Knowledge

Epitaxy

Source 📝

247:
crystal lattice of each material. For most epitaxial growths, the new layer is usually crystalline and each crystallographic domain of the overlayer must have a well-defined orientation relative to the substrate crystal structure. Epitaxy can involve single-crystal structures, although grain-to-grain epitaxy has been observed in granular films. For most technological applications, single-domain epitaxy, which is the growth of an overlayer crystal with one well-defined orientation with respect to the substrate crystal, is preferred. Epitaxy can also play an important role while growing superlattice structures.
1030: 1022: 878: 799:
equilibrium between dissolution and deposition, the deposition of the semiconductor crystal on the substrate is relatively fast and uniform. The most used substrate is indium phosphide (InP). Other substrates like glass or ceramic can be applied for special applications. To facilitate nucleation, and to avoid tension in the grown layer the thermal expansion coefficient of substrate and grown layer should be similar.
861:. The concentration of impurity in the gas phase determines its concentration in the deposited film. Doping can also be achieved by a site-competition technique, where the growth precursor ratios are tuned to enhance the incorporation of vacancies, specific dopant species or vacant-dopant clusters into the lattice. Additionally, the high temperatures at which epitaxy is performed may allow dopants to 574: 565:. Manufacturing issues include control of the amount and uniformity of the deposition's resistivity and thickness, the cleanliness and purity of the surface and the chamber atmosphere, the prevention of the typically much more highly doped substrate wafer's diffusion of dopant to the new layers, imperfections of the growth process, and protecting the surfaces during manufacture and handling. 635: 827:
growth. The annealing step used to recrystallize or heal silicon layers amorphized during ion implantation is also considered to be a type of solid phase epitaxy. The impurity segregation and redistribution at the growing crystal-amorphous layer interface during this process is used to incorporate low-solubility dopants in metals and silicon.
818:. The process has been used to create silicon for thin-film solar cells and far-infrared photodetectors. Temperature and centrifuge spin rate are used to control layer growth. Centrifugal LPE has the capability to create dopant concentration gradients while the solution is held at constant temperature. 541:
involves epitaxial growth between the grains of a multicrystalline epitaxial and seed layer. This can usually occur when the seed layer only has an out-of-plane texture but no in-plane texture. In such a case, the seed layer consists of grains with different in-plane textures. The epitaxial overlayer
303:
is a kind of epitaxy performed with materials that are different from each other. In heteroepitaxy, a crystalline film grows on a crystalline substrate or film of a different material. This technology is often used to grow crystalline films of materials for which crystals cannot otherwise be obtained
274:
of the film aligning with the index of the substrate. In the simplest case, the epitaxial layer can be a continuation of the same semiconductor compound as the substrate; this is referred to as homoepitaxy. Otherwise, the epitaxial layer will be composed of a different compound; this is referred to
269:
One of the main commercial applications of epitaxial growth is in the semiconductor industry, where semiconductor films are grown epitaxially on semiconductor substrate wafers. For the case of epitaxial growth of a planar film atop a substrate wafer, the epitaxial film's lattice will have a specific
1200:
were small enough to fit into a truly close-packed structure of oxygen anions then the spacing between the nearest neighbour oxygen sites would be the same for both species. The radius of the oxygen ion, however, is only 1.36 Å and the Fe cations are big enough to cause some variations. The Fe radii
798:
Liquid-phase epitaxy (LPE) is a method to grow semiconductor crystal layers from the melt on solid substrates. This happens at temperatures well below the melting point of the deposited semiconductor. The semiconductor is dissolved in the melt of another material. At conditions that are close to the
246:
layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epitaxial film or epitaxial layer. The relative orientation(s) of the epitaxial layer to the seed layer is defined in terms of the orientation of the
826:
Solid-phase epitaxy (SPE) is a transition between the amorphous and crystalline phases of a material. It is usually produced by depositing a film of amorphous material on a crystalline substrate, then heating it to crystallize the film. The single-crystal substrate serves as a template for crystal
517:
is larger than that, the film experiences a volumetric strain that builds with each layer until a critical thickness. With increased thickness, the elastic strain in the film is relieved by the formation of dislocations, which can become scattering centers that damage the quality of the structure.
911:
Sometimes many separate crystals form the overgrowth on a single substrate, and then if there is epitaxy all the overgrowth crystals will have a similar orientation. The reverse, however, is not necessarily true. If the overgrowth crystals have a similar orientation there is probably an epitaxic
603:
In the VW growth regime, the epitaxial film grows out of 3D nuclei on the growth surface. In this mode, the adsorbate-adsorbate interactions are stronger than adsorbate-surface interactions, leading to island formation by local nucleation and the epitaxial layer is formed when the islands join.
