Knowledge

Planetary core

Source đź“ť

2641: 507:
liquid layer around an inner solid core. As the orbital radius of a rocky planet increases, the size of the core relative to the total radius of the planet decreases. This is believed to be because differentiation of the core is directly related to a body's initial heat, so Mercury's core is relatively large and active. Venus and Mars, as well as the moon, do not have magnetic fields. This could be due to a lack of a convecting liquid layer interacting with a solid inner core, as Venus’ core is not layered. Although Mars does have a liquid and solid layer, they do not appear to be interacting in the same way that Earth's liquid and solid components interact to produce a dynamo.
34: 167:. The moment of inertia for a differentiated planet is less than 0.4, because the density of the planet is concentrated in the center. Mercury has a moment of inertia of 0.346, which is evidence for a core. Conservation of energy calculations as well as magnetic field measurements can also constrain composition, and surface geology of the planets can characterize differentiation of the body since its accretion. Mercury, Venus, and Mars’ cores are about 75%, 50%, and 40% of their radius respectively. 2653: 2713: 42: 766:. Metallic hydrogen is present within the core (in lower abundances than Jupiter). Saturn has a rock and or ice core 10–30 times the mass of the Earth, and this core is likely soluble in the gas envelope above, and therefore it is primordial in composition. Since the core still exists, the envelope must have originally accreted onto previously existing planetary cores. Thermal contraction/evolution models support the presence of 516:
major area of contention because it is difficult to produce in laboratory settings, due to the high pressures needed. Jupiter and Saturn appear to release a lot more energy than they should be radiating just from the sun, which is attributed to heat released by the hydrogen and helium layer. Uranus does not appear to have a significant heat source, but Neptune has a heat source that is attributed to a “hot” formation.
2701: 2665: 2689: 538:
early in the Solar System's history. Mercury has a solid silicate crust and mantle overlying a solid metallic outer core layer, followed by a deeper liquid core layer, and then a possible solid inner core making a third layer. The composition of the iron-rich core remains uncertain, but it likely contains nickel, silicon and perhaps sulfur and carbon, plus trace amounts of other elements.
2677: 122:, Wiechert in 1898 postulated that the Earth had a similar bulk composition to iron meteorites, but the iron had settled to the interior of the Earth, and later represented this by integrating the bulk density of the Earth with the missing iron and nickel as a core. The first detection of Earth's core occurred in 1906 by Richard Dixon Oldham upon discovery of the 782:
will provide more insight to planetary core formation. It was previously understood that collisions in the solar system fully merged, but recent work on planetary bodies argues that remnants of collisions have their outer layers stripped, leaving behind a body that would eventually become a planetary
369:
thus make up the remaining mass deficit of Earth's core; though the abundances of each are still a matter of controversy revolving largely around the pressure and oxidation state of Earth's core during its formation. No geochemical evidence exists to include any radioactive elements in Earth's core.
719:
than the mantle (agreeing with the differentiation history of the planet, as well as the impact hypothesis), and with a liquid core potassium-40 would have had opportunity to partition into the core providing an additional source of heat. The model further concludes that the core of mars is entirely
506:
All of the rocky inner planets, as well as the moon, have an iron-dominant core. Venus and Mars have an additional major element in the core. Venus’ core is believed to be iron-nickel, similarly to Earth. Mars, on the other hand, is believed to have an iron-sulfur core and is separated into an outer
537:
Mercury has an observed magnetic field, which is believed to be generated within its metallic core. Mercury's core occupies 85% of the planet's radius, making it the largest core relative to the size of the planet in the Solar System; this indicates that much of Mercury's surface may have been lost
162:
that flew by Mercury and Venus to observe their surface characteristics. The cores of other planets cannot be measured using seismometers on their surface, so instead they have to be inferred based on calculations from these fly-by observation. Mass and size can provide a first-order calculation of
445:
of the inner core (which can occur as a result of temperature). Examples of compositional buoyancy include precipitation of iron alloys onto the inner core and liquid immiscibility both, which could influence convection both positively and negatively depending on ambient temperatures and pressures
799:
As the field of exoplanets grows as new techniques allow for the discovery of both diverse exoplanets, the cores of exoplanets are being modeled. These depend on initial compositions of the exoplanets, which is inferred using the absorption spectra of individual exoplanets in combination with the
686:
could have provided an important source of heat contributing to the early Earth's dynamo, though to a lesser extent than on sulfur rich Mars. The core contains half the Earth's vanadium and chromium, and may contain considerable niobium and tantalum. The core is depleted in germanium and gallium.
515:
Current understanding of the outer planets in the solar system, the ice and gas giants, theorizes small cores of rock surrounded by a layer of ice, and in Jupiter and Saturn models suggest a large region of liquid metallic hydrogen and helium. The properties of these metallic hydrogen layers is a
710:
Core merging between proto-Mars and another differentiated planetoid could have been as fast as 1000 years or as slow as 300,000 years (depending on the viscosity of both cores and mantles). Impact-heating of the Martian core would have resulted in stratification of the core and kill the Martian
320:
at very low concentration. This leaves Earth's core with a 5–10% weight deficit for the outer core, and a 4–5% weight deficit for the inner core; which is attributed to lighter elements that should be cosmically abundant and are iron-soluble; H, O, C, S, P, and Si. Earth's core contains half the
746:
Jupiter has a rock and/or ice core 10–30 times the mass of the Earth, and this core is likely soluble in the gas envelope above, and so primordial in composition. Since the core still exists, the outer envelope must have originally accreted onto a previously existing planetary core. Thermal
246:
material. The observed Hf/W ratios in iron meteorites constrain metal segregation to under 5 million years, the Earth's mantle Hf/W ratio places Earth's core as having segregated within 25 million years. Several factors control segregation of a metal core including the crystallization of
827:. The first such planet discovered was 18 times the density of water, and five times the size of Earth. Thus the planet cannot be gaseous, and must be composed of heavier elements that are also cosmically abundant like carbon and oxygen; making it likely crystalline like a diamond. 480:
Small planetary cores may experience catastrophic energy release associated with phase changes within their cores. Ramsey (1950) found that the total energy released by such a phase change would be on the order of 10 joules; equivalent to the total energy release due to
393:(Hf/W) isotopic ratios, when compared with a chondritic reference frame, show a marked enrichment in the silicate earth indicating depletion in Earth's core. Iron meteorites, believed to be resultant from very early core fractionation processes, are also depleted. 93:
Planetary cores are challenging to study because they are impossible to reach by drill and there are almost no samples that are definitively from the core. Thus, they are studied via indirect techniques such as seismology, mineral physics, and planetary dynamics.
