Knowledge

Functional ecology

Source 📝

291:
more specific functional groups, but may lead to an overestimation of total functional diversity in the environment. However, considering too few traits runs the risk of classifying species as functionally redundant, when they are in fact vital to the health of the ecosystem. So, before one can classify organisms by traits, the definition of 'trait' must be settled. Rather than define traits as proxies for organism performance, as Darwin did, modern ecologists favor a more robust definition of traits often referred to as "functional traits". Under this paradigm, functional traits are defined as morpho-physiophenological traits which impact fitness indirectly via their effects on growth, reproduction and survival. Notice that is definition is not specific to species. Since larger biological organizations grow, reproduce and sustain just as individual organisms do, functional traits can be used to describe ecosystem processes and properties as well. To distinguish between functional traits at different scales, the classification scheme adopts the following nomenclature. Individual organisms have Ecophysiological traits and life-history traits; populations have demographic traits; communities have response traits; and ecosystems have effect traits. At each level, functional traits can directly and indirectly influence functional traits in the levels above or below them. For example, when averaged over an ecosystem, individual plants' heights can contribute to ecosystem productivity or efficiency.
433:, the resurrection of extinct species. Function ecology can be applied to strategically assess the resurrection of extinct species to maximize its impact on an environment. To avoid reintroducing a species that is rendered functionally redundant by one of its ancestors, a functional analysis of global ecosystems can be performed to determine which ecosystems would benefit most from the added functional diversity of the reintroduced species. These considerations are important because, while many species currently being considered for de-extinction are terrestrial, they are also functionally redundant in their former ecosystems. However, many extinct marine species have been identified as functionally unique in their environments, even today, which makes a strong case for their reintroduction. In fact, while some functions have been recovered by evolution, as is the case with many extinct terrestrial species, some functional gaps have widened over time. Reintroducing extinct species has the potential to close these gaps, making richer, more balanced ecosystems. 282:
error of imperfect species detection can lead to incorrect trait-environment evolutionary conclusions as well as poor estimates of functional trait diversity and environmental role. For example, if small species of insects are less likely to be detected, researchers may conclude that they are much more scarce (and thus less impactful) in the environment than larger species of insects. This 'detection filtering' has major consequences on functional packaging and the defining functional groups in an ecosystem. Thankfully, correlations between environmental change and evolutionary adaptation are much larger than the effects of imperfect species detection. Nevertheless, approaching ecosystems with theoretical maps of functional relationships between species and groups can reduce the likelihood of improper detection and improve the robustness of any biological conclusions drawn.
230:
of energy and matter through the environment (Ecosystem Functions) as well as the ecosystem's ability to produce resources beneficial to humans such as air, water, and wood (Ecosystem Services). Ecosystem Functions are drastically reduced with decreases in the diversity of genes, species and functional groups present within an ecosystem. In fact, reductions in functional diversity broadly impact the survivability of organisms in an environment regardless of functional group, trophic level, or species, implying that the organization and interaction of communities in an ecosystem has a profound impact on its ability to function and self-sustain. Furthermore, diversity improves environmental stability. The greater an ecosystem's diversity, the more resilient it is to changes in
437:
species of tigers, tuna and sea otters usually qualify for this threshold. If functional ecology is considered, new species (not necessarily extinct) can be introduced into ecosystem where a species has become functionally extinct before any de-extinction action ever needs to be taken. This can be a key transformative process in ecological preservation and restoration because functional extinction can have cascading effects on the health of an ecosystem. For example, species that engineer ecosystems such as beavers are particularly unique functionally; their absence from an ecosystem could be devastating.
207:. Functional ecology became widely understood to be the study of ecological processes that concern the adaptations of organism within the ecosystem. In the 1990s, biodiversity became better understood as the diversity of species' ecological functions within an ecosystem, rather than simply a great number of different species present. Finally, in the 2000s researchers began using functional classification schemes to examine ecosystems' and organisms' responses to drastic change and disturbance, and the impact of function loss on the health of an ecosystem. 441:
focused on contentions that ecological functions are often ambiguously defined and that it is unclear what functions must be present to define an ecosystem. These arguments suggest that reintroducing an extinct species could be drastically harm an ecosystem if conclusions about its function or the functions of the species it is intended to replace are incorrect. Additionally, even if an extinct species' function is well understood de-extinction could be equally harmful if the function served by the extinct species is no longer needed by the ecosystem.
126: 499: 388:
roles that organisms perform in their environment. This kind of genomic study is referred to as genomic ecology or ecogenomics. Genomic ecology can classify traits on cellular and physiological levels leading to a more refined classification system. In addition, once genetic markers for functional traits in individuals are identified, predictions about the functional diversity and composition of an ecosystem can be made from the genetic data of a few species in a process called "
421:
transcriptomic data dependent on environmental conditions. Additionally, as studied environments increase in complexity, transcriptomic data becomes harder to collect. Furthermore, the functions that many discovered genes encode for are still unknown making it difficult if not impossible to infer ecological function from a genome. Testing hypotheses concerning what functions given genes encode for is difficult experimentally and is expensive and time-consuming.
485: 29: 471: 221:
refers to the diversity of ecosystem functions present in a given system. Understanding ecosystems via functional diversity is as powerful as it is broadly applicable and gives insight into observable patterns in ecosystems, such as species occurrence, species competitive abilities, and the influence of biological communities on ecosystem functioning.
