Knowledge

Nitriding

Source 📝

155:. When ammonia comes into contact with the heated work piece it dissociates into nitrogen and hydrogen. The nitrogen then diffuses onto the surface of the material creating a nitride layer. This process has existed for nearly a century, though only in the last few decades has there been a concentrated effort to investigate the thermodynamics and kinetics involved. Recent developments have led to a process that can be accurately controlled. The thickness and phase constitution of the resulting nitriding layers can be selected and the process optimized for the particular properties required. 20: 349:, 4300, 5100, 6100, 8600, 8700, 9300 and 9800 series, UK aircraft quality steel grades BS 4S 106, BS 3S 132, 905M39 (EN41B), stainless steels, some tool steels (H13 and P20 for example) and certain cast irons. Ideally, steels for nitriding should be in the hardened and tempered condition, requiring nitriding to take place at a lower temperature than the last tempering temperature. A fine-turned or ground surface finish is best. Minimal amounts of material should be removed post nitriding to preserve the surface hardness. 947: 334:
the thermal stability of the plasma plant, since the heat added by the plasma is already present during the warm up and hence once the process temperature is reached the actual nitriding begins with minor heating changes. For the nitriding process hydrogen gas is also added to keep the surface clear of oxides. This effect can be observed by analysing the surface of the part under nitriding (see for instance).
388:
mind: the so-called nitriding steels. The reception in America was less impressive. With so little demand the process was largely forgotten in the US. After WWII the process was reintroduced from Europe. Much research has taken place in recent decades to understand the thermodynamics and kinetics of the reactions involved.
250:
In plasma nitriding, the reactivity of the nitriding media is not due to the temperature but to the gas ionized state. In this technique intense electric fields are used to generate ionized molecules of the gas around the surface to be nitrided. Such highly active gas with ionized molecules is called
201:
salt. The salts used also donate carbon to the workpiece surface making salt bath a nitrocarburizing process. The temperature used is typical of all nitrocarburizing processes: 550 to 570 °C. Unfortunately, since the salts used are extremely toxic, modern environmental and safety regulation have
333:
are also used. Indeed, argon and hydrogen can be used before the nitriding process during the heating of the parts to clean the surfaces to be nitrided. This cleaning procedure effectively removes the oxide layer from surfaces and may remove fine layers of solvents that could remain. This also helps
387:
Systematic investigation into the effect of nitrogen on the surface properties of steel began in the 1920s. Investigation into gas nitriding began independently in both Germany and America. The process was greeted with enthusiasm in Germany and several steel grades were developed with nitriding in
278:
Usually steels are beneficially treated with plasma nitriding. This process permits the close control of the nitrided microstructure, allowing nitriding with or without compound layer formation. Not only is the performance of metal parts enhanced, but working lifespans also increase, and so do the
313:
Since nitrogen ions are made available by ionization, differently from gas or salt bath, plasma nitriding efficiency does not depend on the temperature. Plasma nitriding can thus be performed in a broad temperature range, from 260 °C to more than 600 °C. For instance, at moderate
1319: 310:(PVD) process and labeled duplex treatment, with enhanced benefits. Many users prefer to have a plasma oxidation step combined at the last phase of processing to produce a smooth jetblack layer of oxides which is resistant to wear and corrosion. 291:
A plasma nitrided part is usually ready for use. It calls for no machining, or polishing or any other post-nitriding operations. Thus the process is user-friendly, saves energy since it works fastest, and causes little or no distortion.
1327: 287:
strength of the metals being treated. For instance, mechanical properties of austenitic stainless steel like resistance to wear can be significantly augmented and the surface hardness of tool steels can be doubled.
188:
Ammonia as nitriding medium – though not especially toxic it is harmful when inhaled at a high concentration. Also, care must be taken when heating in the presence of oxygen to reduce the risk of explosion
506:
Zagonel, L; Figueroa, C; Droppajr, R; Alvarez, F (2006). "Influence of the process temperature on the steel microstructure and hardening in pulsed plasma nitriding".
259:, since no spontaneous decomposition is needed (as is the case of nitriding with ammonia). There are hot plasmas typified by plasma jets used for metal cutting, 476:
Menthe, E; Bulak, A; Olfe, J; Zimmermann, A; Rie, KT (2000). "Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding".
789: 746: 439: 300: 212:
Simple operation – The salt bath and workpieces are heated to the desired temperature, and the workpieces are submerged for a given period of time.
720: 226:
Only one process possible with a particular salt type – since the nitrogen potential is set by the salt, only one type of process is possible.