677:
meteorites. Sulfur, carbon, and phosphorus only account for ~2.5% of the light element component/mass deficit. No geochemical evidence exists for including any radioactive elements in the core. However, experimental evidence has found that potassium is strongly
467:
of crystallization. All planetary bodies have a primordial heat value, or the amount of energy from accretion. Cooling from this initial temperature is called secular cooling, and in the Earth the secular cooling of the core transfers heat into an insulating
454:
A planetary core acts as a heat source for the outer layers of a planet. In the Earth, the heat flux over the core mantle boundary is 12 terawatts. This value is calculated from a variety of factors: secular cooling, differentiation of light elements,
436:
for further details. A dynamo requires a source of thermal and/or compositional buoyancy as a driving force. Thermal buoyancy from a cooling core alone cannot drive the necessary convection as indicated by modelling, thus compositional buoyancy (from
1338:
Bussey, Ben; Gillis, Jeffrey J.; Peterson, Chris; Hawke, B. Ray; Tompkins, Stephanie; McCallum, I. Stewart; Shearer, Charles K.; Neal, Clive R.; Righter, Kevin (2006-01-01). "The Constitution and Structure of the Lunar Interior".
360:
may be present up to 0.2 weight %. Hydrogen and carbon, however, are highly volatile and thus would have been lost during early accretion and therefore can only account for 0.1 to 0.2 weight % respectively.
117:
calculated the average density of the Earth to be 5.48 times the density of water (later refined to 5.53), which led to the accepted belief that the Earth was much denser in its interior. Following the discovery of
720:
liquid, as the latent heat of crystallization would have driven a longer-lasting (greater than one billion years) dynamo. If the core of Mars is liquid, the lower bound for sulfur would be five weight %.
650:
is still debated; however, if it does have a core it would have formed synchronously with the Earth's own core at 45 million years post-start of the Solar System based on hafnium-tungsten evidence and the
432:
is a proposed mechanism to explain how celestial bodies like the Earth generate magnetic fields. The presence or lack of a magnetic field can help constrain the dynamics of a planetary core. Refer to
673:
generated within its metallic core. The Earth has a 5–10% mass deficit for the entire core and a density deficit from 4–5% for the inner core. The Fe/Ni value of the core is well constrained by
2271:
Nittler, Larry R.; Chabot, Nancy L.; Grove, Timothy L.; Peplowski, Patrick N. (2018). "The Chemical Composition of Mercury". In Solomon, Sean C.; Nittler, Larry R.; Anderson, Brian J. (eds.).
2375:
Munker, Carsten; Pfander, Jorg A; Weyer, Stefan; Buchl, Anette; Kleine, Thorsten; Mezger, Klaus (July 2003). "Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics".
2485:
Lord, Peter; Tilley, Scott; Oh, David Y.; Goebel, Dan; Polanskey, Carol; Snyder, Steve; Carr, Greg; Collins, Steven M.; Lantoine, Gregory (March 2017). "Psyche: Journey to a metal world".
812:
results when a gas giant has its outer atmosphere stripped away by its parent star, likely due to the planet's inward migration. All that remains from the encounter is the original core.
703:
Mars possibly hosted a core-generated magnetic field in the past. The dynamo ceased within 0.5 billion years of the planet's formation. Hf/W isotopes derived from the martian meteorite
2526: 1555:
Margot, Jean-Luc; Peale, Stanton J.; Solomon, Sean C.; Hauck, Steven A.; Ghigo, Frank D.; Jurgens, Raymond F.; Yseboodt, Marie; Giorgini, Jon D.; Padovan, Sebastiano (December 2012).
493:. Such phase changes would only occur at specific mass to volume ratios, and an example of such a phase change would be the rapid formation or dissolution of a solid core component. 126:
shadow zone; the liquid outer core. By 1936 seismologists had determined the size of the overall core as well as the boundary between the fluid outer core and the solid inner core.
707:, indicate rapid accretion and core differentiation of Mars; i.e. under 10 million years. Potassium-40 could have been a major source of heat powering the early Martian dynamo. 833:
is a 5.7 millisecond pulsar found to have a companion with a mass similar to Jupiter but a density of 23 g/cm, suggesting that the companion is an ultralow mass carbon
1295:
Nakamura, Yosio; Latham, Gary; Lammlein, David; Ewing, Maurice; Duennebier, Frederick; Dorman, James (July 1974). "Deep lunar interior inferred from recent seismic data".
356:
is strongly siderophilic and only moderately volatile and depleted in the silicate earth; thus may account for 1.9 weight % of Earth's core. By similar arguments,
195:
Jupiter and Saturn most likely formed around previously existing rocky and/or icy bodies, rendering these previous primordial planets into gas-giant cores. This is the
283:
and the early Earth formed the modern Earth and Moon. During this impact the majority of the iron from Theia and the Earth became incorporated into the Earth's core.
374:
to be strongly siderophilic at the temperatures associated with core formation, thus there is potential for potassium in planetary cores of planets, and therefore
146:. The Moon's core has a radius of 300 km. The Moon's iron core has a liquid outer layer that makes up 60% of the volume of the core, with a solid inner core. 2014:
Murthy, V. Rama; van Westrenen, Wim; Fei, Yingwei (2003). "Experimental evidence that potassium is a substantial radioactive heat source in planetary cores".
79:. Gas giant cores are proportionally much smaller than those of terrestrial planets, though they can be considerably larger than the Earth's nevertheless; 75:
also have cores, though the composition of these are still a matter of debate and range in possible composition from traditional stony/iron, to ice or to
291:
Core merging between the proto-Mars and another differentiated planetoid could have been as fast as 1000 years or as slow as 300,000 years (depending on
163:
the components that make up the interior of a planetary body. The structure of rocky planets is constrained by the average density of a planet and its
979:
Pollack, James B.; Grossman, Allen S.; Moore, Ronald; Graboske, Harold C. Jr. (1977). "A Calculation of Saturn's Gravitational Contraction History".
267:
Impacts between planet-sized bodies in the early Solar System are important aspects in the formation and growth of planets and planetary cores.
