Knowledge

Iron meteorite

Source đź“ť

779: 799: 863: 759: 819: 879: 899: 923: 739: 839: 38: 2422: 2446: 2398: 2434: 118: 2410: 778: 259:
that have been shattered by impacts. The heat released from the radioactive decay of the short-lived nuclides Al and Fe is considered as a plausible cause for the melting and differentiation of their parent bodies in the early Solar System. Melting produced from the heat of impacts is another cause
348:
is always present; the concentration is nearly always higher than 5% and may be as high as about 25%. A significant percentage of nickel can be used in the field to distinguish meteoritic irons from human-made iron products, which usually contain lower amounts of Ni, but it is not enough to prove
798: 758: 818: 878: 238:
Because they are also denser than stony meteorites, iron meteorites also account for almost 90% of the mass of all known meteorites, about 500 tons. All the largest known meteorites are of this type, including the largest—the
538:: 6.1–6.8% Ni. The Ni concentrations are positively correlated with As (4–9 μg/g), Au (0.6–1.0 μg/g) and P (0.17–0.40%) and negatively correlated with Ga (54–42 μg/g), Ir (9–0.07 μg/g) and W (2.4–0.8 μg/g). 898: 608:
Ungrouped meteorites. This is actually quite a large collection (about 15% of the total) of over 100 meteorites that do not fit into any of the larger classes above, and come from about 50 distinct parent
838: 221:
They are easily recognized as unusual, as opposed to stony meteorites. Modern-day searches for meteorites in deserts and Antarctica yield a much more representative sample of meteorites overall.
968:
The Seymchan meteorite was initially considered a group IIE iron meteorite, but as new fragments were discovered it was reclassified as a stony-iron meteorite from the palassite main group.
416:, which can be assessed from the appearance of polished cross-sections that have been etched with acid. This is connected with the relative abundance of nickel to iron. The categories are: 511:
There were originally four of these groups designated by the Roman numerals I, II, III, IV. When more chemical data became available these were split, e.g. Group IV was split into
738: 862: 372:
the importance of iron meteorites as a resource decreased, at least in those cultures that developed those techniques. In Ancient Egypt and other civilizations before the
515:
and IVB meteorites. Even later some groups got joined again when intermediate meteorites were discovered, e.g. IIIA and IIIB were combined into the IIIAB meteorites.
671: 255:
because both have similar spectral characteristics in the visible and near-infrared. Iron meteorites are thought to be the fragments of the cores of larger ancient
274:
Chemical and isotope analysis indicates that at least about 50 distinct parent bodies were involved. This implies that there were once at least this many large,
1058:
M. K. Weisberg; T. J. McCoy, A. N. Krot (2006). "Systematics and Evaluation of Meteorite Classification/s". In D. S. Lauretta; H. Y. McSween, Jr. (eds.).
572: 1059: 641:
The iron meteorites were previously divided into two classes: magmatic irons and non magmatic or primitive irons. Now this definition is deprecated.
590: 584: 392:). Today iron meteorites are prized collectibles for academic institutions and individuals. Some are also tourist attractions as in the case of the 596: 512: 560: 554: 535: 1332:(1969). The chemical classification of iron meteorites—III. Hexahedrites and other irons with germanium concentrations between 80 and 200 ppm. 1376: 508:
content against different trace elements (e.g. Ga, Ge and Ir). The different iron meteorite groups appear as data point clusters.
922: 384:
for a much longer time. Iron meteorites themselves were sometimes used unaltered as collectibles or even religious symbols (e.g.
1444: 1197: 1170: 377: 2300: 2249: 1616: 527:
IA: Medium and coarse octahedrites, 6.4–8.7% Ni, 55–100 ppm Ga, 190–520 ppm Ge, 0.6–5.5 ppm Ir, Ge-Ni correlation negative.
1690: 530:
IB: Ataxites and medium octahedrites, 8.7–25% Ni, 11–55 ppm Ga, 25–190 ppm Ge, 0.3–2 ppm Ir, Ge-Ni correlation negative.
1518: 1072: 1026: 769: 694:
There are also specific categories for mixed-composition meteorites, in which iron and 'stony' materials are combined.
2317: 593:: Medium to coarse octahedrites, 6.8–7.8% Ni,6.3–7.2 ppm Ga, 0.7–1.1 ppm Ge, 1.3–7.9 ppm Ir, Ge–Ni correlation absent 888:: Year found: 1836, Country: Namibia, individual weighing 3986 grams. This specimen is in the private collection of 213:, comprising only about 5.7% of witnessed falls, iron meteorites have historically been heavily over-represented in 2322: 569:: octahedrites of various coarseness, 7.5–9.7% Ni, 21–28 ppm Ga, 60–75 ppm Ge, 1–8 ppm Ir, Ge-Ni correlation absent 549:
IIB: Coarsest octahedrites, 5.7–6.4% Ni, 446–59 pm Ga, 107–183 ppm Ge, 0.01–0.5 ppm Ir, Ge-Ni correlation negative.