440:
While functional arguments for reintroduction of extinct species may paint thoughtful reintroduction as an ecological boon, the ethical and practical debate over de-extinction has not left functional approaches unscathed. The main critique of functional arguments in favor of de-extinction are largely
420:
However, reverse ecology and genomic ecology face several hurdles before they can be accepted as rigorous and mainstream approaches to taxonomy or ecology. One of the major challenges is that technologies for the sequencing and comparison of transcriptomic data do not exist, making the acquisition of
281:
The notions of functional ecology have beneficial implications for species detection and classification. When detecting species, ecologically important traits, such as plant height, influence the probability of detection during field surveys. When holistically analyzing an environment, the systematic
245:
Alternatively, in rare situations, diversity has been shown to retard ecological productivity. In experimentally concocted microscopic environments, a diverse culture of bacteria was unable to out-produce a homogeneous culture of an 'efficient' control strain. However, the statistical validity and
229:
A key interest of modern research in Functional Ecology is the impact of functional diversity on ecosystem health. Unsurprisingly, biodiversity has a positive impact on the productivity of an ecosystem. Increased functional diversity increases both the capacity of the ecosystem to regulate the flux
220:
was conceived as an alternative classification to schemes using genetic diversity or physiological diversity to measure the ecological importance of species in an environment, as well as a way to understand how biodiversity affects specific ecosystem functions, where in this context, 'biodiversity'
719:
Cardinale, Bradley J.; Duffy, J. Emmett; Gonzalez, Andrew; Hooper, David U.; Perrings, Charles; Venail, Patrick; Narwani, Anita; Mace, Georgina M.; Tilman, David; Wardle, David A.; Kinzig, Ann P.; Daily, Gretchen C.; Loreau, Michel; Grace, James B.; Larigauderie, Anne; Srivastava, Diane S.; Naeem,
144:
in which they occur. In this approach, physiological, anatomical, and life history characteristics of the species are emphasized. The term "function" is used to emphasize certain physiological processes rather than discrete properties, describe an organism's role in a trophic system, or illustrate
961:
Ottaviani, Gianluigi; Keppel, Gunnar; Götzenberger, Lars; Harrison, Susan; Opedal, Øystein H.; Conti, Luisa; Liancourt, Pierre; Klimešová, Jitka; Silveira, Fernando A.O.; Jiménez-Alfaro, Borja; Negoita, Luka; Doležal, Jiří; Hájek, Michal; Ibanez, Thomas; Méndez-Castro, Francisco E.; Chytrý, Milan
436:
Furthermore, before a species goes extinct in the classical sense of the word, keeping a functional perspective in mind can avoid "functional extinction". Functional extinction is defined as "the point at which a species fails to perform its historical functional role". Endangered species such as
387:
Functional Ecology is closely intertwined with genomics. Understanding the functional niches that organisms occupy in an ecosystem can provide clues to genetic differences between members of a genus. On the other hand, discovering the traits/functions that genes encode for yields insight into the
290:
A functional approach to defining traits can even help species classification. Trait focused schemes of taxonomy have long been used to classify species, but the number and type of 'trait' to consider is widely debated. Considering more traits in a classification scheme will separate species into
241:
of diversity non-linearly disrupts ecosystems (even stable ones); this negative impact is especially detrimental when the loss is across trophic levels. For, example, the loss of a single tertiary predator can have cascading effects on the food chain, resulting in reduction of plant biomass and
416:
allowed researchers to infer that it evolved into the niche (i.e. ecological role) of a plant so that it could avoid competing with its close relatives. If this process can be shown to generalize, then the ecological functions of other organisms can be inferred simply from genetic information.
272:
A functional approach to understanding and dealing with environments provides numerous benefits to our understanding of biology and its applications in our lives. While the concept of functional ecology is still in its infancy, it has been widely applied throughout biological studies to better
215:
Functional diversity is widely considered to be "the value and the range of those species and organismal traits that influence ecosystem functioning" In this sense, the use of the term "function" may apply to individuals, populations, communities, trophic levels, or evolutionary process (i.e.
148:
Researchers use two different tools in functional ecology: screening, which involves measuring a trait across a number of species, and empiricism, which provides quantitative relationships for the traits measured in screening. Functional ecology often emphasizes an integrative approach, using
263:
may increase opportunities for species to exploit more functional groups. Consistent with this conclusion, tests of theoretical models predict that the net effects of biodiversity on ecosystem functions grow stronger over time, over larger spatial scales, and with more heterogeneous natural
242:
genetic diversity. This in turn can alter the "vegetation structure, fire frequency, and even disease epidemics in a range of ecosystems". The effects of diversity on ecosystems are so powerful, that they can rival the impact of climate change and other global ecosystem stressors.
254:
Most models of complex functional diversity are only effective in a small range of spatial scales. However, by defining the functional trait probability density as a "function representing the distribution of probabilities of observing each possible trait value in a given
246:
setup of these experiments have been questioned, and require further investigation to carry substantial merit. In general, the current consensus that diversity is beneficial to ecosystem health has much more theoretical and empirical support and is more widely applicable.
234:(e.g. extinction events or invasive species) and extraneous changes to environmental conditions (e.g. logging, farming, and pollution). Moreover, the benefits that diversity provides to an environment scale non-linearly with the amount of diversity. 198:
proposed classifying an ecosystem based on the how its members utilize resources. By the 1950s, Elton's model of ecosystems was widely accepted, where organisms that shared similarities in resource use occupied the same 'guild' within an ecosystem.
202:
Beginning in the 1970s, an increased interest in functional classification revolutionized functional ecology. 'Guilds' would be re-termed 'functional groups', and classification schemes began to focus more on interactions between species and
392:". Reverse ecology can contribute to better taxonomy of organisms as well. Rather than defining species by genetic proximity alone, organisms can be additionally classified by the functions they serve in the same ecology. 395:
This application of reverse ecology has proven especially useful in the classification of bacteria. Researchers were able to identify the correspondence between genetic variation and ecological niche function in the genus
264:
resources. However, these results are expected to underestimate the actual relationshipm impling that large space and time scales coupled with diverse resources are more than necessary to sustain an ecosystem.
168:, and traditional ecological studies. It explores such areas as " competitive abilities, patterns of species co-occurrence, community assembly, and the role of different traits on ecosystem functioning". 145:
the effects of natural selective processes on an organism. This sub-discipline of ecology represents the crossroads between ecological patterns and the processes and mechanisms that underlie them.
149:
organism traits and activities to understand community dynamics and ecosystem processes, particularly in response to the rapid global changes occurring in Earth's environment.
