Knowledge

Positron emission

Source 📝

821: 834: 49: 1779: 1646:
A positron is ejected from the parent nucleus, but the daughter (Z−1) atom still has Z atomic electrons from the parent, i.e. the daughter is a negative ion (at least immediately after the positron emission). Since tables of masses are for
2111:
Ledingham KW, McKenna P, McCanny T, Shimizu S, Yang JM, Robson L, Zweit J, Gillies JM, Bailey J, Chimon GN, Clarke RJ (2004). "High power laser production of short-lived isotopes for positron emission tomography".
1654: 1067:, the hypothetical decay of protons, not necessarily those bound with neutrons, not necessarily through the emission of a positron, and not as part of nuclear physics, but rather of 1030:
Because positron emission decreases proton number relative to neutron number, positron decay happens typically in large "proton-rich" radionuclides. Positron decay results in
2160: 1231:
is a short-lived nuclide which does not exist in nature. The discovery of artificial radioactivity would be cited when the husband-and-wife team won the Nobel Prize.
1614:, then positron emission cannot occur and electron capture is the sole decay mode. Certain otherwise electron-capturing isotopes (for instance, 1053:. This rare form of potassium makes up only 0.012% of the element on Earth and has a 1 in 100,000 chance of decaying via positron emission. 2193: 1060:
or beta minus decay (β decay), which occurs when a neutron turns into a proton and the nucleus emits an electron and an antineutrino.
865: 779: 1774:{\displaystyle _{Z}^{A}{\textrm {X}}\rightarrow _{Z-1}^{A}{\textrm {Y}}+_{+1}^{0}{\textrm {e}}^{+}+_{-1}^{0}{\textrm {e}}^{-}} 1600:, since the final state has an electron removed rather than a positron added. As the energy of the decay goes up, so does the 1781:, and, since the mass of the positron is identical to that of the electron, the overall result is that the mass-energy of 128: 1799:
Isotopes which increase in mass under the conversion of a proton to a neutron, or which decrease in mass by less than 2
2065: 1893:) used for positron emission tomography are typically produced by proton irradiation of natural or enriched targets. 432: 1818:, a technique used for medical imaging. The energy emitted depends on the isotope that is decaying; the figure of 820: 2186: 2081: 624: 17: 329: 858: 1815: 31: 642: 612: 113: 2179: 1080: 689: 239: 1212: decay (positron emission). The Curies termed the phenomenon "artificial radioactivity", because 1556: 575: 1789:
the mass of the parent atom exceeds the mass of the daughter atom by at least two electron masses (2
1638:, because the electrons are stripped away and the decay energy is too small for positron emission. 851: 838: 570: 274: 2345: 2310: 2290: 2245: 565: 462: 427: 123: 2456: 2340: 2330: 619: 269: 234: 2164: 1031: 744: 629: 521: 2041: 1084: 684: 2335: 2325: 2121: 1428: 934:(β), the other beta particle being the electron (β) emitted from the β decay of a nucleus. 754: 729: 546: 1932: 8: 2466: 2389: 2280: 2260: 2255: 1635: 1191: 649: 528: 422: 365: 358: 348: 289: 284: 118: 2125: 2137: 2009: 1985: 1958: 1601: 1283: 1267: 1251: 592: 587: 402: 2133: 1286:. As an example, the following equation describes the beta plus decay of carbon-11 to 1041:
Positron emission occurs extremely rarely in nature on Earth. Known instances include
2461: 2240: 2210: 2141: 2061: 1990: 1383: 1242:
which undergo this decay and thereby emit positrons include, but are not limited to:
914: 890: 764: 759: 719: 597: 324: 307: 279: 249: 90: 2300: 2265: 2250: 2202: 2129: 2024: 1980: 1970: 1959:"Physics of pure and non-pure positron emitters for PET: a review and a discussion" 1583: 1552: 1068: 784: 774: 704: 457: 375: 343: 163: 95: 2410: 2305: 2275: 769: 749: 724: 654: 541: 469: 415: 380: 40: 1057: 2431: 2415: 2028: 1786: 1088: 825: 679: 674: 553: 486: 294: 229: 206: 193: 180: 80: 58: 1975: 1034:, changing an atom of one chemical element into an atom of an element with an 2450: 2320: 2235: 1910: 1568: 1035: 931: 804: 799: 794: 789: 739: 397: 370: 214: 153: 106: 85: 2082:"Positron Emission Tomography Imaging at the University of British Columbia" 2394: 1994: 1411: 1279: 1275: 1271: 1064: 1050: 938: 902: 734: 709: 694: 439: 387: 244: 2220: 1616: 1263: 1255: 1247: 699: 392: 314: 167: 2371: 2225: 1586:. For low-energy decays, electron capture is energetically favored by 2 1467:
charge. Quarks arrange themselves in sets of three such that they make
1453: 1042: 927: 894: 669: 659: 516: 496: 319: 189: 2089: 1604:
of positron emission. However, if the energy difference is less than 2
2366: 2358: 2350: 2315: 2230: 1823: 1303: 1259: 1243: 942: 714: 664: 491: 479: 474: 353: 2171: 2058:
Radioactivity: Introduction and History, From the Quantum to Quarks
2008:
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).