772:. It weighs about 14,500 kilograms (32,000 pounds). This is the largest meteorite ever found in the United States. 234:
They can be found even when buried by use of surface metal-detecting equipment, due to their metallic composition.
563:: Fine to medium octahedrites, 9.8–11.3%Ni, 70–83 ppm Ga, 82–98 ppm Ge, 3.5–18 ppm Ir, Ge-Ni correlation positive 368:, which was forged into cultural objects, tools or weapons. With the advent of smelting and the beginning of the 1534:
Wasson, John T.; Choe, Won-Hie (31 July 2009). "The IIG iron meteorites: Probable formation in the IIAB core".
809: 71: 59: 28: 1021: 999: 788:, weighing 5,360 kilograms (11,600 pounds), was found in 1784 and brought in 1888 to its current location at 404:
Two classifications are in use: the classic structural classification and the newer chemical classification.
1250:"Numerical simulations of the differentiation of accreting planetesimals with Al and Fe as the heat sources" 599:: Fine octahedrites, 7.4–9.4% Ni, 1.6–2.4 ppm Ga, 0.09–0.14 ppm Ge, 0.4–4 ppm Ir, Ge-Ni correlation positive 557:: Plessitic octahedrites, 9.3–11.5% Ni, 37–39 ppm Ga, 88–114 ppm Ge, 4–11 ppm Ir, Ge-Ni correlation positive 441:, most common class. They can be further divided up on the basis of the width of the kamacite lamellae from 1743: 1474:
Scott, Edward R. D.; Wasson, John T. (1 January 1975). "Classification and properties of iron meteorites".
318:
also occur as plate shaped inclusions, which show up on cut surfaces as cm-long and mm-thick lamellae. The
2305: 2129: 714: 1134: 2388: 2254: 2244: 2033: 2028: 1729: 1584:
Meteorite articles, including discussions of iron meteorites, in Planetary Science Research Discoveries
587:: Coarse octahedrites, 8.2–9.0% Ni, 17–19 ppm Ga, 3–37 ppm Ge, 0.05–6 ppm Ir, Ge-Ni correlation absent 2312: 1738: 1666: 869: 789: 275: 2471: 2466: 1966: 1734: 1725: 1715: 1609: 605:: Ataxites, 16–26% Ni, 0.17–0.27 ppm Ga, 0,03–0,07 ppm Ge, 13–38 ppm Ir, Ge–Ni correlation positive 2274: 2023: 1213:
Goldstein, Joseph (October 1967). "The iron meteorites, their thermal history and parent bodies".
476: 438: 424: 413: 122: 1646: 1096: 939: 227:
They are much more likely to survive atmospheric entry, and are more resistant to the resulting
1760: 825: 1160: 189:
The iron found in iron meteorites was one of the earliest sources of usable iron available to
2212: 2182: 1989: 1984: 1903: 1583: 993: 655: 155: 1265: 2222: 2119: 2101: 1855: 1543: 1483: 1302: 1261: 1222: 1108: 765: 442: 389: 324: 126: 1809: 785: 581:: Ataxites to fine octahedrites, 10–23% Ni, 1.5–27 ppm Ga, 1.4–70 ppm Ge, 0.02–0.55 ppm Ir 8: 2450: 2124: 1836: 1796: 1602: 988: 944: 381: 1700: 1547: 1487: 1306: 1226: 1112: 193:, due to the malleability and ductility of the meteoric iron, before the development of 2438: 2426: 2217: 2069: 1814: 1568: 1274: 1249: 1039: 885: 664: 566: 446: 261: 183: 101: 518:
In 2006 iron meteorites were classified into 13 groups (one for uncategorized irons):
488:
A newer chemical classification scheme based on the proportions of the trace elements
2375: 2343: 2016: 1976: 1683: 1588: 1514: 1440: 1234: 1193: 1166: 1068: 2402: 2001: 1551: 1491: 1310: 1269: 1230: 1189:
The Universal Book of Astronomy: From the Andromeda Galaxy to the Zone of Avoidance
1116: 1035: 845: 385: 2237: 2058: 2011: 1948: 1878: 1187: 913: 805: 578: 541: 265: 252: 210: 175: 1402: 905: 1956: 1873: 1695: 1678: 1651: 1329: 853: 804:
The Otumpa mass, meteoric iron weighing 635 kilograms (1,400 pounds), from the
745: 681: 677: 660: 617: 575:: Medium octahedrites, 7.1–10.5% Ni, 16–23 ppm Ga, 27–47 ppm Ge, 0.01–19 ppm Ir 412:
The older structural classification is based on the presence or absence of the
393: 240: 1555: 1120: 264:
may be a notable exception, in that they probably originate from the crust of
2460: 2363: 2269: 2259: 2091: 2074: 1921: 1594: 629: 625: 602: 522: 428: 376:, iron was as valuable as gold, since both came from meteorites, for example 365: 358: 311: 303: 159: 1495: 613:
Additional groups and grouplets are discussed in the scientific literature:
2414: 2353: 2109: 1996: 1961: 1829: 1771: 1671: 1162:
Planet earth: cosmology, geology, and the evolution of life and environment
721: 467:
Plessitic (Opl): a transitional structure between octahedrites and ataxites
179: 546:
IIA: Hexahedrites, 5.3–5.7% Ni, 57–62 ppm Ga, 170–185 ppm Ge, 2–60 ppm Ir.