926:
Violle, Cyrille; Navas, Marie-Laure; Vile, Denis; Kazakou, Elena; Fortunel, Claire; Hummel, Irène; Garnier, Eric (May 2007). "Let the concept of trait be functional!".
404:
coded for metabolic pathways specific to plants which allowed for the use of plant-specific compounds and sugars to avoid iron deficiency. This trait, unique to
770:
Cardinale, Bradley J.; Wright, Justin P.; Cadotte, Marc W.; Carroll, Ian T.; Hector, Andy; Srivastava, Diane S.; Loreau, Michel; Weis, Jerome J. (2007-11-13).
832:
Carmona, Carlos P.; de Bello, Francesco; Mason, Norman W.H.; Lepš, Jan (May 2016). "Traits Without Borders: Integrating Functional Diversity Across Scales".
1136: 400:
and their greater biological implication on species distinction and diversity in the ecosystem. The researchers found that 196 genes specific to
2276: 1529: 1127: 2420: 2490: 2062: 2027: 93: 2500: 2228: 65: 2505: 72: 2693: 46: 2446: 2269: 2110: 1522: 129:
Bees serve the ecological function of pollinating flowers, maintaining flora reproduction and density in the ecosystem.
176:
The notion that ecosystems' functions can be affected by their constituent parts has its origins in the 19th century.
1782: 1120: 1035: 112: 79: 152:
Functional ecology sits at the nexus of several disparate disciplines and serves as the unifying principle between
2243: 2525: 2238: 2105: 1817: 1395: 190:
by noting a positive correlation between plant density and ecosystem productivity. In his influential 1927 work,
2910: 2783: 217: 61: 50: 3081: 2956: 2555: 2510: 2262: 1515: 2042: 2388: 1113: 1072:"A mammoth undertaking: harnessing insight from functional ecology to shape de-extinction priority setting" 772:"Impacts of plant diversity on biomass production increase through time because of species complementarity" 451: 17: 2745: 1636: 260: 2810: 2530: 2017: 1734: 1631: 456: 2991: 2603: 2495: 2353: 2338: 2333: 2012: 1724: 642:
Laureto, Livia Maira Orlandi; Cianciaruso, Marcus Vinicius; Samia, Diogo Soares Menezes (July 2015).
1507: 2981: 2976: 2946: 2750: 2213: 2095: 195: 182: 2254: 1885: 259:," the results of many models can be generalized to larger scales. At larger spatial scales, more 2825: 2688: 2598: 2466: 2348: 2318: 2175: 2140: 1860: 1827: 1802: 1428: 1195: 1070:
McCauley, Douglas J.; Hardesty-Moore, Molly; Halpern, Benjamin S.; Young, Hillary S. (May 2017).
39: 86: 2971: 2915: 2850: 2713: 2648: 2583: 2145: 1933: 1641: 1621: 1438: 721: 2875: 2820: 2683: 2668: 2451: 2408: 2398: 2393: 2150: 2130: 1986: 1976: 1918: 1913: 1749: 1601: 137: 3001: 2966: 2961: 2885: 2880: 2835: 2733: 2703: 2698: 2550: 2413: 2403: 1948: 1787: 1576: 1433: 1360: 1157: 1083: 935: 887: 783: 736: 587: 544: 157: 153: 8: 3051: 3026: 2890: 2860: 2805: 2718: 2608: 2593: 2540: 2373: 2308: 2190: 2120: 2052: 1651: 1479: 1469: 1415: 1162: 231: 1087: 939: 891: 787: 740: 591: 548: 3062: 3011: 2815: 2778: 2520: 2476: 2441: 2298: 2223: 2125: 2057: 2047: 1981: 1928: 1739: 1684: 1646: 1571: 1464: 1335: 1236: 1214: 1027: 806: 771: 603: 560: 504: 2951: 2920: 2708: 2535: 2343: 2208: 2185: 1923: 1699: 1611: 1596: 1581: 1561: 1443: 1385: 1380: 1248: 1224: 1219: 1031: 979: 947: 849: 811: 752: 512: 2905: 2768: 2760: 2678: 2560: 2545: 2481: 2461: 2378: 2368: 2363: 2328: 2160: 2100: 1971: 1772: 1714: 1626: 1586: 1340: 1312: 1091: 1023: 971: 943: 895: 841: 801: 791: 744: 655: 595: 552: 187: 125: 975: 3041: 2900: 2870: 2865: 2855: 2788: 2773: 2653: 2633: 2515: 2383: 2289: 2180: 2090: 2032: 1616: 1542: 1491: 1474: 1448: 1405: 1400: 1375: 1345: 429:
Functional ecology also has broad applications to the science of and debate over
389: 256: 331:
Qualities that impact relative fitness and change over an individual's lifespan
3021: 2845: 2798: 2728: 2723: 2618: 2485: 2358: 2165: 2155: 2135: 1938: 1903: 1842: 1719: 1674: 1566: 1302: 1297: 1290: 1258: 1152: 845: 776:
Proceedings of the National Academy of Sciences of the United States of America
660: 643: 490: 476: 186:
is one of the first texts to directly comment on the effect of biodiversity on
177: 140:
that focuses on the roles, or functions, that species play in the community or
874:
Roth, Tobias; Allan, Eric; Pearman, Peter B.; Amrhein, Valentin (April 2018).
3075: 3046: 2022: 1996: 1953: 1943: 1898: 1865: 1757: 1591: 1546: 1355: 1350: 1327: 1317: 1285: 1277: 1263: 1253: 1172: 498: 430: 204: 1095: 1071: 900: 875: 796: 3031: 3016: 2673: 2643: 2588: 2471: 2436: 2313: 1812: 1496: 1390: 1365: 1307: 1185: 1180: 983: 853: 815: 756: 237:
Unfortunately, this relationship also acts in the opposite direction. The
2323: 1870: 1832: 1807: 1797: 1762: 1709: 1689: 1423: 1144: 962:(April 2020). "Linking Plant Functional Ecology to Island Biogeography". 748: 3036: 2613: 2578: 2218: 2170: 2115: 2085: 1991: 1908: 1852: 1729: 1679: 1209: 1204: 607: 564: 412:
found within the same environment. Thus, understanding the genetics of
1105: 2941: 2895: 2623: 2067: 2037: 1837: 1792: 1767: 1704: 1694: 1669: 1661: 1606: 1537: 141: 644:"Functional diversity: an overview of its history and applicability" 599: 556: 28: 2996: 2925: 2456: 2284: 1963: 1875: 1822: 1777: 1486: 960: 578:
Keddy, P. A. (1992). "A Pragmatic Approach to Functional Ecology".