580:. Cross-section views of the three primary modes of thin-film growth including (a) Volmer–Weber (VW: island formation), (b) Frank–van der Merwe (FM: layer-by-layer), and (c) Stranski–Krastanov (SK: layer-plus-island). Each mode is shown for several different amounts of surface coverage, Θ. 689:
where (g) and (s) represent gas and solid phases, respectively. This reaction is reversible, and the growth rate depends strongly upon the proportion of the two source gases. Growth rates above 2 micrometres per minute produce polycrystalline silicon, and negative growth rates
1117:
plane of hematite (perpendicular to the c axis). In epitaxy these directions tend to line up with each other, resulting in the axis of the rutile overgrowth being parallel to the c axis of hematite, and the c axis of rutile being parallel to one of the axes of hematite.
467:
of the film and the substrate. The film and substrate could have similar lattice spacings but also different thermal expansion coefficients. If a film is grown at a high temperature, it can experience large strains upon cooling to room temperature. In reality,
614:
Practical epitaxial growth, however, takes place in a high supersaturation regime, away from thermodynamic equilibrium. In that case, the epitaxial growth is governed by adatom kinetics rather than thermodynamics, and 2D step-flow growth becomes dominant.
286:
is a kind of epitaxy performed with only one material, in which a crystalline film is grown on a substrate or film of the same material. This technology is often used to grow a more pure film than the substrate and to fabricate layers with different
2041:; Samperi, S. A.; Beeman, Jeffrey W.; Haller, Eugene E. (8 February 2002). Strojnik, Marija; Andresen, Bjorn F. (eds.). "Liquid phase epitaxy centrifuge for growth of ultrapure gallium arsenide for far-infrared photoconductors". 534:
is a process in which the heteroepitaxial film is growing vertically and laterally simultaneously. In 2D crystal heterostructure, graphene nanoribbons embedded in hexagonal boron nitride give an example of pendeo-epitaxy.
610:
The SK mode is a combination of VW and FM modes. In this mechanism, the growth initiates in the FM mode, forming 2D layers, but after reaching a critical thickness, enters a VW-like 3D island growth regime.
1193:(a plane that symmetrically "cuts off" a corner of a cube). The hematite structure is based on close-packed oxygen anions stacked in an AB-AB sequence, which results in a crystal with hexagonal symmetry. 405: 40: 2196:
Zhang, Xiankun; Gao, Li; Yu, Huihui; Liao, Qingliang; Kang, Zhuo; Zhang, Zheng; Zhang, Yue (20 July 2021). "Single-Atom Vacancy Doping in Two-Dimensional Transition Metal Dichalcogenides".
1013:
parameters, a = 8.16 Å, b = 12.87 Å, c = 7.11 Å, α = 93.45°, β = 116.4°, γ = 90.28° for albite and a = 8.5784 Å, b = 12.96 Å, c = 7.2112 Å, α = 90.3°, β = 116.05°, γ = 89° for microcline.
528:
is a process similar to heteroepitaxy except that thin-film growth is not limited to two-dimensional growth; the substrate is similar only in structure to the thin-film material.
495: 339:
Heteroepitaxy occurs when a film of different composition and/or crystalline films grown on a substrate. In this case, the amount of strain in the film is determined by the
515: 1977: 2153:
Larkin, David J.; Neudeck, Philip G.; Powell, J. Anthony; Matus, Lawrence G. (26 September 1994). "Site-competition epitaxy for superior silicon carbide electronics".
2239:
Holmes-Hewett, W. F. (16 August 2021). "Electronic structure of nitrogen-vacancy doped SmN: Intermediate valence and 4f transport in a ferromagnetic semiconductor".
461: 434: 2118:
Custer, J.S.; Polman, A.; Pinxteren, H. M. (15 March 1994). "Erbium in crystal silicon: Segregation and trapping during solid phase epitaxy of amorphous silicon".
915:
Some authors consider that overgrowths of a second generation of the same mineral species should also be considered as epitaxy, and this is common terminology for
542:
then creates specific textures along each grain of the seed layer, due to lattice matching. This kind of epitaxial growth doesn't involve single-crystal films.
522:
systems thanks to the additional energy caused by de deformation. A very popular system with great potential for microelectronic applications is that of Si–Ge.