2534: 845:
Exoplanets with moderate densities (more dense than Jovian planets, but less dense than terrestrial planets) suggests that such planets like
316:, the unknown component, the composition of the inner and outer core, can be determined: 85% Fe, 5% Ni, 0.9% Cr, 0.25% Co, and all other 416:
of an early planetesimal, although a recent hypothesis suggests that they are impact-generated mixtures of core and mantle materials.
1111:
Sato, Bun'ei; al., et (November 2005). "The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core".
704: 401:(Nb/Ta) isotopic ratios, when compared with a chondritic reference frame, show mild depletion in bulk silicate Earth and the moon. 850: 446:
associated with the host-body. Other celestial bodies that exhibit magnetic fields are Mercury, Jupiter, Ganymede, and Saturn.
210:
is broadly defined as the development from one thing to many things; homogeneous body to several heterogeneous components. The
2609: 2080:
Hauck, S. A.; Van Orman, J. A. (2011). "Core petrology: Implications for the dynamics and evolution of planetary interiors".
711:
dynamo for a duration between 150 and 200 million years. Modelling done by Williams, et al. 2004 suggests that in order for
1014:
Fortney, Jonathan J.; Hubbard, William B. (2003). "Phase separation in giant planets: inhomogeneous evolution of Saturn".
743:, indicating some metallic substance is present. Its magnetic field is the strongest in the Solar System after the Sun's. 923:
Williams, Jean-Pierre; Nimmo, Francis (2004). "Thermal evolution of the Martian core: Implications for an early dynamo".
242:
reservoirs develop positive Hf/W anomalies, and metal reservoirs acquire negative anomalies relative to undifferentiated
1772:
Wood, Bernard J.; Walter, Michael J.; Jonathan, Wade (June 2006). "Accretion of the Earth and segregation of its core".
1456:, National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1987, 2502: 2359: 2306: 2140: 1675: 2548:
Bailes, M.; et al. (September 2011). "Transformation of a Star into a Planet in a Millisecond Pulsar Binary".
2640: 2738: 1531: 647: 135: 76: 1920: 1203:
Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematische-physikalische Klasse
57:. Cores may be entirely liquid, or a mixture of solid and liquid layers as is the case in the Earth. In the 472:
mantle. As the inner core grows, the latent heat of crystallization adds to the heat flux into the mantle.
853:
are composed of primarily water. Internal pressures of such water-worlds would result in exotic phases of
280: 550:' core varies significantly depending on the model used to calculate it, thus constraints are required. 2733: 2631: 1479:
Solomon, Sean C. (June 1979). "Formation, history and energetics of cores in the terrestrial planets".
2426:
Williams, Quentin; Agnor, Craig B.; Asphaug, Erik (January 2006). "Hit-and-run planetary collisions".
2275:. Cambridge Planetary Science Book Series. Cambridge, UK: Cambridge University Press. pp. 30–51. 238:. Thus if metal segregation (between the Earth's core and mantle) occurred in under 45 million years, 688: 433: 207: 1900: 1281: 664: 20: 2256:
NASA (2012). "MESSENGER Provides New Look at Mercury's Surprising Core and Landscape Curiosities".
196: 181: 164: 27: 524:
The following summarizes known information about the planetary cores of given non-stellar bodies.
259:
process and may drive the production and extraction of iron metal from an original silicate melt.
652: 276: 192:(10 – 10 years) and these develop into planetary bodies over an additional 10–100 million years. 139: 1198: 2106:
Edward R. D. Scott, "Impact Origins for Pallasites," Lunar and Planetary Science XXXVIII, 2007.
1844:
Halliday; N., Alex (February 2000). "Terrestrial accretion rates and the origin of the Moon".
1887: 1268: 1857: 1823: 1089: 2567: 2435: 2384: 2339: 2286: 2209: 2168: 2089: 2023: 1935: 1853: 1781: 1705: 1605: 1568: 1488: 1403: 1348: 1304: 1130: 1085: 1033: 988: 932: 679: 413: 188:
around 10 km in diameter. From here gravity takes over to produce Moon to Mars-sized
8: 2705: 1260: 235: 2571: 2439: 2388: 2343: 2290: 2213: 2172: 2093: 2027: 1939: 1921:"Consequences of giant impacts in early Mars: Core merging and Martian Dynamo evolution" 1785: 1709: 1609: 1572: 1492: 1407: 1352: 1308: 1134: 1037: 992: 936: 2693: 2591: 2557: 2508: 2467: 2408: 2312: 2276: 2132: 2047: 1951: 1805: 1737: 1631: 1435: 1372: 1241: 1146: 1120: 1049: 1023: 948: 898: 824: 227: 155: 1865: 1657: 1237: 1045: 2595: 2583: 2498: 2459: 2451: 2400: 2355: 2351: 2316: 2302: 2235: 2227: 2136: 2039: 1797: 1729: 1721: 1671: 1635: 1617: 1557:"Mercury's moment of inertia from spin and gravity data: MERCURY'S MOMENT OF INERTIA" 1537: 1527: 1504: 1500: 1457: 1439: 1427: 1419: 1376: 1364: 1320: 1245: 1150: 1097: 1000: 902: 890: 767: 748: 460: 222:
of 9 million years, and is approximated as an extinct system after 45 million years.
2512: 1955: 1053: 952: 740: 2669: 2657: 2575: 2490: 2471: 2443: 2392: 2347: 2294: 2217: 2176: 2128: 2051: 2031: 1943: 1861: 1809: 1789: 1741: 1713: 1663: 1621: 1613: 1576: 1496: 1411: 1390:
Weber, R. C.; Lin, P.-Y.; Garnero, E. J.; Williams, Q.; Lognonne, P. (2011-01-21).
1356: 1312: 1233: 1177: 1138: 1093: 1041: 996: 940: 882: 809: 715:
to have had a functional dynamo, the Martian core was initially hotter by 150 
695:
of Earth's history. Inner core crystallization timing is still largely unresolved.
438: 317: 313: 189: 66: 2613: 2412: 763: 1667: 728: 442: 309: 114: 108: 33: 2717: 2645: 830: 784: 670: 456: 158:
were initially characterized by analyzing data from spacecraft, such as NASA's
119: 2494: 2298: 2222: 2197: 2181: 2156: 2727: 2455: 2231: 1725: 1596:
Solomon, Sean C. (August 1976). "Some aspects of core formation in Mercury".