1437: 1356: 1329: 1291: 1092: 1046: 910: 48: 1785:
electrons is required, and the β decay is energetically possible
1472: 1239: 906: 176: 149: 141: 73: 63: 2159: 1468: 898: 68: 2110: 1432: 1287: 1190:
emits a positron identical to those found in cosmic rays by
1582:
Nuclei which decay by positron emission may also decay by
2165:
Live Chart of Nuclides: nuclear structure and decay data
937:
An example of positron emission (β decay) is shown with
2051: 2049: 1657: 1579:
quark, effectively converting a proton to a neutron.
2007: 2046: 1806:, cannot spontaneously decay by positron emission. 1773: 2010:"The NUBASE2020 evaluation of nuclear properties" 1913:. The University of North Carolina at Chapel Hill 1475:. In a proton, whose charge is +1, there are two 1074: 2448: 2088:. University of British Columbia. Archived from 2055: 1829:The short-lived positron emitting isotopes C (T 1056:Positron emission should not be confused with 2187: 1956: 1234: 859: 1952: 1950: 1571:emission. Positron emission happens when an 1930: 2194: 2180: 1435:. The two most common types of quarks are 866: 852: 2001: 1984: 1974: 1947: 1513:= 1). Neutrons, with no charge, have one 1171:, and observed that the product isotope 926:). Positron emission is mediated by the 1935:[A new type of radioactivity]. 1427:Inside protons and neutrons, there are 1194:in 1932. This was the first example of 14: 2449: 1641: 1045:interactions and the decay of certain 2201: 2175: 2114:Journal of Physics D: Applied Physics 1957:Conti M, Eriksson L (December 2016). 1422: 2086:Positron Emission Tomography Imaging 1063:Positron emission is different from 30:For the medical imaging method, see 24: 1933:"Un nouveau type de radioactivité" 25: 2478: 2152: 2056:L'Annunziata, Michael F. (2016). 1095:) to effect the nuclear reaction 2158: 833: 832: 819: 47: 1290:-11, emitting a positron and a 2104: 2074: 2042:How it works:Positron emission 2035: 1924: 1903: 1809: 1680: 1075:Discovery of positron emission 13: 1: 1896: 1822:applies only to the decay of 1816:positron emission tomography 1266:, yttrium-86, zirconium-89, 930:. The positron is a type of 905:nucleus is converted into a 32:Positron emission tomography 7: 2134:10.1088/0022-3727/37/16/019 1931:Joliot MF, Curie I (1934). 1814:These isotopes are used in 1298: 613:High-energy nuclear physics 10: 2483: 1441:, which have a charge of + 1262:, gallium-68, bromine-78, 1235:Positron-emitting isotopes 1038:that is less by one unit. 29: 2424: 2403: 2380: 2289: 2209: 2168:(main decay modes) - IAEA 2060:. Elsevier. p. 180. 1976:10.1186/s40658-016-0144-5 1087:bombarded aluminium with 27:Type of radioactive decay 2029:10.1088/1674-1137/abddae 2246:Double electron capture 124:Interacting boson model 1775: 1796:c = 1.022 MeV). 