182:
Reaction kinetics heavily influenced by surface condition – an oily surface or one contaminated with cutting fluids will deliver poor results
1295: 560:
Zagonel, L; Figueroa, C; Alvarez, F (2005). "In situ photoemission electron spectroscopy study of nitrogen ion implanted AISI-H13 steel".
185:
Surface activation is sometimes required to treat steels with a high chromium content – compare sputtering during plasma nitriding
782: 162:
Precise control of chemical potential of nitrogen in the nitriding atmosphere by controlling gas flow rate of nitrogen and oxygen
1257: 209:
Quick processing time – Usually in the order of 4 hours or so to achieve desired diffusion, where other methods take longer.
724: 463: 775: 703: 448: 680: 655: 1275: 437:
Kunst, Helmut; Haase, Brigitte; Malloy, James C.; Wittel, Klaus; Nestler, Montia C. "Metals, Surface Treatment".
1353: 743: 220:
The salts used are highly toxic – Disposal is controlled by stringent environmental laws in western countries.
1285: 1265: 1057: 1218: 1358: 1094: 728: 1290: 1142: 762: 533:
Larisch, B; Brusky, U; Spies, HJ (1999). "Plasma nitriding of stainless steels at low temperatures".
412: 307: 721:"MIL-S-6090A, Military Specification: Process for Steels Used In Aircraft Carburizing and Nitriding" 1233: 1031: 1280: 1270: 1157: 819: 672: 264: 165:
All round nitriding effect (can be a disadvantage in some cases, compared with plasma nitriding)
1172: 1104: 1089: 1081: 1047: 171:
With modern computer control of the atmosphere the nitriding results can be closely controlled
914: 911: 49:
surface. These processes are most commonly used on low-alloy steels. They are also used on
1243: 1207: 1162: 1052: 1026: 605:
Meka, S.R.; Chauhan, A.; Steiner, T.; Bischoff, E.; Ghosh, P.K.; Mittemeijer, E.J. (2015).
314:
temperatures (like 420 °C), stainless steels can be nitrided without the formation of
197:
In salt bath nitriding the nitrogen donating medium is a nitrogen-containing salt such as
123:
The processes are named after the medium used to donate. The three main methods used are:
8: 1212: 1202: 1198: 1147: 1137: 1021: 1000: 887: 854: 917: 814: 666: 587: 569: 376: 284: 280: 19: 546: 489: 299:
to escape Nazi persecution. After his death in late 1960s the process was acquired by
1363: 931: 699: 695: 676: 651: 607:"Generating duplex microstructures by nitriding; nitriding of iron based Fe–Mn alloy" 591: 444: 417: 112: 1016: 995: 623: 618: 606: 583: 579: 542: 519: 515: 485: 343: 315: 252: 352:
Nitriding alloys are alloy steels with nitride-forming elements such as aluminum,
1223: 976: 880: 756: 750: 295:
This process was invented by Bernhardt Berghaus of Germany who later settled in
168:
Large batch sizes possible – the limiting factor being furnace size and gas flow
1127: 1109: 985: 981: 927: 407: 360: 223:
Cost – These regulations have increased the costs involved in using salt baths.
46: 1347: 1071: 860: 402: 31: 767: 1185: 1180: 946: 907: 903: 77: 318:
precipitates and hence maintaining their corrosion resistance properties.
255:, naming the technique. The gas used for plasma nitriding is usually pure 1228: 1132: 989: 955: 89: 379:), known to be associated with strongly enhanced mechanical properties. 1117: 960: 870: 364: 346: 247:, is an industrial surface hardening treatment for metallic materials. 69: 58: 1238: 923: 875: 832: 761:
ECM USA, Vacuum Furnace Manufacturer: FNC Ferritic Nitrocarburizing.
372: 368: 97: 54: 35: 644:
Wärmebehandlung von Eisenwerkstoffen: Nitrieren und Nitrocarburieren
1122: 864: 850: 842: 755:
ECM USA, Vacuum Furnace Manufacturer: Vacuum Purged Gas Nitriding.
648:
Heat treatment of ferrous materials: nitriding and nitrocarburising
574: 397: 353: 326: 272: 267:
or spraying. There are also cold plasmas, usually generated inside
256: 105: 85: 73: 50: 38: 763:
https://www.ecm-usa.com/applications/ferritic-nitrocarburizing-fnc
260: 198: 144: 109: 101: 93: 296: 268: 174:
Relatively low equipment cost – especially compared with plasma
505: 802: 330: 81: 42: 798: 143:
In gas nitriding the donor is a nitrogen-rich gas, usually
65: 604: 325:) is usually the nitrogen carrying gas. Other gasses like 668:
Advanced Thermally Assisted Surface Engineering Processes
475: 158:
The advantages of gas nitriding over other variants are:
359:
In 2015, nitriding was used to generate a unique duplex
464:
Ion Nitriding and Nitrocarburizing of Sintered PM Parts
665:
Chattopadhyay, Ramnarayan (2004). "Plasma Nitriding".