125:
as seen on an etched and polished slice of an olivine-free portion of the
2281: 2177: 2161: 2156: 1863: 1824: 1819: 1705: 1629: 1315: 1290: 949: 829: 621: 434: 420: 832:, class IIAB). This specimen is about 12 centimetres (4.7 in) wide. 2196: 1868: 1846: 909: 1723: 286:
The overwhelming bulk of these meteorites consists of the FeNi-alloys
2370: 2232: 2201: 2114: 1936: 1926: 1893: 1883: 1752: 1661: 1637: 1625: 1291:"Differentiation of Vesta and the parent bodies of other achondrites" 1057: 889: 792:
in Rio de Janeiro. It is the largest meteorite ever found in Brazil.
703: 500:
separates the iron meteorites into classes corresponding to distinct
493: 214: 151: 37: 2338: 2006: 1888: 501: 373: 369: 319: 315: 307: 299: 295: 287: 256: 228: 198: 194: 167: 50: 42: 1395: 504:
parent bodies. This classification is based on diagrams that plot
2151: 1931: 1916: 1911: 849: 749: 497: 489: 472: 291: 171: 163: 145: 824:
A 1.7-kilogram (3.7 lb) individual meteorite from the 1947
294:. Minor minerals, when occurring, often form rounded nodules of 2358: 1656: 505: 345: 341: 337: 268: 93: 89: 46: 2348: 1247: 636: 190: 49:, weighing about 500 kg (1,100 lb). On display at 16:
Meteorite composed of iron-nickel alloy called meteoric iron
333: 117: 85: 2409: 1022:"Seymchan: A Main Group Pallasite - Not an Iron Meteorite" 231:. Hence, they are more likely to be found as large pieces. 278:, asteroids in the asteroid belt – many more than today. 1067:. Tucson: University of Arizona Press. pp. 19–52. 332:
The chemical composition is dominated by the elements
2386: 1288: 1473: 1455:
Geochimica et Cosmochimica Acta, Volume 45, Ed. 9–12
1097:"Formation of non-magmatic iron-meteorite group IIE" 1533: 1513:(Sec. ed.). Cambridge: Cambridge Univ. Press. 1467: 1464:John T. Wasson: Meteorites. Springer-Verlag 1974. 364:Iron meteorites were historically used for their 2458: 1185: 1053: 1051: 1049: 748:, the biggest known iron meteorite. It lies in 452:Coarsest (Ogg): lamellae width > 3.3 mm 357:For usage of the metal of iron meteorites, see 1624: 1435:James H. Shirley, Rhodes Whitmore Fairbridge, 217:collections. This is due to several factors: 209:Although they are fairly rare compared to the 1610: 856:). This specimen is about 9 centimeters wide. 464:Finest (Off): lamellae width < 0.2 mm 1502: 1241: 1046: 1020:van Niekerk, D.; et al. (August 2007). 928:Iron meteorite, 5 cm long, weighing 77 grams 407: 1527: 1165:. Cambridge University Press. p. 152. 1019: 458:Medium (Om): lamellae width 0.5–1.3 mm 455:Coarse (Og): lamellae width 1.3–3.3 mm 224:They are much more resistant to weathering. 1617: 1603: 1377:"Iron came from Space before the Iron Age" 1248:Sahijpal, S.; Soni, P.; Gagan, G. (2007). 637:Magmatic and nonmagmatic (primitive) irons 483: 36: 1364:Meteorites: Classification and Properties 1314: 1282: 1273: 1212: 461:Fine (Of): lamellae width 0.2–0.5 mm 1158: 1061:Meteorites and the early Solar System II 689: 656:Nonmagmatic or primitive iron meteorites 1508: 1426:. University of California Press, 1975. 1353:. University of California Press, 1986. 2459: 1094: 908:resembling thumbprints, discovered on 174:. Most iron meteorites originate from 1598: 45:Iron Meteorite, found in 1864 in the 1403:"Meteorites in History and Religion" 1351:Cosmic Debris: Meteorites in History 812:, found in 1783 in Chaco, Argentina. 