1541: 1508: 1423: 1368: 1324: 820: 779: 490: 486: 429: 308:
Using the chondritic reference model and combining known compositions of the
2579: 2396: 1626: 1461: 1415: 1316: 886: 655:. Such a core may have hosted a geomagnetic dynamo early on in its history. 2681: 2587: 2463: 2404: 2239: 2043: 1801: 1733: 1431: 1222:"The Constitution of the Interior of the Earth, as Revealed by Earthquakes" 1182: 1165: 894: 683: 375: 215: 185: 58: 1360: 1947: 1581: 1556: 1125: 1028: 834: 815: 464: 252: 211: 2447: 2035: 1793: 682:
when dealing with temperatures associated with core-accretion, and thus
674: 482: 357: 248: 159: 143: 87: 72: 2712: 41: 2009: 2007: 2005: 1994:
McDonough, W. F. (2003). "Compositional Model for the Earth's Core".
1717: 944: 788: 409: 371: 338: 292: 256: 243: 219: 84: 1391: 1221: 2281: 1142: 770:
within the core in large abundances (but still less than Jupiter).
731:
has an observed magnetic field generated within its metallic core.
469: 398: 390: 334: 326: 322: 239: 231: 2562: 2002: 1914: 1912: 1910: 1767: 1765: 1763: 1761: 1759: 1757: 1755: 1753: 1751: 846: 394: 386: 362: 342: 330: 223: 180:
Planetary systems form from flattened disks of dust and gas that
80: 2519: 1879: 1998:. Maryland: University of Maryland Geology Department: 547–568. 759: 716: 692: 366: 353: 123: 54: 1907: 1748: 1696:
Stevenson, David J. (2001-07-12). "Mars' core and magnetism".
279:
states that an impact between a theoretical Mars-sized planet
138:
was characterized in 1974 using seismic data collected by the
854: 547: 978: 823:, previously stars, are formed alongside the formation of a 2270: 2075: 2073: 2071: 2069: 2067: 2065: 2063: 2061: 1294: 1076:
Stevenson, D. J. (1982). "Formation of the Giant Planets".
787:, titled “Journey to a Metal World,” is aiming to studying 751:
within the core in large abundances (greater than Saturn).
712: 62: 2676: 303: 2533:. National Geographic Society. 2011-08-25. Archived from 1454:
Mariner 10 mission highlights : Venus mosaic P-14461
1337: 1170:
Philosophical Transactions of the Royal Society of London
918: 916: 914: 912: 2058: 1201:[About the mass distribution inside the Earth]. 2602: 2374: 1919:
Monteaux, Julien; Arkani-Hamed, Jafar (November 2013).
1839: 1837: 1554: 1389: 1007: 2013: 1259:
Transdyne Corporation (2009). J. Marvin Hemdon (ed.).
974: 972: 970: 968: 966: 964: 962: 909: 816:
Planets derived from stellar cores and diamond planets
2629: 1662:(2 ed.). Cambridge: Cambridge University Press. 1258: 1252: 747:
contraction/evolution models support the presence of
441:) is required. On Earth the buoyancy is derived from 2425: 1918: 1834: 1816: 873:
Solomon, S.C. (2007). "Hot News on Mercury's core".
348: 2541: 2368: 2198:"Physicists doubt bold report of metallic hydrogen" 1872: 1521: 1261:"Richard D. Oldham's Discovery of the Earth's Core" 959: 2484: 1989: 1987: 1985: 1771: 2161:Monthly Notices of the Royal Astronomical Society 1983: 1981: 1979: 1977: 1975: 1973: 1971: 1969: 1967: 1965: 791:that could possibly be a remnant planetary core. 739:Jupiter has an observed magnetic field generated 90:may have a core 100 times the mass of the Earth. 2725: 1104: 1071: 1069: 1067: 1065: 1063: 1199:"Uber die Massenverteilung im Inneren der Erde" 1166:"Experiments to determine the density of Earth" 857:forming on the surface and within their cores. 381: 2527:""Diamond" Planet Found; May be Stripped Star" 2079: 1962: 1013: 370:Despite this, experimental evidence has found 2157:"On the Instability of Small Planetary Cores" 1655: 1157: 1060: 922: 496: 149: 2612:. MessageToEagle. 2012-04-09. Archived from 2251: 2249: 2195: 2123:Nimmo, F. (2015), "Energetics of the Core", 1481:Physics of the Earth and Planetary Interiors 1190: 475: 251:. Crystallization of perovskite in an early 45:The internal structure of the outer planets. 37:The internal structure of the inner planets. 2323: 2148: 1226:Quarterly Journal of the Geological Society 510: 262: 1843: 1656:Pater, Imke de; Lissauer, Jack J. (2015). 1213: 866: 773: 527: 83:'s is 10–30 times heavier than Earth, and 26:For core body of planetary formation, see 2561: 2280: 2246: 2221: 2180: 1993: 1695: 1625: 1580: 1181: 1163: 1124: 1075: 1027: 762:has an observed magnetic field generated 184:rapidly (within thousands of years) into 2088:. American Geophysical Union: DI41B–03. 1928:Journal of Geophysical Research: Planets 1880:"A new Model for the Origin of the Moon" 1561:Journal of Geophysical Research: Planets 1196: 40: 32: 1595: 1478: 1110: 872: 404: 304:Determining primary composition – Earth 61:, core sizes range from about 20% (the 2726: 2547: 2329: 2154: 1341:Reviews in Mineralogy and Geochemistry 1219: 837:, likely the core of an ancient star. 501: 53:consists of the innermost layers of a 2122: 2118: 2116: 2114: 2112: 1691: 1689: 1687: 1651: 1649: 1647: 1645: 1474: 1472: 1470: 1392:"Seismic Detection of the Lunar Core" 2255: 803: 270: 2196:Castelvecchi, Davide (2017-01-26). 