1776: 1575:quark changes into a 1429:fundamental particles 1032:nuclear transmutation 511:High-energy processes 209:– equal all the above 107:Models of the nucleus 1655: 1636:galactic cosmic rays 1555:, quarks can change 547:nuclear astrophysics 2390:Photodisintegration 2311:Proton–proton chain 2281:Spontaneous fission 2261:Isomeric transition 2256:Internal conversion 2126:2004JPhD...37.2341L 1911:"Nuclear Chemistry" 1756: 1724: 1699: 1671: 1642:Energy conservation 1192:Carl David Anderson 529:Photodisintegration 452:Capturing processes 366:Spontaneous fission 359:Internal conversion 290:Valley of stability 285:Island of stability 119:Nuclear shell model 2092:on 22 January 2018 1771: 1739: 1707: 1679: 1658: 1602:branching fraction 1423:Emission mechanism 1085:Irène Joliot-Curie 909:while releasing a 826:Physics portal 620:Quark–gluon plasma 403:Radiogenic nuclide 2444: 2443: 2440: 2439: 2271:Positron emission 2241:Double beta decay 2203:Nuclear processes 2120:(16): 2341–2345. 2017:Chinese Physics C 1762: 1730: 1704: 1676: 1418: 1417: 1058:electron emission 915:electron neutrino 891:radioactive decay 879:Positron emission 876: 875: 562: 308:Radioactive decay 264:Nuclear stability 91:Nuclear structure 16:(Redirected from 2474: 2401: 2400: 2301:Deuterium fusion 2266:Neutron emission 2251:Electron capture 2196: 2189: 2182: 2173: 2172: 2162: 2146: 2145: 2108: 2102: 2101: 2099: 2097: 2078: 2072: 2071: 2053: 2044: 2039: 2033: 2032: 2014: 2005: 1999: 1998: 1988: 1978: 1954: 1945: 1944: 1928: 1922: 1921: 1919: 1918: 1907: 1892: 1887: 1886: 1882: 1876: 1871: 1870: 1866: 1860: 1855: 1854: 1850: 1844: 1839: 1838: 1834: 1821: 1780: 1778: 1777: 1772: 1770: 1769: 1764: 1763: 1760: 1755: 1750: 1738: 1737: 1732: 1731: 1728: 1723: 1718: 1706: 1705: 1702: 1698: 1693: 1678: 1677: 1674: 1670: 1665: 1634:) are stable in 1633: 1631: 1630: 1623: 1622: 1599: 1584:electron capture 1553:weak interaction 1550: 1549: 1545: 1540: 1539: 1535: 1530: 1529: 1525: 1512: 1511: 1507: 1502: 1501: 1497: 1492: 1491: 1487: 1466: 1465: 1461: 1450: 1449: 1445: 1414: 1402: 1401: 1399: 1398: 1390: 1389: 1374: 1373: 1371: 1370: 1363: 1362: 1347: 1345: 1344: 1337: 1336: 1321: 1319: 1318: 1311: 1310: 1299: 1230: 1229: 1228: 1221: 1220: 1211: 1210: 1209: 1202: 1201: 1189: 1188: 1187: 1180: 1179: 1170: 1169: 1168: 1161: 1160: 1151: 1150: 1149: 1142: 1141: 1132: 1131: 1130: 1123: 1122: 1113: 1112: 1111: 1104: 1103: 1069:particle physics 1026: 1025: 1024: 1023: 1015: 1014: 1005: 1004: 1003: 1002: 995: 994: 985: 984: 983: 976: 975: 966: 965: 964: 957: 956: 925: 889:is a subtype of 868: 861: 854: 841: 836: 835: 828: 824: 823: 700:Skłodowska-Curie 560: 376:Neutron emission 144:' classification 96:Nuclear reaction 51: 37: 36: 21: 2482: 2481: 2477: 2476: 2475: 2473: 2472: 2471: 2447: 2446: 2445: 2436: 2420: 2411:Neutron capture 2399: 2382: 2376: 2293:nucleosynthesis 2292: 2285: 2276:Proton emission 2231:Gamma radiation 2212: 2205: 2200: 2155: 2150: 2149: 2109: 2105: 2095: 2093: 2080: 2079: 2075: 2068: 2054: 2047: 2040: 2036: 2012: 2006: 2002: 1955: 1948: 1929: 1925: 1916: 1914: 1909: 1908: 1904: 1899: 1890: 1888: 1884: 1880: 1879: 1874: 1872: 1868: 1864: 1863: 1858: 1856: 