559: 641: 532: 436: 321:In the plasma nitriding processes, nitrogen gas (N 692:Practical Nitriding and Ferritic Nitrocarburizing 650:] (in German) (2nd ed.). Expert-Verlag. 342:Examples of easily nitridable steels include the 1345: 757:https://www.ecm-usa.com/applications/nitriding 440:Ullmann's Encyclopedia of Industrial Chemistry 797: 783: 664: 790: 776: 337: 202:caused this process to fall out of favor. 622: 573: 501: 499: 306:Plasma nitriding is often coupled with a 151:), which is why it is sometimes known as 16:Nitrogen diffusion case-hardening process 526: 178:The disadvantages of gas nitriding are: 18: 23:A modern computerised nitriding furnace 1346: 496: 469: 205:The advantages of salt nitriding are: 192: 771: 598: 725:United States Department of Defense 689: 230: 13: 635: 14: 1375: 713: 642:Chatterjee-Fischer, Ruth (1995). 553: 945: 611:Materials Science and Technology 235:Plasma nitriding, also known as 138: 1317: 562:Surface and Coatings Technology 535:Surface and Coatings Technology 508:Surface and Coatings Technology 478:Surface and Coatings Technology 1311: 624:10.1179/1743284715Y.0000000098 584:10.1016/j.surfcoat.2004.10.126 520:10.1016/j.surfcoat.2005.11.137 457: 430: 1: 815:History of ferrous metallurgy 671:. Berlin: Springer. pp.  547:10.1016/S0257-8972(99)00084-5 490:10.1016/S0257-8972(00)00930-0 423: 64:Typical applications include 1320:"The Heat Treatment Library" 1058:Argon oxygen decarburization 744:An Introduction to Nitriding 727:. 7 Jun 1971. Archived from 363:in an iron-manganese alloy ( 118: 7: 1219:Differential heat treatment 391: 356:, molybdenum and titanium. 10: 1380: 382: 303:and popularized globally. 1256: 1194: 1171: 1143:Ferritic nitrocarburizing 1103: 1080: 1070: 1040: 1009: 969: 954: 943: 896: 841: 828: 810: 413:Ferritic nitrocarburizing 308:physical vapor deposition 1234:Post weld heat treatment 245:glow-discharge nitriding 820:List of steel producers 443:. Weinheim: Wiley-VCH. 338:Materials for nitriding 216:The disadvantages are: 1048:Electro-slag remelting 41:into the surface of a 24: 1354:Metal heat treatments 1258:Production by country 22: 1244:Superplastic forming 1163:Quench polish quench 1053:Vacuum arc remelting 1032:Basic oxygen process 1027:Electric arc furnace 241:plasma ion nitriding 1199:Cryogenic treatment 1022:Open hearth furnace 1010:Primary (Post-1850) 1001:Cementation process 888:Direct reduced iron 690:Pye, David (2003). 193:Salt bath nitriding 129:salt bath nitriding 970:Primary (Pre-1850) 749:2011-12-15 at the 25: 1359:Plasma processing 1304: 1303: 1252: 1251: 1066: 1065: 941: 940: 932:Induction furnace 731:on 29 August 2019 696:ASM International 466:, October 7, 2004 418:Surface finishing 271:chambers, at low 153:ammonia nitriding 1371: 1339: 1338: 1336: 1335: 1326:. Archived from 1315: 1078: 1077: 1017:Bessemer process 967: 966: 949: 839: 838: 792: 785: 778: 769: 768: 740: 738: 736: 709: 686: 661: 629: 628: 626: 602: 596: 595: 577: 557: 551: 550: 530: 524: 523: 503: 494: 493: 473: 467: 461: 455: 454: 434: 316:chromium nitride 231:Plasma nitriding 133:plasma nitriding 1379: 1378: 1374: 1373: 1372: 1370: 1369: 1368: 1344: 1343: 1342: 1333: 1331: 1316: 1312: 1307: 1305: 1300: 1248: 1224:Decarburization 1190: 1167: 1108: 1099: 1062: 1036: 1005: 977:Pattern welding 958: 950: 937: 892: 