698:
byproduct is present. (Hydrogen chloride may be intentionally added to etch the wafer.) An additional etching reaction competes with the deposition reaction:
297:
is a process similar to homoepitaxy except that the thin-film growth is not limited to two-dimensional growth. Here the substrate is the thin-film material.
607:
In the FM growth mode, adsorbate-surface and adsorbate-adsorbate interactions are balanced, which promotes 2D layer-by-layer or step-flow epitaxial growth.
1346:
K, Prabahar (26 October 2020). "Grain to Grain Epitaxy-Like Nano Structures of (Ba,Ca)(ZrTi)O3/ CoFe2O4 for Magneto–Electric Based Devices".
1814:
A. Y. Cho, "Growth of III\–V semiconductors by molecular beam epitaxy and their properties," Thin Solid Films, vol. 100, pp. 291–317, 1983.
2006:
Tenth E.C. Photovoltaic Solar Energy Conference: Proceedings of the International Conference, held at Lisbon, Portugal, 8–12 April 1991
2647: 222: 2405:
Acta Crystallographica Section A Crystal Physics, Diffraction, Theoretical and General Crystallography Volume 33, Part 4 (July 1977)
1824:
Cheng, K. Y. (November 1997). "Molecular beam epitaxy technology of III-V compound semiconductors for optoelectronic applications".
755:
The reaction chamber where this process takes place may be heated by lamps located outside the chamber. A common technique used in
924: 786:, in which precursor gases are alternatively pulsed into a chamber, leading to atomic monolayer growth by surface saturation and 1314: 857:
in the source gas, liberated by evaporation or wet etching of the surface, may also diffuse into the epitaxial layer and cause
348: 151: 2592: 2456: 1555: 1447: 2533:
Waldmann, T. (2012). "The role of surface defects in large organic molecule adsorption: substrate configuration effects".
1754:
Encyclopedia of Materials: Science and Technology, Sect. 1.9, Physical Properties of Thin Films and Artificial Multilayers
1077:
Some pairs of minerals that are not related structurally or compositionally may also exhibit epitaxy. A common example is
181: 1801: 2657: 1785: 1638:
Chen, Lingxiu; Wang, Haomin; Tang, Shujie (2017). "Edge control of graphene domains grown on hexagonal boron nitride".
317: 2095: 2014: 1953: 1913: 1237:. Indeed, epitaxy is the only affordable method of high quality crystal growth for many semiconductor materials. In 779:, on the other hand, is an ultra-high vacuum process that uses gas phase precursors to generate the molecular beam. 1046: 126: 2490:
Waldmann, T. (2011). "Growth of an oligopyridine adlayer on Ag(100) – A scanning tunnelling microscopy study".
1420: 1257: 1209:(4 or 8). Nevertheless, the O spacings are similar for the two minerals hence hematite can readily grow on the 589: 2642: 1384:
Hwang, Cherngye (30 September 1998). "Imaging of the grain-to-grain epitaxy in NiFe/FeMn thin-film couples".
947: 595: 215: 131: 90: 1038: 905: 894: 890: 171: 550: 471: 2355:
White, John S.; Richards, R. Peter (17 February 2010). "Let's Get It Right: Epitaxy—A Simple Concept?".
889:
In mineralogy, epitaxy is the overgrowth of one mineral on another in an orderly way, such that certain
923:
level on a semiconductor substrate of the same material. For naturally produced minerals, however, the
691: 2611: 1234: 1110: 1098: 647: 643: 2652: 999: 935: 208: 500: 1700: 1102: 814:. Centrifugally formed film growth is a process used to form thin layers of materials by using a 659: 333: 288: 1289: 920: 838: 831: 760: 756: 558: 161: 2004: 1943: 1903: 1481:"Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride" 2085: 1775: 1304: 1284: 776: 655: 2542: 2499: 2364: 2310: 2248: 2162: 2127: 2050: 1868: 1712: 1657: 1594: 1502: 1319: 783: 519: 439: 412: 242:
means "on top of”) refers to a type of crystal growth or material deposition in which new
8: 1294: 1206: 305: 156: 2621: 2546: 2503: 2368: 2314: 2252: 2166: 2131: 2054: 1872: 1716: 1661: 1598: 1506: 1189:
stacked in an ABC-ABC sequence. In this packing the close-packed layers are parallel to
304:
and to fabricate integrated crystalline layers of different materials. Examples include
2388: 2334: 2272: 2221: 2066: 1939: 1681: 1647: 1615: 1584: 1572: 1523: 1492: 1480: 1363: 1299: 176: 136: 2588: 2558: 2515: 2452: 2392: 2380: 2338: 2326: 2276: 2264: 2225: 2213: 2178: 2091: 2070: 2010: 1949: 1909: 1884: 1880: 1841: 1781: 1780:(2nd ed.). Chichester, West Sussex, England: John Wiley & Sons. p. 23. 1673: 1620: 1551: 1528: 1443: 1416: 1367: 908:
are clear then the epitaxic relationship can be deduced just by a visual inspection.