260:of melting and differentiation. The 251:Iron meteorites have been linked to 1571:at Meteoritical Bulletin Database. 1511:Meteorites and their parent planets 1254:Meteoritics & Planetary Science 1135:"Meteoric Iron- Properties and Use" 1027:Meteoritics & Planetary Science 844:A 700-gram (25 oz) individual 197:that signaled the beginning of the 13: 1437:Encyclopedia of planetary sciences 1275:10.1111/j.1945-5100.2007.tb00589.x 1040:10.1111/j.1945-5100.2007.tb00601.x 770:American Museum of Natural History 378:Tutankhamun's meteoric iron dagger 154:that consist overwhelmingly of an 110: 500 short tons (450 t) 14: 2483: 1577: 399: 2444: 2432: 2420: 2408: 2396: 1289:Gupta, G.; Sahijpal, S. (2010). 1095:Wasson, John T. (January 2017). 921: 897: 877: 861: 837: 817: 797: 777: 757: 737: 711:Eagle station pallasite grouplet 116: 1562: 1536:Geochimica et Cosmochimica Acta 1458: 1449: 1429: 1416: 1369: 1356: 1343: 1334:Geochimica et Cosmochimica Acta 1323: 1215:Geochimica et Cosmochimica Acta 1101:Geochimica et Cosmochimica Acta 904:The Murnpeowie meteorite, with 344:, which make up more than 95%. 1206: 1179: 1152: 1127: 1088: 1013: 981: 962: 810:Natural History Museum, London 281: 1: 1000:Lunar and Planetary Institute 975: 632:has low nickel concentration. 437:(O): average to high nickel, 204: 162:that usually consists of two 106: 1235:10.1016/0016-7037(67)90120-2 868:Meteorite fragment from the 182:, with the exception of the 7: 1424:Handbook of Iron Meteorites 933: 715:Pyroxene Pallasite grouplet 10: 2488: 2255:extraterrestrial materials 1509:McSween, Harry Y. (1999). 730: 680:, IIIAB, IIIE, IIIF, IVA, 475:(D): very high nickel, no 356: 2331: 2290: 2195: 2170: 2144: 2100: 2046: 1975: 1947: 1902: 1854: 1845: 1751: 1714: 1636: 1591:from Meteorites Australia 1556:10.1016/j.gca.2009.05.062 1186:David J. Darling (2004). 1159:Emiliani, Cesare (1992). 1121:10.1016/j.gca.2016.09.043 790:National Museum of Brazil 752:and weighs about 60 tons. 676:IC, IIAB, IIC, IID, IIF, 408:Structural classification 246: 115: 100: 80: 70: 58: 35: 26: 21: 1366:. Springer-Verlag, 1974. 1295:J. Geophys. Res. Planets 955: 672:Magmatic iron meteorites 2034:Meteorites on Mars list 2029:Martian meteorites list 1496:10.1029/RG013i004p00527 1266:2007M&PS...42.1529S 940:Glossary of meteoritics 484:Chemical classification 1192:. Wiley. p. 260. 870:Cañon Diablo Meteorite 826:Sikhote-Alin meteorite 439:Widmanstätten patterns 352: 2183:Nonmagmatic meteorite 1589:Iron Meteorite images 1476:Reviews of Geophysics 994:Meteoritical Bulletin 846:Chinga iron meteorite 708:Main group pallasites 699:Stony–iron meteorites 690:Stony–iron meteorites 477:Widmanstätten pattern 425:Widmanstätten pattern 414:Widmanstätten pattern 380:. The Inuit used the 123:Widmanstätten pattern 2250:Ca–Al-rich inclusion 1316:10.1029/2009JE003525 766:Willamette Meteorite 423:(H): low nickel, no 390:Willamette meteorite 1548:2009GeCoA..73.4879W 1488:1975RvGSP..13..527S 1307:2010JGRE..115.8001G 1227:1967GeCoA..31.1733G 1113:2017GeCoA.197..396W 945:Hraschina meteorite 808:, exhibited in the 382:Cape York meteorite 349:meteoritic origin. 262:IIE iron meteorites 1439:, Springer, 1997. 1422:Vagn F. Buchwald, 1383:. 22 December 2017 1139:www.tf.uni-kiel.de 1002:. 5 September 2024 768:on display at the 322:plates are called 127:Seymchan meteorite 60:Compositional type 2384: 2383: 2376:Near-Earth object 2344:Atmospheric entry 2191: 2190: 2140: 2139: 2042: 2041: 1542:(16): 4879–4890. 