S2CID 1616:S2CID 1521:S2CID 1445:S2CID 1390:S2CID 1104:SAR11 1072:NirBD 1068:NirBD 1057:NirBD 1045:NirBD 606:Latin 580:word 173:Algae 4623:SCAR 4598:Zoid 4543:HNLC 3840:ISBN 3757:PMID 3706:PMID 3540:PMID 3469:PMID 3411:PMID 3274:ISSN 3176:ISSN 3089:ISSN 3037:ISSN 2994:ISSN 2951:PMID 2894:ISSN 2851:PMID 2794:ISSN 2744:PMID 2687:PMID 2636:PMID 2585:ISSN 2542:PMID 2481:ISSN 2432:PMID 2391:PMID 2345:PMID 2335:ISBN 2301:PMID 2255:PMID 2206:OCLC 2196:ISBN 2173:ISSN 2130:ISBN 2099:ISSN 2047:PMID 1987:PMID 1889:PMID 1838:ISSN 1802:PMID 1702:ISSN 1659:ISSN 1608:ISSN 1564:ISSN 1513:PMID 1476:ISBN 1437:PMID 1380:ISBN 1142:dsyB 1051:and 798:and 788:and 752:and 688:and 654:and 616:and 604:, a 478:iron 4608:CPR 3800:doi 3749:doi 3737:432 3698:doi 3686:427 3661:doi 3617:doi 3578:doi 3532:doi 3528:136 3500:doi 3461:doi 3449:194 3403:doi 3368:doi 3316:doi 3264:doi 3215:doi 3168:doi 3131:doi 3079:doi 3029:doi 2986:doi 2974:397 2941:PMC 2933:doi 2886:doi 2841:PMC 2833:doi 2786:doi 2774:326 2734:PMC 2726:doi 2677:PMC 2667:doi 2628:doi 2577:doi 2565:352 2532:PMC 2524:doi 2471:doi 2459:118 2422:doi 2418:155 2383:doi 2327:doi 2293:doi 2245:PMC 2237:doi 2163:doi 2122:doi 2091:doi 2079:134 2037:PMC 2029:doi 1977:PMC 1969:doi 1936:doi 1881:doi 1869:420 1830:doi 1792:PMC 1784:doi 1745:doi 1694:doi 1651:doi 1639:334 1600:doi 1588:157 1556:doi 1505:doi 1501:382 1468:doi 1429:doi 1417:281 1372:doi 1016:as 1004:or 980:to 715:by 636:or 449:CPR 4640:: 3806:. 3798:. 3788:50 3786:. 3763:. 3755:. 3747:. 3735:. 3712:. 3704:. 3696:. 3684:. 3659:. 3649:31 3647:. 3643:. 3615:. 3605:46 3603:. 3599:. 3576:. 3566:85 3564:. 3552:^ 3538:. 3526:. 3514:^ 3496:37 3494:. 3490:. 3467:. 3459:. 3447:. 3409:. 3399:43 3397:. 3374:. 3366:. 3356:14 3354:. 3350:. 3338:^ 3324:. 3314:. 3304:32 3302:. 3298:. 3286:^ 3272:. 3262:. 3252:33 3250:. 3246:. 3223:. 3213:. 3203:33 3201:. 3197:. 3174:. 3164:32 3162:. 3139:. 3129:. 3117:. 3113:. 3101:^ 3087:. 3077:. 3067:35 3065:. 3061:. 3049:^ 3035:. 3027:. 3017:48 3015:. 2992:. 2984:. 2972:. 2949:. 2939:. 2931:. 2921:81 2919:. 2915:. 2892:. 2884:. 2874:20 2872:. 2849:. 2839:. 2831:. 2821:68 2819:. 2815:. 2792:. 2784:. 2772:. 2768:. 2756:^ 2742:. 2732:. 2724:. 2714:65 2712:. 2708:. 2685:. 2675:. 2661:. 2657:. 2634:. 2626:. 2616:10 2614:. 2591:. 2583:. 2575:. 2563:. 2540:. 2530:. 2522:. 2512:72 2510:. 2506:. 2479:. 2469:. 2457:. 2453:. 2430:. 2416:. 