1852: 1848: 1847: 1842: 1840: 1836: 1832: 1831: 1819: 1812: 1805: 1795: 1765: 1759: 1758: 1757: 1751: 1743: 1733: 1727: 1726: 1725: 1719: 1711: 1701: 1700: 1694: 1683: 1673: 1672: 1666: 1661: 1656: 1653: 1652: 1644: 1629: 1627: 1626: 1625: 1621: 1619: 1618: 1617: 1615: 1610: 1597: 1592: 1567:, resulting in 1547: 1543: 1542: 1537: 1533: 1532: 1527: 1523: 1522: 1509: 1505: 1504: 1499: 1495: 1494: 1489: 1485: 1484: 1479:quarks and one 1463: 1459: 1458: 1447: 1443: 1442: 1425: 1409: 1397: 1394: 1393: 1392: 1388: 1386: 1385: 1384: 1382: 1381: 1369: 1367: 1366: 1365: 1361: 1359: 1358: 1357: 1355: 1354: 1343: 1341: 1340: 1339: 1335: 1332: 1331: 1330: 1328: 1317: 1315: 1314: 1313: 1309: 1306: 1305: 1304: 1302: 1237: 1227: 1225: 1224: 1223: 1219: 1216: 1215: 1214: 1213: 1208: 1206: 1205: 1204: 1200: 1198: 1197: 1196: 1195: 1186: 1184: 1183: 1182: 1178: 1175: 1174: 1173: 1172: 1167: 1165: 1164: 1163: 1159: 1156: 1155: 1154: 1153: 1148: 1146: 1145: 1144: 1140: 1137: 1136: 1135: 1134: 1129: 1127: 1126: 1125: 1121: 1118: 1117: 1116: 1115: 1110: 1108: 1107: 1106: 1102: 1099: 1098: 1097: 1096: 1089:alpha particles 1077: 1022: 1019: 1018: 1017: 1013: 1011: 1010: 1009: 1008: 1007: 1001: 999: 998: 997: 993: 991: 990: 989: 988: 987: 982: 980: 979: 978: 974: 971: 970: 969: 968: 963: 961: 960: 959: 955: 952: 951: 950: 949: 924: 918: 883:beta plus decay 872: 831: 818: 817: 810: 809: 645: 635: 634: 615: 605: 604: 549: 545: 542:Nucleosynthesis 534: 533: 512: 504: 503: 453: 445: 444: 418: 416:Nuclear fission 408: 407: 381:Proton emission 310: 300: 299: 265: 257: 256: 158: 145: 134: 133: 109: 41:Nuclear physics 35: 28: 23: 22: 18:Beta plus decay 15: 12: 11: 5: 2480: 2470: 2469: 2464: 2459: 2442: 2441: 2438: 2437: 2435: 2434: 2432:(n-p) reaction 2428: 2426: 2422: 2421: 2419: 2418: 2416:Proton capture 2413: 2407: 2405: 2398: 2397: 2392: 2386: 2384: 2378: 2377: 2375: 2374: 2369: 2364: 2356: 2348: 2343: 2338: 2333: 2328: 2323: 2318: 2313: 2308: 2303: 2297: 2295: 2287: 2286: 2284: 2283: 2278: 2273: 2268: 2263: 2258: 2253: 2248: 2243: 2238: 2233: 2228: 2223: 2217: 2215: 2207: 2206: 2199: 2198: 2191: 2184: 2176: 2170: 2169: 2154: 2153:External links 2151: 2148: 2147: 2103: 2073: 2066: 2045: 2034: 2000: 1963:EJNMMI Physics 1946: 1923: 1901: 1900: 1898: 1895: 1878: 1862: 1846: 1830: 1811: 1808: 1803: 1793: 1787:if and only if 1768: 1754: 1749: 1746: 1742: 1736: 1722: 1717: 1714: 1710: 1697: 1692: 1689: 1686: 1682: 1669: 1664: 1660: 1643: 1640: 1628: 1620: 1608: 1598:1.022 MeV 1590: 1551:= 0). Via the 1517:quark and two 1424: 1421: 1420: 1419: 1416: 1415: 1407: 1404: 1395: 1387: 1379: 1376: 1368: 1360: 1352: 1349: 1342: 1333: 1326: 1323: 1316: 1307: 1236: 1233: 1226: 1217: 1207: 1199: 1185: 1176: 1166: 1157: 1147: 1138: 1128: 1119: 1109: 1100: 1076: 1073: 1028: 1027: 1020: 1012: 1000: 992: 981: 972: 962: 953: 941:decaying into 922: 874: 873: 871: 870: 863: 856: 848: 845: 844: 843: 842: 829: 812: 811: 808: 807: 802: 797: 792: 787: 782: 777: 772: 