881:Anthracite iron 830: 829:Iron production 824: 806: 796: 751:Wayback Machine 734: 732: 719: 716: 706: 683: 658: 638: 636:Further reading 633: 632: 603: 599: 558: 554: 531: 527: 504: 497: 474: 470: 462: 458: 451: 435: 431: 426: 394: 385: 340: 324: 233: 195: 150: 141: 121: 17: 12: 11: 5: 1377: 1367: 1366: 1361: 1356: 1341: 1340: 1309: 1302: 1301: 1299: 1298: 1293: 1288: 1283: 1278: 1273: 1268: 1262: 1260: 1254: 1253: 1250: 1249: 1247: 1246: 1241: 1236: 1231: 1226: 1221: 1216: 1210: 1205: 1195: 1192: 1191: 1189: 1188: 1183: 1177: 1175: 1169: 1168: 1166: 1165: 1160: 1155: 1150: 1145: 1140: 1135: 1130: 1128:Carbonitriding 1125: 1120: 1114: 1112: 1110:Case-hardening 1101: 1100: 1098: 1097: 1092: 1086: 1084: 1075: 1072:Heat treatment 1068: 1067: 1064: 1063: 1061: 1060: 1055: 1050: 1044: 1042: 1038: 1037: 1035: 1034: 1029: 1024: 1019: 1013: 1011: 1007: 1006: 1004: 1003: 998: 996:Tatara furnace 993: 986:Damascus steel 982:Crucible steel 979: 973: 971: 964: 952: 951: 944: 942: 939: 938: 936: 935: 928:Cupola furnace 921: 900: 898: 894: 893: 891: 890: 885: 884: 883: 878: 873: 858: 847: 845: 836: 826: 825: 823: 822: 817: 811: 808: 807: 795: 794: 787: 780: 772: 766: 765: 759: 753: 741: 715: 714:External links 712: 711: 710: 705:978-0871707918 704: 687: 681: 662: 656: 637: 634: 631: 630: 617:(9): 883–889. 597: 552: 525: 495: 468: 456: 450:978-3527306732 449: 428: 427: 425: 422: 421: 420: 415: 410: 408:Carbonitriding 405: 400: 393: 390: 384: 381: 361:microstructure 339: 336: 322: 301:Klockner group 283:limit and the 232: 229: 228: 227: 224: 221: 214: 213: 210: 194: 191: 190: 189: 186: 183: 176: 175: 172: 169: 166: 163: 148: 140: 137: 120: 117: 15: 9: 6: 4: 3: 2: 1376: 1365: 1362: 1360: 1357: 1355: 1352: 1351: 1349: 1330:on 2017-01-11 1329: 1325: 1321: 1314: 1310: 1308: 1297: 1296:United States 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1263: 1261: 1259: 1255: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1214: 1211: 1209: 1206: 1204: 1200: 1197: 1196: 1193: 1187: 1184: 1182: 1179: 1178: 1176: 1174: 1170: 1164: 1161: 1159: 1158:Precipitation 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1115: 1113: 1111: 1106: 1102: 1096: 1095:Short circuit 1093: 1091: 1088: 1087: 1085: 1083: 1079: 1076: 1073: 1069: 1059: 1056: 1054: 1051: 1049: 1046: 1045: 1043: 1039: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1014: 1012: 1008: 1002: 999: 997: 994: 991: 987: 983: 980: 978: 975: 974: 972: 968: 965: 962: 957: 953: 948: 933: 929: 925: 922: 919: 916: 913: 912:Reverberatory 909: 905: 902: 901: 899: 895: 889: 886: 882: 879: 877: 874: 872: 869: 868: 866: 862: 861:Blast furnace 859: 856: 852: 849: 848: 846: 844: 840: 837: 834: 827: 821: 818: 816: 813: 812: 809: 804: 800: 793: 788: 786: 781: 779: 774: 773: 770: 764: 760: 758: 754: 752: 748: 745: 742: 730: 726: 722: 718: 717: 707: 701: 697: 693: 688: 684: 682:1-4020-7696-7 678: 674: 670: 669: 663: 659: 657:3-8169-1092-0 653: 649: 645: 640: 639: 625: 620: 616: 612: 608: 601: 593: 589: 585: 581: 576: 571: 567: 563: 556: 548: 544: 540: 536: 529: 521: 517: 513: 509: 502: 500: 491: 487: 483: 479: 472: 465: 460: 452: 446: 442: 441: 433: 429: 419: 416: 414: 411: 409: 406: 404: 403:Carburization 401: 399: 396: 395: 389: 380: 378: 374: 370: 366: 362: 357: 355: 350: 348: 345: 335: 332: 328: 319: 317: 311: 309: 