1996:Geochemistry of the Mantle and Core 1846:Earth and Planetary Science Letters 1084:(8). Pergamon Press Ltd.: 755–764. 987:(1). Academic Press, Inc: 111–128. 449: 13: 2260:. The Woodlands, Texas: NASA: 1–2. 2133:10.1016/b978-0-444-53802-4.00139-1 2109: 1684: 1642: 1467: 840: 665:Structure of the Earth § Core 489:. Such an event could explain the 202: 21:Structure of the Earth § Core 14: 2750: 2273:Mercury: The View after MESSENGER 1238:10.1144/GSL.JGS.1906.062.01-04.21 1220:Oldham, R. D. (1 February 1906). 519: 349:Weight deficit components – Earth 2711: 2699: 2687: 2675: 2663: 2651: 2639: 2330:Fegley, B. Jr. (2003). "Venus". 800:emission spectra of their star. 2478: 2419: 2264: 2189: 2100: 1589: 1548: 1515: 1446: 1383: 1331: 1288: 562:Equilibrium Condensation Model 329:, and may contain considerable 102: 65:) to 85% of a planet's radius ( 2487:2017 IEEE Aerospace Conference 2352:10.1016/b0-08-043751-6/01150-6 1934:(3). AGU Publications: 84–87. 337:. Earth's core is depleted in 136:internal structure of the Moon 129: 16:Innermost layer(s) of a planet 1: 1866:10.1016/s0012-821x(99)00317-9 1046:10.1016/s0019-1035(03)00130-1 860: 794: 2127:, Elsevier, pp. 27–55, 1668:10.1017/cbo9781316165270.023 1618:10.1016/0019-1035(76)90124-X 1522:Hubbard, William B. (1992). 1501:10.1016/0031-9201(79)90081-5 1297:Geophysical Research Letters 1098:10.1016/0032-0633(82)90108-8 1001:10.1016/0019-1035(77)90126-9 382:Isotopic composition – Earth 298: 175: 170: 97: 7: 2155:Ramsey, W.H. (April 1950). 723: 689:Core mantle differentiation 419: 412:are thought to form at the 199:model of planet formation. 10: 2755: 2082:AGU Fall Meeting Abstracts 778:Missions to bodies in the 734: 669:The Earth has an observed 662: 532: 497:Trends in the Solar System 150:Cores of the rocky planets 106: 25: 19:For the Earth's core, see 18: 2495:10.1109/aero.2017.7943771 2299:10.1017/9781316650684.003 2223:10.1038/nature.2017.21379 1113:The Astrophysical Journal 754: 698: 648:existence of a lunar core 476:Stability and instability 424: 208:Planetary differentiation 2332:Treatise on Geochemistry 1263:. Transdyne Corporation. 764:within its metallic core 658: 541: 511:Outer gas and ice giants 263:Core merging and impacts 197:planetary core accretion 28:Accretion (astrophysics) 2580:10.1126/science.1208890 2489:. IEEE. pp. 1–11. 2397:10.1126/science.1084662 2182:10.1093/mnras/110.4.325 1882:. SETI Institute. 2012. 1858:2000E&PSL.176...17H 1416:10.1126/science.1199375 1317:10.1029/gl001i003p00137 1090:1982P&SS...30..755S 887:10.1126/science.1142328 774:Remnant planetary cores 653:giant impact hypothesis 641: 528:Within the Solar System 286: 277:giant impact hypothesis 77:fluid metallic hydrogen 2739:Structure of the Earth 2125:Treatise on Geophysics 1895:Cite journal requires 1276:Cite journal requires 1183:10.1098/rstl.1798.0022 1164:Cavendish, H. (1798). 693:first 30 million years 434:Earth's magnetic field 218:isotopic system has a 46: 38: 2338:. Elsevier: 487–507. 1852:(1). Science: 17–30. 1361:10.2138/rmg.2006.60.3 1197:Wiechert, E. (1897). 44: 36: 2537:on October 16, 2011. 1948:10.1002/2013je004587 1582:10.1029/2012JE004161 691:occurred within the 414:core-mantle boundary 405:Pallasite meteorites 2572:2011Sci...333.1717B 2556:(6050): 1717–1720. 2531:National Geographic 2448:10.1038/nature04311 2440:2006Natur.439..155A 2389:2003Sci...301...84M 2344:2003TrGeo...1..487F 2291:2018mvam.book...30N 2214:2017Natur.542...17C 2173:1950MNRAS.110..325R 2094:2011AGUFMDI41B..03H 2036:10.1038/nature01560 2028:2003Natur.423..163M 1940:2014JGRE..119..480M 1794:10.1038/nature04763 1786:2006Natur.441..825W 1710:2001Natur.412..214S 1610:1976Icar...28..509S 1573:2012JGRE..117.0L09M 1526:. Krieger Pub. Co. 1524:Planetary interiors 1493:1979PEPI...19..168S 1408:2011Sci...331..309W 1353:2006RvMG...60..221W 1309:1974GeoRL...1..137N 1135:2005ApJ...633..465S 1038:2003Icar..164..228F 993:1977Icar...30..111P 937:2004Geo....32...97W 546:The composition of 502:Inner rocky planets 236:siderophile element 1659:Planetary Sciences 825:millisecond pulsar 228:lithophile element 47: 39: 2734:Planetary geology 2610:"Hot Ice Planets" 2434:(7073): 155–160. 2022:(6936): 163–167. 2016:Letters to Nature 1824:"differentiation" 1780:(7095): 825–833. 1704:(6843): 214–219. 1402:(6015): 309–312. 