767: 762: 757: 752: 747: 742: 737: 732: 727: 722: 717: 712: 707: 702: 697: 692: 687: 682: 677: 672: 667: 662: 657: 652: 646: 641: 640: 637: 636: 633: 632: 627: 622: 616: 611: 610: 607: 606: 603: 602: 601: 600: 595: 590: 581: 580: 579: 578: 573: 568: 557: 556: 554:Nuclear fusion 550: 540: 539: 536: 535: 532: 531: 526: 525: 524: 513: 510: 509: 506: 505: 502: 501: 500: 499: 494: 484: 483: 482: 477: 467: 466: 465: 454: 451: 450: 447: 446: 443: 442: 437: 436: 435: 425: 419: 414: 413: 410: 409: 406: 405: 400: 395: 390: 384: 383: 378: 373: 368: 363: 362: 361: 356: 346: 341: 340: 339: 334: 333: 332: 317: 311: 306: 305: 302: 301: 298: 297: 295:Stable nuclide 292: 287: 282: 277: 272: 270:Binding energy 266: 263: 262: 259: 258: 255: 254: 253: 252: 242: 237: 232: 226: 225: 211: 210: 203: 202: 186: 185: 173: 172: 160: 159: 146: 140: 139: 136: 135: 132: 131: 126: 121: 116: 110: 105: 104: 101: 100: 99: 98: 93: 88: 83: 81:Nuclear matter 78: 77: 76: 71: 61: 53: 52: 44: 43: 26: 9: 6: 4: 3: 2: 2479: 2468: 2465: 2463: 2460: 2458: 2457:Radioactivity 2455: 2454: 2452: 2433: 2430: 2429: 2427: 2423: 2417: 2414: 2412: 2409: 2408: 2406: 2402: 2396: 2393: 2391: 2388: 2387: 2385: 2379: 2373: 2370: 2368: 2365: 2363: 2361: 2357: 2355: 2353: 2349: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2319: 2317: 2314: 2312: 2309: 2307: 2304: 2302: 2299: 2298: 2296: 2294: 2288: 2282: 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2247: 2244: 2242: 2239: 2237: 2236:Cluster decay 2234: 2232: 2229: 2227: 2224: 2222: 2219: 2218: 2216: 2214: 2208: 2204: 2197: 2192: 2190: 2185: 2183: 2178: 2177: 2174: 2167: 2166: 2161: 2157: 2156: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2107: 2091: 2087: 2083: 2077: 2069: 2067:9780444634962 2063: 2059: 2052: 2050: 2043: 2038: 2030: 2026: 2023:(3): 030001. 2022: 2018: 2011: 2004: 1996: 1992: 1987: 1982: 1977: 1972: 1968: 1964: 1960: 1953: 1951: 1942: 1939:(in French). 1938: 1934: 1927: 1912: 1906: 1902: 1894: 1843:20.4 min 1827: 1825: 1820:0.96 MeV 1817: 1807: 1802: 1797: 1792: 1788: 1784: 1766: 1752: 1747: 1744: 1740: 1734: 1720: 1715: 1712: 1708: 1695: 1690: 1687: 1684: 1667: 1662: 1659: 1650: 1639: 1637: 1632: 1613: 1607: 1603: 1595: 1589: 1585: 1580: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1520: 1516: 1482: 1478: 1474: 1470: 1456: 1455: 1440: 1439: 1434: 1430: 1413: 1408: 1405: 1400: 1380: 1377: 1372: 1353: 1350: 1346: 1327: 1324: 1320: 1301: 1300: 1297: 1296: 1295: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1232: 1193: 1152: +  1114: +  1094: 1090: 1086: 1082: 1072: 1070: 1066: 1061: 1059: 1054: 1052: 1048: 1044: 1039: 1037: 1036:atomic number 1033: 948: 947: 946: 944: 940: 935: 933: 932:beta particle 929: 921: 916: 912: 908: 904: 900: 897:, in which a 896: 892: 888: 884: 880: 869: 864: 862: 857: 855: 850: 849: 847: 846: 840: 830: 827: 822: 816: 815: 814: 813: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 696: 693: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 647: 