304: 302: 298: 293: 289: 286: 282: 276: 274: 270: 266: 262: 258: 254: 248: 246: 242: 238: 237:ion nitriding 225: 222: 219: 218: 217: 211: 208: 207: 206: 203: 200: 187: 184: 181: 180: 179: 173: 170: 167: 164: 161: 160: 159: 156: 154: 146: 139:Gas nitriding 136: 134: 130: 126: 125:gas nitriding 116: 114: 111: 107: 103: 99: 95: 91: 87: 83: 79: 78:cam followers 75: 71: 67: 62: 60: 56: 52: 48: 47:case-hardened 44: 40: 37: 34:process that 33: 32:heat treating 29: 21: 1332:. Retrieved 1328:the original 1323: 1318:Pye, David. 1313: 1306: 1186:Martempering 1181:Austempering 1152: 1090:Low hydrogen 908:Finery forge 904:Wrought iron 733:. Retrieved 729:the original 691: 667: 647: 643: 614: 610: 600: 565: 561: 555: 538: 534: 528: 514:(1–2): 452. 511: 507: 481: 477: 471: 459: 438: 432: 386: 358: 351: 341: 320: 312: 305: 294: 290: 277: 249: 244: 240: 236: 234: 215: 204: 196: 177: 157: 152: 142: 132: 128: 124: 122: 104:components, 63: 45:to create a 27: 26: 1229:Forming gas 1133:Carburizing 990:Wootz steel 956:Steelmaking 855:sponge iron 568:(7): 2566. 541:: 205–211. 90:die-casting 70:crankshafts 1348:Categories 1334:2017-01-10 1286:Luxembourg 1266:Bangladesh 1208:Deflashing 1118:Ausforming 961:Steel mill 871:Cold blast 863:(produces 853:(produces 805:production 575:1712.01483 484:(1): 259. 424:References 365:martensite 59:molybdenum 1324:pye-d.com 1239:Quenching 1213:Hardening 1203:Deburring 1173:Tempering 1153:Nitriding 1148:Induction 1138:Cryogenic 1105:Hardening 1082:Annealing 1041:Secondary 924:Cast iron 897:Secondary 876:Hot blast 833:Ironworks 592:119102526 373:austenite 369:austenite 275:regimes. 119:Processes 106:injectors 98:extrusion 74:camshafts 55:aluminium 28:Nitriding 1364:Nitrogen 1123:Boriding 915:Puddling 865:pig iron 851:Bloomery 843:Smelting 747:Archived 398:Boriding 392:See also 354:chromium 327:hydrogen 273:pressure 265:cladding 257:nitrogen 88:screws, 86:extruder 51:titanium 39:nitrogen 36:diffuses 1291:Nigeria 1074:methods 918:Furnace 735:20 June 383:History 377:ferrite 285:fatigue 261:welding 199:cyanide 145:ammonia 115:tools. 110:plastic 102:firearm 94:forging 92:tools, 84:parts, 702:  679:  654:  590:  447:  297:Zurich 281:strain 269:vacuum 253:plasma 131:, and 100:dies, 96:dies, 1281:Italy 1276:India 1271:China 926:(via 906:(via 803:steel 675:–94. 646:[ 588:S2CID 570:arXiv 331:argon 82:valve 66:gears 43:metal 30:is a 910:or 801:and 799:Iron 737:2012 700:ISBN 677:ISBN 652:ISBN 445:ISBN 347:4100 113:mold 108:and 57:and 930:or 619:doi 580:doi 566:200 543:doi 539:116 516:doi 512:201 486:doi 482:133 344:SAE 329:or 243:or 147:(NH 1350:: 1322:. 1107:/ 988:, 867:) 723:. 698:. 694:. 673:90 615:32 613:. 609:. 586:. 578:. 564:. 537:. 510:. 498:^ 480:. 371:, 263:, 239:, 135:. 127:, 80:, 76:, 72:, 68:, 61:. 53:, 1337:. 1215:) 1201:( 992:) 984:( 963:) 959:( 934:) 920:) 857:) 835:) 831:( 791:e 784:t 777:v 739:. 708:. 685:. 660:. 627:. 621:: 594:. 582:: 572:: 549:. 545:: 522:. 518:: 492:. 488:: 453:. 375:- 367:- 323:2 149:3

Index


heat treating
diffuses
nitrogen
metal
case-hardened
titanium
aluminium
molybdenum
gears
crankshafts
camshafts
cam followers
valve
extruder
die-casting
forging
extrusion
firearm
injectors
plastic
mold
ammonia
cyanide
plasma
nitrogen
welding
cladding
vacuum
pressure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.