484: 165: 161: 1069: 2986: 2793: 2663: 2658: 2285: 2233: 1893: 1538: 408:
allowed it to avoid competition with closely related bacteria in
535:
Calow, P. (1987). "Towards a Definition of Functional Ecology".
1273: 1240: 769: 718: 273:
understand organisms, environments, and their interactions.
831: 876:"Functional ecology and imperfect detection of species" 873: 641: 276: 925: 267: 466: 317:
Physiological quality that affects relative fitness
53:. Unsourced material may be challenged and removed. 376:The necessity of plants for an ecosystem to exist 362:Flora grow taller after a fire clears tree canopy 334:Body size changes, lifespan, age to reproduction 3073: 359:Community responses to environmental variables 722:"Biodiversity loss and its impact on humanity" 373:Effects that involve an ecosystem functioning 2270: 1523: 1121: 320:Leaf size can affect solar energy absorption 224: 2491:Latitudinal gradients in species diversity 2277: 2263: 1530: 1516: 1128: 1114: 216:considering the function of adaptations). 1017: 899: 805: 795: 659: 113:Learn how and when to remove this message 2389:Predator–prey (Lotka–Volterra) equations 2028:Tritrophic interactions in plant defense 124: 2421:Random generalized Lotka–Volterra model 1135: 210: 3074: 2229:Herbivore adaptations to plant defense 1018:Faure, Denis; Joly, Dominique (2016). 1013: 2258: 1511: 1109: 1065: 1063: 1061: 1059: 1057: 1055: 1053: 1051: 1049: 1047: 1011: 1009: 1007: 1005: 1003: 1001: 999: 997: 995: 993: 714: 712: 710: 708: 706: 674: 637: 577: 534: 2244:Predator avoidance in schooling fish 921: 919: 917: 915: 913: 911: 869: 867: 865: 863: 827: 825: 704: 702: 700: 698: 696: 694: 692: 690: 688: 686: 635: 633: 631: 629: 627: 625: 623: 621: 619: 617: 530: 528: 285: 277:Species Detection and Classification 51:adding citations to reliable sources 22: 2694:Intermediate disturbance hypothesis 13: 2447:Ecological effects of biodiversity 1044: 1028:10.1016/b978-1-78548-146-8.50009-5 990: 345:Changes in a population over time 268:Applications of Functional Ecology 14: 3093: 1783:Generalist and specialist species 1020:Insight on Environmental Genomics 908: 860: 834:Trends in Ecology & Evolution 822: 683: 614: 525: 2506:Occupancy–abundance relationship 948:10.1111/j.0030-1299.2007.15559.x 880:Methods in Ecology and Evolution 497: 483: 469: 424: 27: 2526:Relative abundance distribution 2239:Plant defense against herbivory 2106:Competitive exclusion principle 1818:Mesopredator release hypothesis 954: 38:needs additional citations for 2111:Consumer–resource interactions 763: 668: 571: 1: 2957:Biological data visualization 2784:Environmental niche modelling 2511:Population viability analysis 1022:. Elsevier. pp. 93–102. 976:10.1016/j.tplants.2019.12.022 518: 2442:Density-dependent inhibition 18:Functional Ecology (journal) 7: 2911:Liebig's law of the minimum 2746:Resource selection function 1637:Metabolic theory of ecology 462: 444: 382: 261:environmental heterogeneity 10: 3098: 2811:Niche apportionment models 2531:Relative species abundance 1735:Primary nutritional groups 1632:List of feeding behaviours 846:10.1016/j.tree.2016.02.003 661:10.1016/j.ncon.2015.11.001 648:Natureza & Conservação 457:British Ecological Society 249: 225:Impact on Ecosystem Health 171: 15: 3060: 2992:Ecosystem based fisheries 2934: 2834: 2759: 2632: 2604:Interspecific competition 2569: 2496:Minimum viable population 2429: 2354:Maximum sustainable yield 2339:Intraspecific competition 2334:Effective population size 2297: 2214:Anti-predator adaptations 2199: 2078: 2005: 1962: 1884: 1851: 1748: 1725:Photosynthetic efficiency 1660: 1554: 1457: 1414: 1326: 1272: 1235: 1194: 1171: 1143: 679:. New York, Macmillan Co. 2982:Ecological stoichiometry 2947:Alternative stable state 183:On The Origin of Species 2826:Ontogenetic niche shift 2689:Ideal free distribution 2599:Ecological facilitation 2349:Malthusian growth model 2319:Consumer-resource model 2176:Paradox of the plankton 2141:Energy systems language 1861:Chemoorganoheterotrophy 1828:Optimal foraging theory 1803:Heterotrophic nutrition 1429:Ecological anthropology 1096:10.1111/1365-2435.12728 964:Trends in Plant Science 901:10.1111/2041-210x.12950 797:10.1073/pnas.0709069104 675:Elton, Charles (1927). 449:The scientific journal 2972:Ecological forecasting 2916:Marginal value theorem 2714:Landscape epidemiology 2649:Cross-boundary subsidy 2584:Biological interaction 1934:Microbial intelligence 1622:Green world hypothesis 1439:Ecological engineering 720:Shahid (7 June 2012). 