695: 638:
Figure 1: Basic processes inside the growth chambers of a) MOVPE, b) MBE, and c) CBE.
166: 59: 1685: 1202: 650:
methods that deliver the precursors to the substrate in gaseous state. For example,
2550: 2507: 2435:
Nesse, William (2000). Introduction to Mineralogy. Oxford University Press. Page 79
2372: 2318: 2256: 2205: 2170: 2135: 2087:
Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies
2058: 1876: 1833: 1720: 1665: 1610: 1602: 1518: 1510: 1463: 1393: 1355: 1249: 811: 729:
source gases. For instance, the silane reaction occurs at 650 Â°C in this way:
562: 464: 321: 100: 39: 1724: 2615: 2580: 2472: 2446: 1437: 1238: 726: 624: 309: 191: 121: 80: 31: 2260: 270:
orientation relative to the substrate wafer's crystalline lattice, such as the
2209: 1324: 1269: 1253: 1230: 930:
Another man-made application of epitaxy is the making of artificial snow using
904:
If the crystals of both minerals are well formed so that the directions of the
722: 291:
levels. In academic literature, homoepitaxy is often abbreviated to "homoepi".
255: 186: 105: 85: 2415: 2376: 2322: 2636: 2416:"FMF - Friends of Minerals Forum, discussion and message board :: Index" 2384: 2330: 2268: 2217: 2182: 1888: 1845: 1274: 931: 916: 802:
Centrifugal liquid-phase epitaxy is used commercially to make thin layers of
787: 772: 1859:
Tsang, W.T. (1989). "From chemical vapor epitaxy to chemical beam epitaxy".
1749: 1573:"Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches" 1186: 1029: 2562: 2519: 2038: 1802:"Applied Materials Series 7600 Epitaxial Reactor System - the Chip History" 1677: 1624: 1532: 1359: 1218: 1214: 1210: 1190: 1114: 1106: 271: 196: 95: 2037:
Katterloher, Reinhard O.; Jakob, Gerd; Konuma, Mitsuharu; Krabbe, Alfred;
744:
VPE is sometimes classified by the chemistry of the source gases, such as
2146: 1034: 1021: 1003: 927:(IMA) definition requires that the two minerals be of different species. 877: 745: 146: 1905:
Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials
1606: 1025:
Rutile on hematite, from Novo Horizonte, Bahia, Northeast Region, Brazil
782:
Another widely used technique in microelectronics and nanotechnology is
2554: 2511: 2445:
Klein, Cornelis; Hurlbut, Cornelius Searle; Dana, James Dwight (1993).
1942:; Parkin, S. S. P.; Dobson, P. J.; Neave, J. H.; Arrott, A. S. (2013). 1669: 1514: 1246: 1105:, but there are directions of similar spacing between the atoms in the 1062: 975: 815: 775:; practically free space) to the substrate and start epitaxial growth. 642:
Homoepitaxial growth of semiconductor thin films are generally done by
584:
Heteroepitaxial growth is classified into three primary growth modes--
64: 2062: 1467: 2174: 2139: 2003:
Luque, A.; Sala, G.; Palz, Willeke; Santos, G. dos; Helm, P. (2012).