1078:Planet. Space Sci 804:Chthonian planets 768:metallic hydrogen 749:metallic hydrogen 639: 638: 559:Chondritic Model 461:radioactive decay 318:refractory metals 271:Earth–Moon system 190:planetary embryos 165:moment of inertia 154:The cores of the 2746: 2716: 2715: 2704: 2703: 2702: 2692: 2691: 2690: 2680: 2679: 2668: 2667: 2666: 2656: 2655: 2654: 2644: 2643: 2635: 2625: 2624: 2622: 2621: 2606: 2600: 2599: 2565: 2545: 2539: 2538: 2523: 2517: 2516: 2482: 2476: 2475: 2423: 2417: 2416: 2372: 2366: 2365: 2327: 2321: 2320: 2284: 2268: 2262: 2261: 2253: 2244: 2243: 2225: 2193: 2187: 2186: 2184: 2152: 2146: 2145: 2120: 2107: 2104: 2098: 2097: 2077: 2056: 2055: 2011: 2000: 1999: 1991: 1960: 1959: 1925: 1916: 1905: 1904: 1898: 1893: 1891: 1883: 1876: 1870: 1869: 1841: 1832: 1831: 1820: 1814: 1813: 1769: 1746: 1745: 1718:10.1038/35084155 1693: 1682: 1681: 1653: 1640: 1639: 1629: 1627:2060/19750022908 1593: 1587: 1586: 1584: 1552: 1546: 1545: 1519: 1513: 1512: 1476: 1465: 1464: 1450: 1444: 1443: 1387: 1381: 1380: 1335: 1329: 1328: 1292: 1286: 1285: 1279: 1274: 1272: 1264: 1256: 1250: 1249: 1232:(1–4): 456–475. 1217: 1211: 1210: 1194: 1188: 1187: 1185: 1161: 1155: 1154: 1128: 1126:astro-ph/0507009 1108: 1102: 1101: 1073: 1058: 1057: 1031: 1029:astro-ph/0305031 1011: 1005: 1004: 976: 957: 956: 945:10.1130/g19975.1 920: 907: 906: 870: 810:chthonian planet 565:Pyrolitic Model 553: 552: 450:Core heat source 439:changes of phase 295:of both cores). 2754: 2753: 2749: 2748: 2747: 2745: 2744: 2743: 2724: 2723: 2722: 2710: 2700: 2698: 2688: 2686: 2674: 2664: 2662: 2652: 2650: 2638: 2630: 2628: 2619: 2617: 2608: 2607: 2603: 2546: 2542: 2525: 2524: 2520: 2505: 2483: 2479: 2424: 2420: 2383:(5629): 84–87. 2373: 2369: 2362: 2328: 2324: 2309: 2269: 2265: 2254: 2247: 2194: 2190: 2153: 2149: 2143: 2121: 2110: 2105: 2101: 2078: 2059: 2012: 2003: 1992: 1963: 1923: 1917: 1908: 1896: 1894: 1885: 1884: 1878: 1877: 1873: 1842: 1835: 1828:Merriam Webster 1822: 1821: 1817: 1770: 1749: 1694: 1685: 1678: 1654: 1643: 1594: 1590: 1553: 1549: 1534: 1520: 1516: 1477: 1468: 1452: 1451: 1447: 1388: 1384: 1336: 1332: 1293: 1289: 1277: 1275: 1266: 1265: 1257: 1253: 1218: 1214: 1195: 1191: 1162: 1158: 1109: 1105: 1074: 1061: 1012: 1008: 977: 960: 921: 910: 881:(5825): 702–3. 871: 867: 863: 843: 841:Hot ice planets 818: 806: 797: 776: 757: 741:within its core 737: 726: 701: 667: 661: 644: 544: 535: 530: 522: 513: 504: 499: 478: 457:Coriolis forces 452: 443:crystallization 427: 422: 407: 384: 351: 306: 301: 289: 273: 265: 205: 203:Differentiation 178: 173: 152: 140:Apollo missions 132: 120:iron meteorites 115:Henry Cavendish 111: 105: 100: 31: 24: 17: 12: 11: 5: 2752: 2742: 2741: 2736: 2721: 2720: 2708: 2696: 2684: 2672: 2660: 2648: 2627: 2626: 2601: 2540: 2518: 2503: 2477: 2418: 2367: 2360: 2322: 2307: 2263: 2245: 2188: 2167:(4): 325–338. 2147: 2141: 2108: 2099: 2057: 2001: 1961: 1906: 1897:|journal= 1871: 1833: 1815: 1747: 1683: 1676: 1641: 1604:(4): 509–521. 1588: 1547: 1532: 1514: 1487:(2): 168–182. 1466: 1445: 1382: 1347:(1): 221–364. 1330: 1303:(3): 137–140. 1287: 1278:|journal= 1251: 1212: 1189: 1156: 1143:10.1086/449306 1119:(1): 465–473. 1103: 1059: 1022:(1): 228–243. 1006: 958: 908: 864: 862: 859: 842: 839: 831:PSR J1719-1438 821:Carbon planets 817: 814: 805: 802: 796: 793: 785:Psyche mission 775: 772: 756: 753: 736: 733: 725: 722: 700: 697: 671:magnetic field 663:Main article: 660: 657: 643: 640: 637: 636: 633: 630: 627: 623: 622: 619: 616: 613: 609: 608: 605: 602: 599: 595: 594: 591: 588: 585: 581: 580: 577: 574: 571: 567: 566: 563: 560: 557: 543: 540: 534: 531: 529: 526: 521: 520:Observed types 518: 512: 509: 503: 500: 498: 495: 477: 474: 451: 448: 426: 423: 421: 418: 406: 403: 383: 380: 350: 347: 305: 302: 300: 297: 288: 285: 272: 269: 264: 261: 204: 201: 177: 174: 172: 169: 151: 148: 131: 128: 107:Main article: 104: 101: 99: 96: 51:planetary core 15: 9: 6: 4: 3: 2: 2751: 2740: 2737: 2735: 2732: 2731: 2729: 2719: 2714: 2709: 2707: 2697: 2695: 2685: 2683: 2678: 2673: 2671: 2661: 2659: 2649: 2647: 2642: 2637: 2636: 2633: 2616:on 2016-03-04 2615: 2611: 2605: 2597: 2593: 2589: 2585: 2581: 2577: 2573: 2569: 2564: 2559: 2555: 2551: 2544: 2536: 2532: 2528: 2522: 2514: 2510: 2506: 2504:9781509016136 2500: 2496: 2492: 2488: 2481: 2473: 2469: 2465: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2429: 2422: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2371: 2363: 2361:9780080437514 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2326: 2318: 2314: 2310: 2308:9781316650684 2304: 2300: 2296: 2292: 2288: 2283: 2278: 2274: 2267: 2259: 2258:News Releases 2252: 2250: 2241: 2237: 2233: 2229: 2224: 2219: 2215: 2211: 2207: 2203: 2199: 2192: 2183: 2178: 2174: 2170: 2166: 2162: 2158: 2151: 2144: 2142:9780444538031 2138: 2134: 2130: 2126: 2119: 2117: 2115: 2113: 2103: 2095: 2091: 2087: 2083: 2076: 2074: 2072: 