348:Birth and death rates 130: 2977:Ecological humanities 2876:Ecological energetics 2821:Niche differentiation 2684:Habitat fragmentation 2452:Ecological extinction 2399:Small population size 2151:Feed conversion ratio 2131:Ecological succession 2063:San Francisco Estuary 1977:Ecological efficiency 1919:Microbial cooperation 406:Agrobacterium fabrum, 128: 16:For the journal, see 3082:Subfields of ecology 3002:Evolutionary ecology 2967:Ecological footprint 2962:Ecological economics 2886:Ecological threshold 2881:Ecological indicator 2751:Source–sink dynamics 2704:Land change modeling 2699:Insular biogeography 2551:Species distribution 2290:Modelling ecosystems 1949:Microbial metabolism 1788:Intraguild predation 1577:Biogeochemical cycle 1543:Modelling ecosystems 1434:Ecological economics 1361:Evolutionary ecology 1328:Ecological phenomena 1158:Quantitative ecology 455:is published by the 414:Agrobacterium fabrum 402:Agrobacterium fabrum 218:Functional diversity 211:Functional Diversity 158:evolutionary biology 154:evolutionary ecology 62:"Functional ecology" 47:improve this article 3052:Theoretical ecology 3027:Natural environment 2891:Ecosystem diversity 2861:Ecological collapse 2851:Bateman's principle 2806:Limiting similarity 2719:Landscape limnology 2541:Species homogeneity 2379:Population modeling 2374:Population dynamics 2191:Trophic state index 1480:Restoration ecology 1470:Glossary of ecology 1416:Interdisciplinarity 1163:Theoretical ecology 1137:Branches of ecology 1088:2017FuEco..31.1003M 940:2007Oikos.116..882V 892:2018MEcEv...9..917R 788:2007PNAS..10418123C 782:(46): 18123–18128. 749:10.1038/nature11148 741:2012Natur.486...59C 592:1992FuEco...6..621K 549:1987FuEco...1...57C 232:species composition 3063:Outline of ecology 3012:Industrial ecology 3007:Functional ecology 2871:Ecological deficit 2816:Niche construction 2779:Ecosystem engineer 2556:Species–area curve 2477:Introduced species 2292:: Other components 2224:Deimatic behaviour 2126:Ecological network 2058:North Pacific Gyre 2043:hydrothermal vents 1982:Ecological pyramid 1929:Microbial food web 1740:Primary production 1685:Foundation species 1465:History of ecology 1371:Functional ecology 1336:Behavioral ecology 1215:Population ecology 1076:Functional Ecology 580:Functional Ecology 537:Functional Ecology 505:Environment portal 452:Functional Ecology 134:Functional ecology 131: 3069: 3068: 2952:Balance of nature 2709:Landscape ecology 2594:Community ecology 2536:Species diversity 2472:Indicator species 2467:Gradient analysis 2344:Logistic function 2252: 2251: 2209:Animal coloration 2186:Trophic mutualism 1924:Microbial ecology 1715:Photoheterotrophs 1700:Myco-heterotrophy 1612:Ecosystem ecology 1597:Carrying capacity 1562:Abiotic component 1505: 1504: 1444:Political ecology 1386:Molecular ecology 1381:Landscape ecology 1249:Microbial ecology 1225:Ecosystem ecology 1220:Community ecology 513:Community ecology 380: 379: 311:Ecophysiological 286:Functional traits 123: 122: 115: 97: 3089: 2769:Ecological niche 2741:selection theory 2561:Umbrella species 2546:Species richness 2482:Invasive species 2462:Flagship species 2369:Population cycle 2364:Overexploitation 2329:Ecological yield 2279: 2272: 2265: 2256: 2255: 2161:Mesotrophic soil 2101:Climax community 2033:Marine food webs 1972:Biomagnification 1773:Chemoorganotroph 1627:Keystone species 1587:Biotic component 1532: 1525: 1518: 1509: 1508: 1341:Chemical ecology 1313:Tropical ecology 1130: 1123: 1116: 1107: 1106: 1100: 1099: 1082:(5): 1003–1011. 1067: 1042: 1041: 1015: 988: 987: 958: 952: 951: 923: 906: 905: 903: 871: 858: 857: 829: 820: 819: 809: 799: 767: 761: 760: 726: 716: 681: 680: 672: 666: 665: 663: 639: 612: 611: 575: 569: 568: 532: 507: 502: 501: 493: 488: 487: 479: 474: 473: 472: 294: 293: 188:ecosystem health 118: 111: 107: 104: 98: 96: 55: 31: 23: 3097: 3096: 3092: 3091: 3090: 3088: 3087: 3086: 3072: 3071: 3070: 3065: 3056: 3042:Systems ecology 2930: 2901:Extinction debt 2866:Ecological debt 2856:Bioluminescence 2837: 2830: 2799:marine habitats 2774:Ecological trap 2755: 2635: 2628: 2571: 2565: 2521:Rapoport's rule 2516:Priority effect 2457:Endemic species 2425: 2384:Population size 2300: 2293: 2283: 2253: 2248: 2201: 2195: 2181:Trophic cascade 2091:Bioaccumulation 2074: 2001: 1958: 1880: 1847: 1744: 1656: 1617:Ecosystem model 1550: 1536: 1506: 1501: 1492:Natural history 1475:Applied ecology 1453: 1449:Systems ecology 1410: 1406:Thermal ecology 1401:Spatial ecology 1376:Genetic ecology 1346:Disease ecology 1322: 1278:biogeographical 1268: 1231: 1190: 1167: 1139: 1134: 1104: 1103: 1068: 1045: 1038: 1016: 991: 959: 955: 924: 909: 872: 861: 830: 823: 768: 764: 735:(7401): 59–67. 