1445:978-0-412-06951-2 1221:(10): 1733–1770. 1199:978-0-471-26569-6 1172:978-0-521-40949-0 828:shower (coarsest 786:BendegĂł meteorite 687: 686: 186:meteorite group. 156:iron–nickel alloy 134: 133: 2479: 2449: 2448: 2447: 2437: 2436: 2435: 2425: 2424: 2423: 2413: 2412: 2401: 2400: 2399: 2392: 2209:Characteristics 1985:Basaltic Breccia 1852: 1851: 1749: 1748: 1721: 1720: 1619: 1612: 1605: 1596: 1595: 1572: 1569:Chinga meteorite 1566: 1560: 1559: 1531: 1525: 1524: 1506: 1500: 1499: 1471: 1465: 1462: 1456: 1453: 1447: 1433: 1427: 1420: 1414: 1413: 1411: 1409: 1399: 1393: 1392: 1390: 1388: 1381:atlasobscura.com 1373: 1367: 1360: 1354: 1347: 1341: 1327: 1321: 1320: 1318: 1286: 1280: 1279: 1277: 1260:(9): 1529–1548. 1245: 1239: 1238: 1210: 1204: 1203: 1183: 1177: 1176: 1156: 1150: 1149: 1147: 1145: 1131: 1125: 1124: 1092: 1086: 1085: 1083: 1081: 1066: 1055: 1044: 1043: 1017: 1011: 1010: 1008: 1007: 985: 969: 966: 925: 901: 886:Gibeon meteorite 881: 865: 841: 821: 801: 781: 761: 741: 644: 643: 302:, surrounded by 253:M-type asteroids 211:stony meteorites 150:, are a type of 129:. Scale unknown. 120: 111: 108: 40: 19: 18: 2487: 2486: 2482: 2481: 2480: 2478: 2477: 2476: 2472:Iron meteorites 2467:Meteorite types 2457: 2456: 2455: 2445: 2443: 2433: 2431: 2421: 2419: 2407: 2397: 2395: 2387: 2385: 2380: 2327: 2286: 2199: 2187: 2166: 2136: 2096: 2038: 2012:Orthopyroxenite 1971: 1943: 1898: 1841: 1741: 1733: 1710: 1632: 1623: 1580: 1575: 1567: 1563: 1532: 1528: 1521: 1507: 1503: 1472: 1468: 1463: 1459: 1454: 1450: 1434: 1430: 1421: 1417: 1407: 1405: 1401: 1400: 1396: 1386: 1384: 1375: 1374: 1370: 1361: 1357: 1348: 1344: 1328: 1324: 1287: 1283: 1246: 1242: 1211: 1207: 1200: 1184: 1180: 1173: 1157: 1153: 1143: 1141: 1133: 1132: 1128: 1093: 1089: 1079: 1077: 1075: 1064: 1056: 1047: 1018: 1014: 1005: 1003: 987: 986: 982: 978: 973: 972: 967: 963: 958: 936: 929: 926: 917: 914:South Australia 902: 893: 882: 873: 866: 857: 842: 833: 822: 813: 806:Campo del Cielo 802: 793: 782: 773: 762: 753: 742: 733: 692: 639: 486: 410: 402: 388:worshiping the 362: 355: 284: 266:S-type asteroid 249: 207: 137:Iron meteorites 130: 109: 54: 53:park in France. 17: 12: 11: 5: 2485: 2475: 2474: 2469: 2454: 2453: 2441: 2429: 2417: 2405: 2382: 2381: 2379: 2378: 2373: 2368: 2367: 2366: 2356: 2351: 2346: 2341: 2332: 2329: 2328: 2326: 2325: 2320: 2315: 2310: 2309: 2308: 2303: 2297:Meteorites by 2294: 2292: 2288: 2287: 2285: 2284: 2279: 2278: 2277: 2272: 2264: 2263: 2262: 2257: 2252: 2242: 2241: 2240: 2235: 2227: 2226: 2225: 2220: 2215: 2206: 2204: 2193: 2192: 2189: 2188: 2186: 2185: 2180: 2174: 2172: 2171:Obsolete terms 2168: 2167: 2165: 2164: 2159: 2154: 2148: 2146: 2142: 2141: 2138: 2137: 2135: 2134: 2133: 2132: 2127: 2122: 2112: 2106: 2104: 2098: 2097: 2095: 2094: 2089: 2086: 2083: 2080: 2077: 2072: 2067: 2064: 2061: 2056: 2052: 2050: 2044: 2043: 2040: 2039: 2037: 2036: 2031: 2026: 2021: 2020: 2019: 2009: 2004: 1999: 1994: 1993: 1992: 1981: 1979: 1973: 1972: 1970: 1969: 1964: 1959: 1957:Impact breccia 1953: 1951: 1945: 1944: 1942: 1941: 1940: 1939: 1934: 1929: 1919: 1914: 1908: 1906: 1900: 1899: 1897: 1896: 1891: 1886: 1881: 1876: 1871: 1866: 1860: 1858: 1849: 1843: 1842: 1840: 1839: 1834: 1833: 1832: 1827: 1822: 1812: 1807: 1806: 1805: 1802: 1794: 1793: 1792: 1789: 1786: 1783: 1780: 1777: 1774: 1769: 1766: 1757: 1755: 