2070: 2068: 2066: 2064: 2062: 2053: 2049: 2045: 2041: 2037: 2033: 2029: 2025: 2021: 2017: 2010: 2008: 2006: 1997: 1990: 1988: 1986: 1984: 1982: 1980: 1978: 1976: 1974: 1972: 1970: 1968: 1966: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1922: 1915: 1913: 1911: 1902: 1889: 1881: 1875: 1867: 1863: 1859: 1855: 1851: 1847: 1840: 1838: 1829: 1825: 1819: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1779: 1775: 1768: 1766: 1764: 1762: 1760: 1758: 1756: 1754: 1752: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1707: 1703: 1699: 1692: 1690: 1688: 1679: 1677:9781316165270 1673: 1669: 1665: 1661: 1660: 1652: 1650: 1648: 1646: 1637: 1633: 1628: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1592: 1583: 1578: 1574: 1570: 1566: 1562: 1558: 1551: 1543: 1539: 1535: 1529: 1525: 1518: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1475: 1473: 1471: 1463: 1459: 1455: 1449: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1386: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1334: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1291: 1283: 1270: 1262: 1255: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1216: 1209:(3): 221–243. 1208: 1205:(in German). 1204: 1200: 1193: 1184: 1179: 1175: 1171: 1167: 1160: 1152: 1148: 1144: 1140: 1136: 1132: 1127: 1122: 1118: 1114: 1107: 1099: 1095: 1091: 1087: 1083: 1079: 1072: 1070: 1068: 1066: 1064: 1055: 1051: 1047: 1043: 1039: 1035: 1030: 1025: 1021: 1017: 1010: 1002: 998: 994: 990: 986: 982: 975: 973: 971: 969: 967: 965: 963: 954: 950: 946: 942: 938: 934: 931:(2): 97–100. 930: 926: 919: 917: 915: 913: 904: 900: 896: 892: 888: 884: 880: 876: 869: 865: 858: 856: 852: 848: 838: 836: 832: 828: 826: 822: 813: 811: 801: 792: 790: 786: 781: 780:asteroid belt 771: 769: 765: 761: 752: 750: 744: 742: 732: 730: 721: 718: 714: 708: 706: 696: 694: 690: 685: 681: 676: 672: 666: 656: 654: 649: 634: 631: 628: 625: 624: 620: 617: 614: 611: 610: 606: 603: 600: 597: 596: 592: 589: 586: 583: 582: 578: 575: 572: 569: 568: 564: 561: 558: 555: 554: 551: 549: 539: 525: 517: 508: 494: 492: 491:asteroid belt 488: 487:geologic time 484: 473: 471: 466: 462: 458: 447: 444: 440: 435: 431: 430:Dynamo theory 417: 415: 411: 402: 400: 396: 392: 388: 379: 377: 373: 368: 364: 359: 355: 346: 344: 340: 336: 332: 328: 324: 319: 315: 311: 296: 294: 284: 282: 278: 268: 260: 258: 254: 250: 245: 241: 237: 233: 229: 225: 221: 217: 213: 209: 200: 198: 193: 191: 187: 186:planetesimals 183: 168: 166: 161: 157: 156:rocky planets 147: 145: 141: 137: 127: 125: 121: 116: 110: 95: 91: 89: 86: 82: 78: 74: 70: 68: 64: 60: 56: 52: 43: 35: 29: 22: 2706:Solar System 2618:. Retrieved 2614:the original 2604: 2553: 2549: 2543: 2535:the original 2530: 2521: 2486: 2480: 2431: 2427: 2421: 2380: 2376: 2370: 2335: 2331: 2325: 2272: 2266: 2257: 2208:(7639): 17. 2205: 2201: 2191: 2164: 2160: 2150: 2124: 2102: 2085: 2081: 2019: 2015: 1995: 1931: 1927: 1888:cite journal 1874: 1849: 1845: 1827: 1818: 1777: 1773: 1701: 1697: 1658: 1601: 1597: 1591: 1567:(E12): n/a. 1564: 1560: 1550: 1523: 1517: 1484: 1480: 1453: 1448: 1399: 1395: 1385: 1344: 1340: 1333: 1300: 1296: 1290: 1269:cite journal 1254: 1229: 1225: 1215: 1206: 1202: 1192: 1173: 1169: 1159: 1116: 1112: 1106: 1081: 1077: 1019: 1015: 1009: 984: 980: 928: 924: 878: 874: 868: 844: 829: 819: 807: 798: 777: 758: 745: 738: 727: 709: 702: 684:potassium-40 668: 645: 545: 536: 523: 514: 505: 479: 453: 428: 408: 385: 376:potassium-40 352: 307: 290: 274: 266: 216:tungsten-182 206: 194: 179: 153: 133: 112: 109:Earth's core 103:Earth's core 92: 71: 59:Solar System 50: 48: 2694:Outer space 1176:: 469–479. 835:white dwarf 680:siderophile 483:earthquakes 465:latent heat 253:magma ocean 212:hafnium-182 130:Moon's core 2728:Categories 2620:2014-04-13 2282:1712.02187 1533:089464565X 861:References 795:Extrasolar 783:core. The 675:chondritic 410:Pallasites 358:phosphorus 249:perovskite 160:Mariner 10 144:moonquakes 88:HD149026 b 73:Gas giants 2670:Astronomy 2658:Chemistry 2596:206535504 2563:1108.5201 2456:1476-4687 2317:119021137 2232:0028-0836 1726:1476-4687 1636:120492617 1542:123053051 1509:0031-9201 1440:206530647 1424:0036-8075 1377:130734866 1369:1529-6466 1325:0094-8276 1246:129025380 1151:119026159 903:129291662 378:as well. 372:potassium 339:germanium 299:Chemistry 293:viscosity 257:oxidation 244:chondrite 220:half-life 176:Accretion 171:Formation 113:In 1797, 98:Discovery 85:exoplanet 2588:21868629 2513:45190228 2464:16407944 2405:12843390 2240:28150796 2044:12736683 1956:41492849 1802:16778882 1734:11449282 1462:18035258 1432:21212323 1054:54961173 953:40968487 895:17478710 729:Ganymede 724:Ganymede 632:Unknown 607:Unknown 604:Unknown 556:Element 485:through 470:silicate 420:Dynamics 399:tantalum 391:tungsten 335:tantalum 327:chromium 323:vanadium 321:Earth's 240:silicate 232:tungsten 2718:Science 2646:Physics 2632:Portals 2568:Bibcode 2550:Science 2472:4406814 2436:Bibcode 2385:Bibcode 2377:Science 2340:Bibcode 2287:Bibcode 2210:Bibcode 2169:Bibcode 2090:Bibcode 2052:4430068 2024:Bibcode 1936:Bibcode 1854:Bibcode 1830:. 