724: 717: 684: 673: 669: 640: 615: 600:10.2307/2389954 576: 572: 557:10.2307/2389358 533: 526: 521: 503: 496: 489: 482: 475: 470: 468: 465: 447: 427: 390:reverse ecology 385: 288: 279: 270: 257:ecological unit 252: 227: 213: 174: 136:is a branch of 119: 108: 102: 99: 56: 54: 44: 32: 21: 12: 11: 5: 3095: 3085: 3084: 3067: 3066: 3061: 3058: 3057: 3055: 3054: 3049: 3044: 3039: 3034: 3029: 3024: 3022:Microecosystem 3019: 3014: 3009: 3004: 2999: 2994: 2989: 2984: 2979: 2974: 2969: 2964: 2959: 2954: 2949: 2944: 2938: 2936: 2932: 2931: 2929: 2928: 2923: 2921:Thorson's rule 2918: 2913: 2908: 2903: 2898: 2893: 2888: 2883: 2878: 2873: 2868: 2863: 2858: 2853: 2848: 2846:Assembly rules 2842: 2840: 2832: 2831: 2829: 2828: 2823: 2818: 2813: 2808: 2803: 2802: 2801: 2791: 2786: 2781: 2776: 2771: 2765: 2763: 2757: 2756: 2754: 2753: 2748: 2743: 2731: 2729:Patch dynamics 2726: 2724:Metapopulation 2721: 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2681: 2676: 2671: 2666: 2661: 2656: 2651: 2646: 2640: 2638: 2630: 2629: 2627: 2626: 2621: 2619:Storage effect 2616: 2611: 2606: 2601: 2596: 2591: 2586: 2581: 2575: 2573: 2567: 2566: 2564: 2563: 2558: 2553: 2548: 2543: 2538: 2533: 2528: 2523: 2518: 2513: 2508: 2503: 2501:Neutral theory 2498: 2493: 2488: 2486:Native species 2479: 2474: 2469: 2464: 2459: 2454: 2449: 2444: 2439: 2433: 2431: 2427: 2426: 2424: 2423: 2418: 2417: 2416: 2411: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2366: 2361: 2359:Overpopulation 2356: 2351: 2346: 2341: 2336: 2331: 2326: 2321: 2316: 2311: 2305: 2303: 2295: 2294: 2282: 2281: 2274: 2267: 2259: 2250: 2249: 2247: 2246: 2241: 2236: 2231: 2226: 2221: 2216: 2211: 2205: 2203: 2197: 2196: 2194: 2193: 2188: 2183: 2178: 2173: 2168: 2166:Nutrient cycle 2163: 2158: 2156:Feeding frenzy 2153: 2148: 2143: 2138: 2136:Energy quality 2133: 2128: 2123: 2118: 2113: 2108: 2103: 2098: 2096:Cascade effect 2093: 2088: 2082: 2080: 2076: 2075: 2073: 2072: 2071: 2070: 2065: 2060: 2055: 2050: 2045: 2040: 2030: 2025: 2020: 2015: 2009: 2007: 2003: 2002: 2000: 1999: 1994: 1989: 1984: 1979: 1974: 1968: 1966: 1960: 1959: 1957: 1956: 1951: 1946: 1941: 1939:Microbial loop 1936: 1931: 1926: 1921: 1916: 1911: 1906: 1904:Lithoautotroph 1901: 1896: 1890: 1888: 1886:Microorganisms 1882: 1881: 1879: 1878: 1873: 1868: 1863: 1857: 1855: 1849: 1848: 1846: 1845: 1843:Prey switching 1840: 1835: 1830: 1825: 1820: 1815: 1810: 1805: 1800: 1795: 1790: 1785: 1780: 1775: 1770: 1765: 1760: 1754: 1752: 1746: 1745: 1743: 1742: 1737: 1732: 1727: 1722: 1720:Photosynthesis 1717: 1712: 1707: 1702: 1697: 1692: 1687: 1682: 1677: 1675:Chemosynthesis 1672: 1666: 1664: 1658: 1657: 1655: 1654: 1649: 1644: 1639: 1634: 1629: 1624: 1619: 1614: 1609: 1604: 1599: 1594: 1589: 1584: 1579: 1574: 1569: 1567:Abiotic stress 1564: 1558: 1556: 1552: 1551: 1535: 1534: 1527: 1520: 1512: 1503: 1502: 1500: 1499: 1494: 1489: 1484: 1483: 1482: 1472: 1467: 1461: 1459: 1455: 1454: 1452: 1451: 1446: 1441: 1436: 1431: 1426: 1420: 1418: 1412: 1411: 1409: 1408: 1403: 1398: 1396:Social ecology 1393: 1388: 1383: 1378: 1373: 1368: 1363: 1358: 1353: 1348: 1343: 1338: 1332: 1330: 1324: 1323: 1321: 1320: 1315: 1310: 1305: 1303:Forest ecology 1300: 1298:Desert ecology 1295: 1294: 1293: 1291:Arctic ecology 1282: 1280: 1270: 1269: 1267: 1266: 1261: 1259:Insect ecology 1256: 1251: 1245: 1243: 1233: 1232: 1230: 1229: 1228: 1227: 1222: 1217: 1207: 1201: 1199: 1192: 1191: 1189: 1188: 1183: 1177: 1175: 1169: 1168: 1166: 1165: 1160: 1155: 1149: 1147: 1141: 1140: 1133: 1132: 1125: 1118: 1110: 1102: 1101: 1043: 1036: 989: 970:(4): 329–339. 953: 934:(5): 882–892. 907: 886:(4): 917–928. 859: 840:(5): 382–394. 821: 762: 682: 677:Animal Ecology 667: 654:(2): 112–116. 613: 586:(6): 621–626. 570: 523: 522: 520: 517: 516: 515: 509: 508: 494: 491:Biology portal 480: 477:Ecology portal 464: 461: 446: 443: 426: 423: 384: 381: 378: 377: 374: 371: 368: 364: 363: 360: 357: 354: 350: 349: 346: 343: 340: 336: 335: 332: 329: 326: 322: 321: 318: 315: 312: 308: 307: 304: 301: 298: 287: 284: 278: 275: 269: 266: 251: 248: 226: 223: 212: 209: 205:trophic levels 192:Animal Ecology 178:Charles Darwin 173: 170: 121: 120: 35: 33: 26: 9: 6: 4: 3: 2: 3094: 3083: 3080: 3079: 3077: 3064: 3059: 3053: 3050: 3048: 3047:Urban ecology 3045: 3043: 3040: 3038: 3035: 3033: 3030: 3028: 3025: 3023: 3020: 3018: 3015: 3013: 3010: 3008: 3005: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2943: 2940: 2939: 2937: 2933: 2927: 2924: 2922: 2919: 2917: 2914: 2912: 2909: 2907: 2906:Kleiber's law 2904: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2862: 