1746: 1718: 1716:Classification 1712: 1711: 1709: 1708: 1703: 1698: 1696:Micrometeorite 1693: 1688: 1687: 1686: 1676: 1675: 1674: 1669: 1664: 1659: 1649: 1643: 1641: 1634: 1633: 1622: 1621: 1614: 1607: 1599: 1593: 1592: 1586: 1579: 1578:External links 1576: 1574: 1573: 1561: 1526: 1520:978-0521587518 1519: 1501: 1466: 1457: 1448: 1428: 1415: 1394: 1368: 1362:J. T. Wasson, 1355: 1342: 1322: 1281: 1240: 1205: 1198: 1178: 1171: 1151: 1126: 1087: 1074:978-0816525621 1073: 1045: 1012: 979: 977: 974: 971: 970: 960: 959: 957: 954: 953: 952: 947: 942: 935: 932: 931: 930: 927: 920: 918: 903: 896: 894: 883: 876: 874: 867: 860: 858: 843: 836: 834: 823: 816: 814: 803: 796: 794: 783: 776: 774: 763: 756: 754: 746:Hoba meteorite 743: 736: 732: 729: 728: 727: 726: 725: 719: 718: 717: 712: 709: 691: 688: 685: 684: 674: 668: 667: 658: 652: 651: 648: 638: 635: 634: 633: 611: 610: 606: 600: 594: 588: 582: 576: 570: 564: 558: 552: 551: 550: 547: 539: 533: 532: 531: 528: 485: 482: 481: 480: 470: 469: 468: 465: 462: 459: 456: 453: 432: 427:, may present 409: 406: 401: 400:Classification 398: 394:Hoba meteorite 354: 351: 283: 280: 276:differentiated 248: 245: 241:Hoba meteorite 236: 235: 232: 225: 222: 206: 203: 139:, also called 132: 131: 121: 113: 112: 104: 98: 97: 96:; 5–25% nickel 82: 78: 77: 74: 68: 67: 62: 56: 55: 41: 33: 32: 24: 23: 22:Iron meteorite 15: 9: 6: 4: 3: 2: 2484: 2473: 2470: 2468: 2465: 2464: 2462: 2452: 2442: 2440: 2430: 2428: 2418: 2416: 2411: 2406: 2404: 2394: 2393: 2390: 2377: 2374: 2372: 2369: 2365: 2362: 2361: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2334: 2333: 2330: 2324: 2323:Organizations 2321: 2319: 2316: 2314: 2311: 2307: 2304: 2302: 2301:find location 2299: 2298: 2296: 2295: 2293: 2289: 2283: 2280: 2276: 2275:Widmanstätten 2273: 2271: 2270:Neumann lines 2268: 2267: 2265: 2261: 2260:meteoric iron 2258: 2256: 2253: 2251: 2248: 2247: 2246: 2243: 2239: 2236: 2234: 2231: 2230: 2228: 2224: 2221: 2219: 2216: 2214: 2211: 2210: 2208: 2207: 2205: 2203: 2198: 2194: 2184: 2181: 2179: 2176: 2175: 2173: 2169: 2163: 2160: 2158: 2155: 2153: 2150: 2149: 2147: 2143: 2131: 2128: 2126: 2125:Eagle Station 2123: 2121: 2118: 2117: 2116: 2113: 2111: 2108: 2107: 2105: 2103: 2099: 2093: 2090: 2087: 2084: 2081: 2078: 2076: 2073: 2071: 2068: 2065: 2062: 2060: 2057: 2054: 2053: 2051: 2049: 2045: 2035: 2032: 2030: 2027: 2025: 2022: 2018: 2015: 2014: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1991: 1988: 1987: 1986: 1983: 1982: 1980: 1978: 1974: 1968: 1965: 1963: 1960: 1958: 1955: 1954: 1952: 1950: 1946: 1938: 1935: 1933: 1930: 1928: 1925: 1924: 1923: 1920: 1918: 1915: 1913: 1910: 1909: 1907: 1905: 1901: 1895: 1892: 1890: 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1861: 1859: 1857: 1853: 1850: 1848: 1844: 1838: 1835: 1831: 1828: 1826: 1823: 1821: 1818: 1817: 1816: 1813: 1811: 1808: 1803: 1800: 1799: 1798: 1795: 1790: 1787: 1784: 1781: 1778: 1775: 1773: 1770: 1767: 1764: 1763: 1762: 1759: 1758: 1756: 1754: 1750: 1747: 1745: 1740: 1736: 1731: 1727: 1722: 1719: 1717: 1713: 1707: 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1685: 1682: 1681: 1680: 1677: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1654: 1653: 1650: 1648: 1645: 1644: 1642: 1639: 1635: 1631: 1627: 1620: 1615: 1613: 1608: 1606: 1601: 1600: 1597: 1590: 1587: 1585: 1582: 1581: 1570: 1565: 1557: 1553: 1549: 1545: 1541: 1537: 1530: 1522: 1516: 1512: 1505: 1497: 1493: 1489: 1485: 1481: 1477: 1470: 1461: 1452: 1446: 1442: 1438: 1432: 1425: 1419: 1404: 1398: 1382: 1378: 1372: 1365: 1359: 1352: 1349:J. G. Burke, 1346: 1340:(7), 859–876. 