1837: 1701:"Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I" 1397: 1309: 1242: 1151: 1054: 1010: 893:
of the two minerals are aligned. This occurs when some planes in the
862: 846: 807: 764: 20: 1652: 1589: 1497: 1279: 1127: 1086: 1066: 850: 663: 329: 313: 1045:
Minerals that have the same composition but different structures (
897:
of the overgrowth and the substrate have similar spacings between
841:
during deposition by adding impurities to the source gas, such as
1197: 919:
scientists who induce epitaxic growth of a film with a different
803: 763:(MBE). In this method, a source material is heated to produce an 546: 325: 243: 54: 1183: 1078: 1050: 951: 854: 842: 768: 718: 1439:
Epitaxy of Semiconductors: Introduction to Physical Principles
573: 2189: 898: 882: 749: 2626: 2036: 1948:. Springer Science & Business Media. pp. 174–176. 554: 2608: 1945:
Thin Film Growth Techniques for Low-Dimensional Structures
634: 400:{\displaystyle \varepsilon ={\frac {a_{f}-a_{s}}{a_{f}}}} 2152: 1938: 1442:. Springer Science & Business Media. pp. 4–6. 865:
into the growing layer from other layers in the wafer (
2117: 2090:. Springer Science & Business Media. p. 45. 1462:
M. Schreck et al., Appl. Phys. Lett. 78, 192 (2001);
503: 474: 442: 415: 351: 938:
silver iodide and ice have similar cell dimensions.
767:
beam of particles, which travel through a very high
2587:(2nd ed.). Upper Saddle River: Prentice Hall. 2002: 1182:. The magnetite structure is based on close-packed 518:Heteroepitaxy is commonly used to create so-called 19:"Epitaxis" redirects here. Not to be confused with 1479:Tang, Shujie; Wang, Haomin; Wang, Huishan (2015). 509: 489: 455: 428: 399: 1692: 1049:) may also have epitaxic relations. Examples are 2634: 2444: 2232: 1777:An Introduction To Semiconductor Microtechnology 1767: 1743: 1741: 1037:after magnetite, with terraced epitaxial faces. 16:Crystal growth process relative to the substrate 2204:(8). American Chemical Society (ACS): 655–668. 2030: 1969: 881:Rutile epitaxial on hematite nearly 6 cm long. 2247:(7). American Physical Society (APS): 075124. 2195: 1978:"Speedy production of silicon for solar cells" 2618:: a central forum for the epitaxy-communities 2354: 2238: 1934: 1932: 1738: 1571:Chen, Lingxiu; He, Li; Wang, Huishan (2017). 1201:vary from 0.49 Å to 0.92 Å, depending on the 950:) may have epitaxic relations. An example is 557:(CMOS), but it is particularly important for 216: 1637: 1478: 2585:Introduction to Microelectronic Fabrication 2077: 1975: 1908:. John Wiley & Sons. pp. 134–135. 1773: 1435: 1410: 1929: 1901: 1895: 1570: 1545: 223: 209: 1996: 1852: 1651: 1614: 1588: 1522: 1496: 2532: 2489: 1121: 1109:plane of rutile (perpendicular to the a 1028: 1020: 876: 633: 572: 555:complementary metal–oxide–semiconductors 2300: 2083: 1429: 1411:Christensen, Morten Jagd (April 1997). 1379: 1377: 1016: 946:Minerals that have the same structure ( 925:International Mineralogical Association 666:at approximately 1200 to 1250 Â°C: 497:is necessary for obtaining epitaxy. If 2635: 2578: 1550:. Elsevier Science. pp. 513–588. 1341: 1339: 1315:Vertical-cavity surface-emitting laser 1241:, epitaxy is used to create and study 941: 266:(τάξις), meaning "an ordered manner". 2431: 2429: 2350: 2348: 2296: 2294: 2292: 2290: 2288: 2286: 2043:Infrared Spaceborne Remote Sensing IX 1976:Christensen, Arnfinn (29 July 2015). 1902:Capper, Peter; Mauk, Michael (2007). 1858: 1823: 1747: 1698: 1413:Epitaxy, Thin films and Superlattices 1383: 1072: 912:relationship, but it is not certain. 2420:www.mineral-forum.com/message-board/ 1374: 2629:: a specialized software in epitaxy 2535:Physical Chemistry Chemical Physics 2492:Physical Chemistry Chemical Physics 2438: 1336: 549:-based manufacturing processes for 490:{\displaystyle \varepsilon <9\%} 182:Shaping processes in crystal growth 13: 2465: 2426: 2408: 2399: 2363:(2). Informa UK Limited: 173–176. 