2859: 2857: 2854: 2852: 2849: 2847: 2844: 2843: 2841: 2839: 2833: 2827: 2824: 2822: 2819: 2817: 2814: 2812: 2809: 2807: 2804: 2800: 2797: 2796: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2766: 2764: 2762: 2758: 2752: 2749: 2747: 2744: 2742: 2740: 2736: 2732: 2730: 2727: 2725: 2722: 2720: 2717: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2679:Foster's rule 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2641: 2639: 2637: 2631: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2576: 2574: 2568: 2562: 2559: 2557: 2554: 2552: 2549: 2547: 2544: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2524: 2522: 2519: 2517: 2514: 2512: 2509: 2507: 2504: 2502: 2499: 2497: 2494: 2492: 2489: 2487: 2483: 2480: 2478: 2475: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2434: 2432: 2428: 2422: 2419: 2415: 2412: 2410: 2407: 2406: 2405: 2402: 2400: 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2306: 2304: 2302: 2296: 2291: 2287: 2280: 2275: 2273: 2268: 2266: 2261: 2260: 2257: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2206: 2204: 2198: 2192: 2189: 2187: 2184: 2182: 2179: 2177: 2174: 2172: 2169: 2167: 2164: 2162: 2159: 2157: 2154: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2112: 2109: 2107: 2104: 2102: 2099: 2097: 2094: 2092: 2089: 2087: 2084: 2083: 2081: 2077: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2035: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2010: 2008: 2004: 1998: 1997:Trophic level 1995: 1993: 1990: 1988: 1985: 1983: 1980: 1978: 1975: 1973: 1970: 1969: 1967: 1965: 1961: 1955: 1954:Phage ecology 1952: 1950: 1947: 1945: 1944:Microbial mat 1942: 1940: 1937: 1935: 1932: 1930: 1927: 1925: 1922: 1920: 1917: 1915: 1912: 1910: 1907: 1905: 1902: 1900: 1899:Bacteriophage 1897: 1895: 1892: 1891: 1889: 1887: 1883: 1877: 1874: 1872: 1869: 1867: 1866:Decomposition 1864: 1862: 1859: 1858: 1856: 1854: 1850: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1813:Mesopredators 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1794: 1791: 1789: 1786: 1784: 1781: 1779: 1776: 1774: 1771: 1769: 1766: 1764: 1761: 1759: 1758:Apex predator 1756: 1755: 1753: 1751: 1747: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1711: 1708: 1706: 1703: 1701: 1698: 1696: 1693: 1691: 1688: 1686: 1683: 1681: 1678: 1676: 1673: 1671: 1668: 1667: 1665: 1663: 1659: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1592:Biotic stress 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1559: 1557: 1553: 1548: 1544: 1540: 1533: 1528: 1526: 1521: 1519: 1514: 1513: 1510: 1498: 1495: 1493: 1490: 1488: 1485: 1481: 1478: 1477: 1476: 1473: 1471: 1468: 1466: 1463: 1462: 1460: 1456: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1430: 1427: 1425: 1422: 1421: 1419: 1417: 1413: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1359: 1357: 1356:Ecotoxicology 1354: 1352: 1351:Ecophysiology 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1333: 1331: 1329: 1325: 1319: 1318:Urban ecology 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1292: 1289: 1288: 1287: 1286:Polar ecology 1284: 1283: 1281: 1279: 1275: 1271: 1265: 1264:Human ecology 1262: 1260: 1257: 1255: 1254:Plant ecology 1252: 1250: 1247: 1246: 1244: 1242: 1238: 1234: 1226: 1223: 1221: 1218: 1216: 1213: 1212: 1211: 1208: 1206: 1203: 1202: 1200: 1197: 1193: 1187: 1184: 1182: 1179: 1178: 1176: 1174: 1173:Spatial scale 1170: 1164: 1161: 1159: 1156: 1154: 1153:Field ecology 1151: 1150: 1148: 1146: 1142: 1138: 1131: 1126: 1124: 1119: 1117: 1112: 1111: 1108: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1066: 1064: 1062: 1060: 1058: 1056: 1054: 1052: 1050: 1048: 1039: 1037:9781785481468 1033: 1029: 1025: 1021: 1014: 1012: 1010: 1008: 1006: 1004: 1002: 1000: 998: 996: 994: 985: 981: 977: 973: 969: 965: 957: 949: 945: 941: 937: 933: 929: 922: 920: 918: 916: 914: 912: 902: 897: 893: 889: 885: 881: 877: 870: 868: 866: 864: 855: 851: 847: 843: 839: 835: 828: 826: 817: 813: 808: 803: 798: 793: 789: 785: 781: 777: 773: 766: 758: 754: 750: 746: 742: 738: 734: 730: 723: 715: 713: 711: 709: 707: 705: 703: 701: 699: 697: 695: 693: 691: 689: 687: 678: 671: 662: 657: 653: 649: 645: 638: 636: 634: 632: 630: 628: 626: 624: 622: 620: 618: 609: 605: 601: 597: 593: 589: 585: 581: 574: 566: 562: 558: 554: 550: 546: 542: 538: 531: 529: 524: 514: 511: 510: 506: 500: 495: 492: 486: 481: 478: 467: 460: 458: 454: 453: 442: 438: 434: 432: 431:de-extinction 425:De-extinction 422: 418: 415: 411: 410:Agrobacterium 407: 403: 399: 398:Agrobacterium 393: 391: 375: 372: 369: 366: 365: 361: 358: 355: 352: 351: 347: 344: 341: 338: 337: 333: 