1339: 1335: 1331: 1330:Wasson, J. T. 1326: 1317: 1312: 1308: 1304: 1300: 1296: 1292: 1285: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1244: 1236: 1232: 1228: 1224: 1220: 1216: 1209: 1201: 1195: 1191: 1190: 1182: 1174: 1168: 1164: 1163: 1155: 1140: 1136: 1130: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1091: 1076: 1070: 1063: 1062: 1054: 1052: 1050: 1041: 1037: 1033: 1029: 1028: 1023: 1016: 1001: 997: 995: 990: 984: 980: 965: 961: 951: 948: 946: 943: 941: 938: 937: 924: 919: 915: 911: 907: 900: 895: 891: 887: 880: 875: 871: 864: 859: 855: 851: 847: 840: 835: 831: 827: 820: 815: 811: 807: 800: 795: 791: 787: 780: 775: 771: 767: 760: 755: 751: 747: 740: 735: 734: 723: 720: 716: 713: 710: 707: 706: 705: 702: 701: 700: 697: 696: 695: 683: 679: 675: 673: 670: 669: 666: 662: 659: 657: 654: 653: 649: 646: 645: 642: 631: 630:Meteoric iron 627: 626:schreibersite 623: 619: 616: 615: 614: 607: 604: 601: 598: 595: 592: 589: 586: 583: 580: 577: 574: 571: 568: 565: 562: 559: 556: 553: 548: 545: 544: 543: 540: 537: 534: 529: 526: 525: 524: 521: 520: 519: 516: 514: 509: 507: 503: 499: 495: 491: 478: 474: 471: 466: 463: 460: 457: 454: 451: 450: 448: 444: 440: 436: 433: 430: 429:Neumann lines 426: 422: 419: 418: 417: 415: 405: 397: 395: 391: 387: 383: 379: 375: 371: 367: 366:meteoric iron 360: 359:Meteoric iron 350: 347: 343: 339: 335: 330: 328: 326: 321: 317: 313: 312:Schreibersite 309: 305: 304:schreibersite 301: 297: 293: 289: 279: 277: 272: 270: 267: 263: 258: 254: 244: 242: 233: 230: 226: 223: 220: 219: 218: 216: 212: 202: 200: 196: 192: 187: 185: 181: 180:planetesimals 177: 173: 169: 165: 161: 160:meteoric iron 157: 153: 149: 147: 142: 138: 128: 124: 119: 114: 105: 103: 99: 95: 91: 87: 83: 79: 75: 73: 69: 66: 63: 61: 57: 52: 48: 44: 39: 34: 31: — 30: 27:—  25: 20: 2451:Solar System 2354:Impact event 2335: 2110:Mesosiderite 2047: 2024:Shergottites 1997:Chassignites 1962:Mare basalts 1761:Carbonaceous 1672:strewn field 1564: 1539: 1535: 1529: 1510: 1504: 1479: 1475: 1469: 1460: 1451: 1436: 1431: 1423: 1418: 1406:. Retrieved 1397: 1385:. Retrieved 1380: 1371: 1363: 1358: 1350: 1345: 1337: 1333: 1325: 1298: 1294: 1284: 1257: 1253: 1243: 1218: 1214: 1208: 1188: 1181: 1161: 1154: 1142:. Retrieved 1138: 1129: 1104: 1100: 1090: 1078:. Retrieved 1060: 1034:(S8): A154. 1031: 1025: 1015: 1004:. Retrieved 992: 983: 964: 722:Mesosiderite 698: 693: 640: 624:with coarse 622:Hexahedrites 612: 517: 510: 487: 435:Octahedrites 421:Hexahedrites 411: 403: 363: 331: 323: 285: 273: 250: 237: 208: 188: 144: 140: 136: 135: 64: 2439:Outer space 2427:Spaceflight 2282:CI1 fossils 2178:Amphoterite 2162:Octahedrite 2157:Hexahedrite 1864:Acapulcoite 1791:C ungrouped 1706:Parent body 1630:meteoritics 1408:13 December 1107:: 396–416. 1080:15 December 950:Meteoritics 906:regmaglypts 892:meteorites. 830:octahedrite 647:Iron class 325:Reichenbach 282:Composition 81:Composition 72:Parent body 2461:Categories 2223:weathering 2197:Mineralogy 2145:Structural 2120:Main group 2102:Stony-iron 1904:Asteroidal 1869:Brachinite 1847:Achondrite 1667:statistics 1626:Meteorites 1482:(4): 527. 