644: 639: 638: 631: 628: 626: 623: 621: 618: 617: 614: 609: 608: 599: 596: 594: 591: 589: 586: 585: 583: 582: 577: 574: 572: 569: 567: 564: 563: 559: 558: 555: 552: 551: 548: 543: 538: 537: 530: 527: 523: 522:by cosmic ray 520: 519: 518: 515: 514: 508: 507: 498: 495: 493: 490: 489: 488: 485: 481: 478: 476: 473: 472: 471: 468: 464: 461: 460: 459: 456: 455: 449: 448: 441: 438: 434: 433:pair breaking 431: 430: 429: 426: 424: 421: 420: 417: 412: 411: 404: 401: 399: 398:Decay product 396: 394: 391: 389: 386: 385: 382: 379: 377: 374: 372: 371:Cluster decay 369: 367: 364: 360: 357: 355: 352: 351: 350: 347: 345: 342: 338: 335: 331: 328: 327: 326: 323: 322: 321: 318: 316: 313: 312: 309: 304: 303: 296: 293: 291: 288: 286: 283: 281: 278: 276: 273: 271: 268: 267: 261: 260: 251: 248: 247: 246: 243: 241: 238: 236: 233: 231: 228: 227: 224: 220: 216: 215:Mirror nuclei 213: 212: 208: 205: 204: 201: 200: 197: −  196: 191: 188: 187: 184: 183: 178: 175: 174: 171: 170: 165: 162: 161: 157: 156: 151: 148: 147: 143: 138: 137: 130: 127: 125: 122: 120: 117: 115: 112: 111: 108: 103: 102: 97: 94: 92: 89: 87: 86:Nuclear force 84: 82: 79: 75: 72: 70: 67: 66: 65: 62: 60: 57: 56: 55: 54: 50: 46: 45: 42: 39: 38: 33: 19: 2395:Photofission 2359: 2351: 2270: 2163: 2117: 2113: 2106: 2094:. Retrieved 2090:the original 2085: 2076: 2057: 2037: 2020: 2016: 2003: 1966: 1962: 1940: 1936: 1926: 1915:. Retrieved 1905: 1891:110 min 1828: 1813: 1800: 1798: 1790: 1782: 1648: 1645: 1611: 1605: 1593: 1587: 1581: 1576: 1572: 1564: 1560: 1518: 1514: 1480: 1476: 1452: 1436: 1426: 1280:strontium-83 1276:potassium-40 1272:aluminium-26 1238: 1091:(emitted by 1078: 1065:proton decay 1062: 1055: 1051:potassium-40 1040: 1029: 939:magnesium-23 936: 919: 903:radionuclide 886: 882: 878: 877: 440:Photofission 388:Decay energy 336: 315:Alpha α 222: 218: 198: 194: 181: 168: 154: 2221:Alpha decay 2211:Radioactive 1943:(153): 254. 1877:), and F (T 1859:10 min 1810:Application 1454:down quarks 1264:rubidium-82 1256:fluorine-18 1248:nitrogen-13 745:Oppenheimer 423:Spontaneous 393:Decay chain 344:K/L capture 320:Beta β 190:Isodiaphers 114:Liquid drop 2467:Antimatter 2451:Categories 2372:rp-process 2346:Si burning 2336:Ne burning 2306:Li burning 2226:Beta decay 1917:2012-06-14 1897:References 1875:2 min 1457:, with a − 1410:0.96  1284:iodine-124 1049:, such as 1043:cosmic ray 928:weak force 895:beta decay 775:Strassmann 765:Rutherford 643:Scientists 598:Artificial 593:Cosmogenic 588:Primordial 584:Nuclides: 561:Processes: 517:Spallation 2383:processes 2367:p-process 2341:O burning 2331:C burning 2321:α process 2316:CNO cycle 2142:250744282 1824:carbon-11 1767:− 1745:− 1688:− 1681:→ 1651:masses, 1438:up quarks 1268:sodium-22 1260:copper-64 1252:oxygen-15 1244:carbon-11 943:sodium-23 901:inside a 780:Świątecki 695:Pi. Curie 690:Fr. Curie 685:Ir. Curie 680:Cockcroft 655:Becquerel 576:Supernova 280:Drip line 275:p–n ratio 250:Borromean 129:Ab initio 2462:Electron 2425:Exchange 2362:-process 2354:-process 2326:Triple-α 1995:27271304 1969:(1): 8. 