2014. 1810:8942975 1782:Bibcode 1742:4391025 1706:Bibcode 1606:Bibcode 1569:Bibcode 1489:Bibcode 1404:Bibcode 1396:Science 1349:Bibcode 1305:Bibcode 1131:Bibcode 1086:Bibcode 1034:Bibcode 989:Bibcode 933:Bibcode 925:Geology 875:Science 847:GJ1214b 735:Jupiter 626:Oxygen 612:Sulfur 598:Cobalt 584:Nickel 533:Mercury 395:Niobium 387:Hafnium 363:Silicon 343:gallium 331:niobium 224:Hafnium 182:accrete 81:Jupiter 67:Mercury 2594:  2586:  2511:  2501:  2470:  2462:  2454:  2428:Nature 2413:219712 2411:  2403:  2358:  2315:  2305:  2238:  2230:  2202:Nature 2139:  2050:  2042:  1954:  1808:  1800:  1774:Nature 1740:  1732:  1724:  1698:Nature 1674:  1634:  1598:Icarus 1540:  1530:  1507:  1460:  1438:  1430:  1422:  1375:  1367:  1323:  1244:  1149:  1052:  1016:Icarus 981:Icarus 951:  901:  893:  789:a body 760:Saturn 755:Saturn 705:Zagami 601:0.26% 579:78.7% 576:94.4% 573:88.6% 463:, and 425:Dynamo 367:oxygen 354:Sulfur 314:mantle 255:is an 124:P-wave 55:planet 2682:Stars 2592:S2CID 2558:arXiv 2509:S2CID 2468:S2CID 2409:S2CID 2313:S2CID 2277:arXiv 2048:S2CID 1952:S2CID 1924:(PDF) 1806:S2CID 1738:S2CID 1632:S2CID 1436:S2CID 1373:S2CID 1242:S2CID 1147:S2CID 1121:arXiv 1050:S2CID 1024:arXiv 949:S2CID 899:S2CID 855:water 851:GJ436 659:Earth 635:9.8% 621:4.9% 615:5.1% 593:6.6% 590:5.6% 587:5.5% 570:Iron 548:Venus 542:Venus 310:crust 281:Theia 226:is a 2584:PMID 2499:ISBN 2460:PMID 2452:ISSN 2401:PMID 2356:ISBN 2303:ISBN 2236:PMID 2228:ISSN 2137:ISBN 2086:2011 2040:PMID 1901:help 1798:PMID 1730:PMID 1722:ISSN 1672:ISBN 1538:OCLC 1528:ISBN 1505:ISSN 1458:OCLC 1428:PMID 1420:ISSN 1365:ISSN 1321:ISSN 1282:help 1207:1897 891:PMID 849:and 713:Mars 699:Mars 646:The 642:Moon 365:and 341:and 333:and 325:and 312:and 287:Mars 275:The 230:and 134:The 63:Moon 2576:doi 2554:333 2491:doi 2444:doi 2432:439 2393:doi 2381:301 2348:doi 2295:doi 2218:doi 2206:542 2177:doi 2165:110 2129:doi 2032:doi 2020:423 1944:doi 1932:119 1862:doi 1850:176 1790:doi 1778:441 1714:doi 1702:412 1664:doi 1622:hdl 1614:doi 1577:doi 1565:117 1497:doi 1412:doi 1400:331 1357:doi 1313:doi 1234:doi 1178:doi 1139:doi 1117:633 1094:doi 1042:doi 1020:164 997:doi 941:doi 883:doi 879:316 629:0% 618:0% 234:is 142:of 69:). 2730:: 2590:. 2582:. 2574:. 2566:. 2552:. 2529:. 2507:. 2497:. 2466:. 2458:. 2450:. 2442:. 2430:. 2407:. 2399:. 2391:. 2379:. 2354:. 2346:. 2334:. 2311:. 2301:. 2293:. 2285:. 2248:^ 2234:. 2226:. 2216:. 2204:. 2200:. 2175:. 2163:. 2159:. 2135:, 2111:^ 2084:. 2060:^ 2046:. 2038:. 2030:. 2018:. 2004:^ 1964:^ 1950:. 1942:. 1930:. 1926:. 1909:^ 1892:: 1890:}} 1886:{{ 1860:. 1848:. 1836:^ 1826:. 1804:. 1796:. 1788:. 1776:. 1750:^ 1736:. 1728:. 1720:. 1712:. 1700:. 1686:^ 1670:. 1644:^ 1630:. 1620:. 1612:. 1602:28 1600:. 1575:. 1563:. 1559:. 1536:. 1503:. 1495:. 1485:19 1483:. 1469:^ 1434:. 1426:. 1418:. 1410:. 1398:. 1394:. 1371:. 1363:. 1355:. 1345:60 1343:. 1319:. 1311:. 1299:. 1273:: 1271:}} 1267:{{ 1240:. 1230:62 1228:. 1224:. 1174:88 1172:. 1168:. 1145:. 1137:. 1129:. 1115:. 1092:. 1082:30 1080:. 1062:^ 1048:. 1040:. 1032:. 1018:. 995:. 985:30 983:. 961:^ 947:. 939:. 929:32 927:. 911:^ 897:. 889:. 877:. 808:A 459:, 345:. 49:A 2634:: 2623:. 2598:. 2578:: 2570:: 2560:: 2515:. 2493:: 2474:. 2446:: 2438:: 2415:. 2395:: 2387:: 2364:. 2350:: 2342:: 2336:1 2319:. 2297:: 2289:: 2279:: 2242:. 2220:: 2212:: 2185:. 2179:: 2171:: 2131:: 2096:. 2092:: 2054:. 2034:: 2026:: 1958:. 1946:: 1938:: 1903:) 1899:( 1868:. 1864:: 1856:: 1812:. 1792:: 1784:: 1744:. 1716:: 1708:: 1680:. 1666:: 1638:. 1624:: 1616:: 1608:: 1585:. 1579:: 1571:: 1544:. 1511:. 1499:: 1491:: 1442:. 1414:: 1406:: 1379:. 1359:: 1351:: 1327:. 1315:: 1307:: 1301:1 1284:) 1280:( 1248:. 1236:: 1186:. 1180:: 1153:. 1141:: 1133:: 1123:: 1100:. 1096:: 1088:: 1056:. 1044:: 1036:: 1026:: 1003:. 999:: 991:: 955:. 943:: 935:: 905:. 885:: 717:K 397:/ 389:/ 214:/ 30:. 23:.

Index

Structure of the Earth § Core
Accretion (astrophysics)


planet
Solar System
Moon
Mercury
Gas giants
fluid metallic hydrogen
Jupiter
exoplanet
HD149026 b
Earth's core
Henry Cavendish
iron meteorites
P-wave
internal structure of the Moon
Apollo missions
moonquakes
rocky planets
Mariner 10
moment of inertia
accrete
planetesimals
planetary embryos
planetary core accretion
Planetary differentiation
hafnium-182
tungsten-182

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