1006:2024-09-11 989:"Tamentit" 976:References 910:Murnpeowie 704:Pallasites 205:Occurrence 148:meteorites 2403:Astronomy 2371:Meteoroid 2336:See also: 2266:Patterns 2233:chondrule 2202:petrology 2115:Pallasite 2007:Nakhlites 1937:Howardite 1927:Diogenite 1894:Winonaite 1884:Lodranite 1856:Primitive 1810:Kakangari 1797:Enstatite 1753:Chondrite 1662:impactite 1638:Meteorite 916:in 1910. 912:Station, 890:Howardite 872:90mm wide 386:Clackamas 257:asteroids 215:meteorite 158:known as 152:meteorite 141:siderites 2339:Asteroid 2318:Journals 2245:Minerals 2238:presolar 2130:Pyroxene 2017:ALH84001 1990:NWA 7034 1889:Ureilite 1837:Rumuruti 1815:Ordinary 1744:grouplet 1647:Glossary 996:Database 934:See also 852:, class 502:asteroid 473:Ataxites 443:coarsest 374:Iron Age 370:Iron Age 327:lamellae 320:troilite 316:troilite 308:cohenite 300:graphite 296:troilite 288:kamacite 229:ablation 199:Iron Age 195:smelting 184:IIE iron 168:kamacite 166:phases: 84:>95% 51:Vulcania 43:Tamentit 2389:Portals 2229:Grains 2152:Ataxite 1977:Martian 1932:Eucrite 1917:Aubrite 1912:Angrite 1701:Notable 1691:Largest 1684:hunting 1544:Bibcode 1484:Bibcode 1303:Bibcode 1262:Bibcode 1223:Bibcode 1109:Bibcode 850:Ataxite 750:Namibia 731:Gallery 650:Groups 609:bodies. 479:, rare. 292:taenite 172:taenite 164:mineral 146:ferrous 2364:shower 2359:Meteor 2313:Awards 2002:Kaidun 1657:bolide 1517:  1443:  1387:1 June 1301:(E8). 1196:  1169:  1144:5 June 1071:  506:nickel 447:finest 269:6 Hebe 247:Origin 191:humans 94:cobalt 92:, and 90:nickel 76:>50 47:Sahara 2415:Stars 2349:Comet 2291:Lists 2213:shock 2079:IIIAB 1949:Lunar 1879:IIICD 1739:group 1730:class 1065:(PDF) 956:Notes 724:group 579:IIICD 573:IIIAB 176:cores 2306:type 2200:and 2085:IIIF 2082:IIIE 2059:IIAB 2048:Iron 1967:List 1742:and 1735:clan 1726:type 1679:Find 1652:Fall 1628:and 1515:ISBN 1441:ISBN 1410:2012 1389:2021 1194:ISBN 1167:ISBN 1146:2021 1082:2012 1069:ISBN 884:The 784:The 764:The 744:The 591:IIIF 585:IIIE 542:IIAB 496:and 340:and 314:and 306:and 290:and 170:and 86:iron 65:Iron 29:Type 2218:TKW 2092:IVB 2088:IVA 2075:IIG 2070:IIE 2066:IID 2063:IIC 1922:HED 1874:IAB 1724:By 1640:... 1552:doi 1492:doi 1311:doi 1299:115 1270:doi 1231:doi 1117:doi 1105:197 1036:doi 854:IVB 682:IVB 678:IIG 665:IIE 661:IAB 618:IIG 603:IVB 597:IVA 567:IIE 561:IID 555:IIC 523:IAB 513:IVA 445:to 353:Use 298:or 178:of 143:or 102:TKW 2463:: 2055:IC 1830:LL 1804:EL 1801:EH 1788:CV 1785:CR 1782:CO 1779:CM 1776:CK 1772:CI 1768:CH 1765:CB 1737:, 1728:, 1550:. 1540:73 1538:. 1490:. 1480:13 1478:. 1379:. 1338:33 1336:, 1309:. 1297:. 1293:. 1268:. 1258:42 1256:. 1252:. 1229:. 1219:31 1217:. 1137:. 1115:. 1103:. 1099:. 1048:^ 1032:42 1030:. 1024:. 998:. 991:. 663:, 628:. 620:: 536:IC 498:Ir 494:Ge 492:, 490:Ga 449:. 396:. 346:Ni 342:Co 338:Ni 336:, 334:Fe 329:. 310:. 271:. 243:. 201:. 107:c. 88:, 2391:: 1825:L 1820:H 1732:, 1618:e 1611:t 1604:v 1558:. 1554:: 1546:: 1523:. 1498:. 1494:: 1486:: 1412:. 1391:. 1319:. 1313:: 1305:: 1278:. 1272:: 1264:: 1237:. 1233:: 1225:: 1202:. 1175:. 1148:. 1123:. 1119:: 1111:: 1084:. 1042:. 1038:: 1009:. 848:( 431:; 361:.

Index

Type

Tamentit
Sahara
Vulcania
Compositional type
Iron
Parent body
iron
nickel
cobalt
TKW

Widmanstätten pattern
Seymchan meteorite
ferrous
meteorite
iron–nickel alloy
meteoric iron
mineral
kamacite
taenite
cores
planetesimals
IIE iron
humans
smelting
Iron Age
stony meteorites
meteorite

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