1937:J. Phys. 1569:electron 1521:quarks ( 1473:neutrons 1292:neutrino 1240:Isotopes 1133: → 1093:polonium 1081:Frédéric 1079:In 1934 1047:isotopes 911:positron 839:Category 740:Oliphant 725:Lawrence 705:Davisson 675:Chadwick 571:Big Bang 458:electron 428:Products 349:Isomeric 240:Even/odd 217: – 192:– equal 179:– equal 177:Isotones 166:– equal 152:– equal 150:Isotopes 142:Nuclides 64:Nucleons 2404:Capture 2291:Stellar 2122:Bibcode 1986:4894854 1883:⁄ 1867:⁄ 1861:), O (T 1851:⁄ 1845:), N (T 1835:⁄ 1546:⁄ 1536:⁄ 1526:⁄ 1508:⁄ 1498:⁄ 1488:⁄ 1483:quark ( 1469:protons 1462:⁄ 1446:⁄ 1431:called 1406:+  1378:+  1351:+  1325:→  913:and an 907:neutron 893:called 887:β decay 795:Thomson 785:Szilárd 755:Purcell 735:Meitner 670:N. Bohr 665:A. Bohr 650:Alvarez 566:Stellar 470:neutron 354:Gamma γ 207:Isomers 164:Isobars 59:Nucleus 2140:  2096:11 May 2064:  1993:  1983:  1649:atomic 1557:flavor 1451:, and 1433:quarks 1403:  1391:ν 1375:  1348:  1322:  1282:, and 1203:β 1016:ν 899:proton 837:  805:Wigner 800:Walton 790:Teller 720:Jensen 487:proton 230:Stable 2381:Other 2213:decay 2138:S2CID 2013:(PDF) 1559:from 1288:boron 885:, or 770:Soddy 750:Proca 730:Mayer 710:Fermi 660:Bethe 235:Magic 2098:2012 2062:ISBN 1991:PMID 1577:down 1561:down 1519:down 1481:down 1471:and 1083:and 760:Rabi 715:Hahn 625:RHIC 245:Halo 2130:doi 2025:doi 1981:PMC 1971:doi 1783:two 1563:to 1412:MeV 630:LHC 544:and 2453:: 2136:. 2128:. 2118:37 2116:. 2084:. 2048:^ 2021:45 2019:. 2015:. 1989:. 1979:. 1965:. 1961:. 1949:^ 1889:= 1873:= 1857:= 1841:= 1826:. 1624:Be 1596:= 1573:up 1565:up 1541:− 1531:− 1515:up 1503:− 1493:+ 1477:up 1294:: 1278:, 1274:, 1270:, 1258:, 1254:, 1250:, 1246:, 1218:15 1177:15 1139:15 1124:Al 1120:13 1105:He 1071:. 1006:+ 986:+ 977:Na 973:11 967:→ 958:Mg 954:12 945:: 881:, 497:rp 463:2× 330:0v 325:2β 221:↔ 2360:s 2352:r 2195:e 2188:t 2181:v 2144:. 2132:: 2124:: 2100:. 2070:. 2031:. 2027:: 1997:. 1973:: 1967:3 1941:5 1920:. 1885:2 1881:1 1869:2 1865:1 1853:2 1849:1 1837:2 1833:1 1804:e 1801:m 1794:e 1791:m 1761:e 1753:0 1748:1 1741:+ 1735:+ 1729:e 1721:0 1716:1 1713:+ 1709:+ 1703:Y 1696:A 1691:1 1685:Z 1675:X 1668:A 1663:Z 1612:c 1609:e 1606:m 1594:c 1591:e 1588:m 1548:3 1544:1 1538:3 1534:1 1528:3 1524:2 1510:3 1506:1 1500:3 1496:2 1490:3 1486:2 1464:3 1460:1 1448:3 1444:2 1396:e 1364:e 1338:B 1334:5 1312:C 1308:6 1222:P 1181:P 1162:n 1158:0 1143:P 1101:2 1021:e 996:e 923:e 920:ν 917:( 867:e 860:t 853:v 492:p 480:r 475:s 337:β 223:N 219:Z 199:Z 195:N 182:N 169:A 155:Z 74:n 69:p 34:. 20:)

Index

Beta plus decay
Positron emission tomography
Nuclear physics

Nucleus
Nucleons
p
n
Nuclear matter
Nuclear force
Nuclear structure
Nuclear reaction
Models of the nucleus
Liquid drop
Nuclear shell model
Interacting boson model
Ab initio
Nuclides
Isotopes
Z
Isobars
A
Isotones
N
Isodiaphers
N − Z
Isomers
Mirror nuclei
Stable
Magic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.