330: 327: 325:Life-history 324: 323: 319: 316: 313: 310: 309: 305: 302: 299: 296: 295: 292: 283: 274: 265: 262: 258: 247: 243: 240: 235: 233: 222: 219: 208: 206: 200: 197: 196:Charles Elton 193: 189: 185: 184: 179: 169: 167: 163: 159: 155: 150: 146: 143: 139: 135: 127: 117: 114: 106: 95: 92: 88: 85: 81: 78: 74: 71: 67: 64: –  63: 59: 58:Find sources: 52: 48: 42: 41: 36:This article 34: 30: 25: 24: 19: 3032:Regime shift 3017:Macroecology 3006: 2738: 2734: 2674:Edge effects 2644:Biogeography 2589:Commensalism 2437:Biodiversity 2314:Allee effect 2053:kelp forests 2006:Example webs 1871:Detritivores 1710:Organotrophs 1690:Kinetotrophs 1642:Productivity 1497:Biogeography 1391:Paleoecology 1370: 1366:Fire ecology 1308:Soil ecology 1196:Organisation 1186:Macroecology 1181:Microecology 1079: 1075: 1019: 967: 963: 956: 931: 927: 883: 879: 837: 833: 779: 775: 765: 732: 728: 676: 670: 651: 647: 583: 579: 573: 543:(1): 57–61. 540: 536: 450: 448: 439: 435: 428: 419: 413: 409: 405: 401: 397: 394: 386: 339:Demographic 289: 280: 271: 253: 244: 238: 236: 228: 214: 201: 191: 181: 175: 151: 147: 133: 132: 109: 100: 90: 83: 76: 69: 57: 45:Please help 40:verification 37: 2669:Disturbance 2572:interaction 2394:Recruitment 2324:Depensation 2116:Copiotrophs 1987:Energy flow 1909:Lithotrophy 1853:Decomposers 1833:Planktivore 1808:Insectivore 1798:Heterotroph 1763:Bacterivore 1730:Phototrophs 1680:Chemotrophs 1652:Restoration 1602:Competition 1424:Agroecology 1145:Methodology 459:since 1986 342:Population 328:Individual 314:Individual 3037:Sexecology 2614:Parasitism 2579:Antibiosis 2414:Resistance 2409:Resilience 2299:Population 2219:Camouflage 2171:Oligotroph 2086:Ascendency 2048:intertidal 2038:cold seeps 1992:Food chain 1793:Herbivores 1768:Carnivores 1695:Mixotrophs 1670:Autotrophs 1549:components 1210:Synecology 1205:Autecology 519:References 370:Ecosystem 356:Community 73:newspapers 2942:Allometry 2896:Emergence 2624:Symbiosis 2609:Mutualism 2404:Stability 2309:Abundance 2121:Dominance 2079:Processes 2068:tide pool 1964:Food webs 1838:Predation 1823:Omnivores 1750:Consumers 1705:Mycotroph 1662:Producers 1607:Ecosystem 1572:Behaviour 353:Response 306:Examples 142:ecosystem 103:June 2018 3076:Category 2997:Endolith 2926:Xerosere 2838:networks 2654:Ecocline 2200:Defense, 1876:Detritus 1778:Foraging 1647:Resource 1487:Ecosophy 1237:Taxonomy 1198:or scope 984:31953170 854:26924737 816:17991772 757:22678280 463:See also 445:Journals 383:Genomics 166:genomics 162:genetics 2987:Ecopath 2794:Habitat 2664:Ecotype 2659:Ecotone 2636:ecology 2634:Spatial 2570:Species 2430:Species 2301:ecology 2286:Ecology 2234:Mimicry 2202:counter 2146:f-ratio 1894:Archaea 1582:Biomass 1555:General 1547:Trophic 1539:Ecology 1084:Bibcode 936:Bibcode 888:Bibcode 807:2084307 784:Bibcode 737:Bibcode 608:2389954 588:Bibcode 565:2389358 545:Bibcode 367:Effect 250:Scaling 172:History 138:ecology 87:scholar 2018:Rivers 1914:Marine 1034:  982:  852:  814:  804:  755:  729:Nature 606:  563:  303:Scope 300:Scale 297:Trait 89:  82:  75:  68:  60:  2935:Other 2836:Other 2789:Guild 2761:Niche 2013:Lakes 1458:Other 1274:Biome 1241:taxon 928:Oikos 725:(PDF) 604:JSTOR 561:JSTOR 94:JSTOR 80:books 2023:Soil 1032:ISBN 980:PMID 850:PMID 812:PMID 753:PMID 239:loss 164:and 66:news 1276:or 1239:or 1092:doi 1024:doi 972:doi 944:doi 932:116 896:doi 842:doi 802:PMC 792:doi 780:104 745:doi 733:486 656:doi 596:doi 553:doi 180:'s 49:by 3078:: 2484:/ 2288:: 1545:: 1541:: 1090:. 1080:31 1078:. 1074:. 1046:^ 1030:. 992:^ 978:. 968:25 966:. 942:. 930:. 910:^ 894:. 882:. 878:. 862:^ 848:. 838:31 836:. 824:^ 810:. 800:. 790:. 778:. 774:. 751:. 743:. 731:. 727:. 685:^ 652:13 650:. 646:. 616:^ 602:. 594:. 582:. 559:. 551:. 539:. 527:^ 194:, 160:, 156:, 2739:K 2737:/ 2735:r 2278:e 2271:t 2264:v 1531:e 1524:t 1517:v 1129:e 1122:t 1115:v 1098:. 1094:: 1086:: 1040:. 1026:: 986:. 974:: 950:. 946:: 938:: 904:. 898:: 890:: 884:9 856:. 844:: 818:. 794:: 786:: 759:. 747:: 739:: 664:. 658:: 610:. 598:: 590:: 584:6 567:. 555:: 547:: 541:1 116:) 110:( 105:) 101:( 91:· 84:· 77:· 70:· 43:. 20:.

Index

Functional Ecology (journal)

verification
improve this article
adding citations to reliable sources
"Functional ecology"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

ecology
ecosystem
evolutionary ecology
evolutionary biology
genetics
genomics
Charles Darwin
On The Origin of Species
ecosystem health
Charles Elton
trophic levels
Functional diversity
species composition
ecological unit
environmental heterogeneity
reverse ecology
de-extinction

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.