2412:. 2389:. 2381:. 2371:92 2369:. 2357:^ 2343:. 2333:. 2313:^ 2299:. 2291:. 2279:. 2267:^ 2253:. 2243:. 2233:37 2231:. 2227:. 2204:. 2171:. 2159:39 2157:. 2153:. 2128:. 2097:. 2089:. 2077:. 2073:. 2059:^ 2045:. 2035:. 2027:. 2017:71 2015:. 2011:. 1999:^ 1985:. 1975:. 1965:78 1963:. 1959:. 1934:. 1924:43 1922:. 1918:. 1895:. 1887:. 1879:. 1867:. 1844:. 1836:. 1826:36 1824:. 1800:. 1790:. 1780:37 1778:. 1774:. 1751:. 1743:. 1733:44 1731:. 1708:. 1700:. 1690:50 1688:. 1665:. 1657:. 1649:. 1637:. 1614:. 1606:. 1598:. 1586:. 1562:. 1554:. 1544:24 1542:. 1519:. 1511:. 1499:. 1474:. 1443:. 1435:. 1427:. 1415:. 1411:. 1388:. 1378:. 1370:. 1358:^ 1177:, 1102:, 1087:2. 1022:2, 1006:NO 994:NO 982:NO 966:NH 944:, 940:, 784:, 780:, 719:. 692:. 684:, 680:, 676:, 620:. 3899:e 3892:t 3885:v 3848:. 3814:. 3802:: 3794:: 3771:. 3751:: 3743:: 3720:. 3700:: 3692:: 3669:. 3663:: 3655:: 3625:. 3619:: 3611:: 3584:. 3580:: 3572:: 3546:. 3534:: 3508:. 3502:: 3475:. 3463:: 3455:: 3417:. 3405:: 3382:. 3370:: 3362:: 3332:. 3318:: 3310:: 3280:. 3266:: 3258:: 3231:. 3217:: 3209:: 3182:. 3170:: 3147:. 3133:: 3125:: 3119:9 3095:. 3081:: 3073:: 3043:. 3031:: 3023:: 3000:. 2988:: 2980:: 2957:. 2935:: 2927:: 2900:. 2888:: 2880:: 2857:. 2835:: 2827:: 2800:. 2788:: 2780:: 2750:. 2728:: 2720:: 2693:. 2669:: 2663:2 2642:. 2630:: 2622:: 2599:. 2579:: 2571:: 2548:. 2526:: 2518:: 2487:. 2473:: 2465:: 2438:. 2424:: 2397:. 2385:: 2377:: 2351:. 2329:: 2307:. 2295:: 2287:: 2281:3 2261:. 2239:: 2212:. 2179:. 2165:: 2138:. 2124:: 2105:. 2093:: 2085:: 2053:. 2031:: 2023:: 1993:. 1971:: 1944:. 1938:: 1930:: 1903:. 1883:: 1875:: 1852:. 1832:: 1808:. 1786:: 1759:. 1747:: 1739:: 1716:. 1696:: 1673:. 1653:: 1645:: 1622:. 1602:: 1594:: 1570:. 1558:: 1550:: 1527:. 1507:: 1484:. 1470:: 1451:. 1431:: 1423:: 1396:. 1374:: 1172:- 1168:- 1030:2 1026:2 1011:2 999:3 987:3 971:4 954:2 918:2 914:2 904:2 588:( 554:e 547:t 540:v

Index

Plankton
Phytoplankton
Trophic mode
Phytoplankton
Zooplankton
Mixoplankton
Mycoplankton
Bacterioplankton
Virioplankton
By size
Heterotrophic picoplankton
Microalgae
Microzooplankton
Nanophytoplankton
calcareous
Photosynthetic picoplankton
Picoeukaryote
Picoplankton
Marine microplankton
Algae
diatoms
coccolithophores
dinoflagellates
Protozoans
radiolarians
foraminiferans
amoebae
ciliates
Bacteria
cyanobacteria

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