2345: 2309:(4). Informa UK Limited: 317–320. 2283: 1213:faces of magnetite, with hematite 484: 318:aluminium gallium indium phosphide 14: 2669: 2602: 2301:Rakovan, John (2006). "Epitaxy". 2161:(13). AIP Publishing: 1659–1661. 1774:Morgan, D. V.; Board, K. (1991). 1345: 2648:Semiconductor device fabrication 1705:Zeitschrift fĂźr Kristallographie 654:is most commonly deposited from 38: 2572: 2526: 2483: 2111: 1817: 1808: 1794: 1436:Udo W. Pohl (11 January 2013). 1224: 793: 152:Fractional crystallization 2198:Accounts of Materials Research 1631: 1564: 1539: 1472: 1456: 1404: 1258:scanning tunnelling microscopy 821: 629: 1: 1867:(1–4). Elsevier BV: 121–131. 1725:10.1524/zkri.1958.110.1-6.372 1546:F. Francis, Lorraine (2016). 1330: 1881:10.1016/0022-0248(89)90364-3 1415:. Risø National Laboratory. 934:, which is possible because 568: 551:bipolar junction transistors 510:{\displaystyle \varepsilon } 262:(ἐπί), meaning "above", and 172:Laser-heated pedestal growth 7: 2579:Jaeger, Richard C. (2002). 2261:10.1103/physrevb.104.075124 1748:Brune, H. (14 April 2009). 1263: 872: 162:Hydrothermal synthesis 127:Bridgman–Stockbarger method 10: 2674: 2210:10.1021/accountsmr.1c00097 2120:Journal of Applied Physics 1386:Journal of Applied Physics 998:. Both these minerals are 837:An epitaxial layer can be 622: 618: 18: 2658:Methods of crystal growth 2377:10.1080/00357521003591165 2323:10.3200/rmin.81.4.317-320 2009:. Springer. p. 694. 1861:Journal of Crystal Growth 1235:semiconductor fabrication 830: 717:Silicon VPE may also use 648:physical vapor deposition 204: 132:Van Arkel–de Boer process 118: 113: 77: 72: 51: 46: 37: 30: 1245:and multilayer films of 694:) may occur if too much 278: 157:Fractional freezing 2155:Applied Physics Letters 1826:Proceedings of the IEEE 660:germanium tetrachloride 559:compound semiconductors 334:hexagonal boron nitride 137:Czochralski method 1360:10.1021/acsanm.0c02265 1290:Selective area epitaxy 1217:parallel to magnetite 1042: 1026: 886: 761:molecular beam epitaxy 757:compound semiconductor 639: 581: 539:Grain-to-grain epitaxy 511: 491: 457: 430: 401: 114:Methods and technology 1699:Bauer, Ernst (1958). 1577:Nature Communications 1485:Nature Communications 1305:Thermal laser epitaxy 1285:Quantum cascade laser 1122:Hematite on magnetite 1032: 1024: 906:crystallographic axes 880: 777:Chemical beam epitaxy 656:silicon tetrachloride 637: 576: 512: 492: 458: 456:{\displaystyle a_{s}} 431: 429:{\displaystyle a_{f}} 402: 324:(GaAs) or diamond or 2643:Thin film deposition 2622:Deposition processes 2614:9 March 2013 at the 2477:abulafia.mt.ic.ac.uk 2448:Manual of mineralogy 2357:Rocks & Minerals 2303:Rocks & Minerals 2084:Pauleau, Y. (2012). 1548:Materials Processing 1348:ACS Appl. Nano Mater 1320:Wake Shield Facility 1047:polymorphic minerals 1017:Polymorphic minerals 784:atomic layer epitaxy 501: 472: 440: 413: 349: 2547:2012PCCP...1410726W 2504:2011PCCP...1320724W 2369:2010RoMin..85..173W 2315:2006RoMin..81..317R 2253:2021PhRvB.104g5124H 2167:1994ApPhL..65.1659L 2132:1994JAP....75.2809C 2055:2002SPIE.4486..200K 1873:1989JCrGr..95..121T 1717:1958ZK....110..372B 1662:2017arXiv170601655C 1607:10.1038/ncomms14703 1599:2017NatCo...814703C 1507:2015NatCo...6.6499T 1392:(6115): 6115–6117. 1354:(11): 11098–11106. 1295:Silicon on sapphire 1229:Epitaxy is used in 1207:coordination number 1205:(2+ or 3+) and the 1126:Another example is 1009:, and with similar 948:isomorphic minerals 942:Isomorphic minerals 591:Frank–van der Merwe 545:Epitaxy is used in 306:silicon on sapphire 106:Single crystal 86:Crystal growth 2555:10.1039/C2CP40800G 2512:10.1039/C1CP22546D 1670:10.1039/C7NR02578E 1515:10.1038/ncomms7499 1300:Single event upset 1254:single crystalline 1073:Rutile on hematite 1043: 1027: 891:crystal directions 887: 752:(MOVPE or MOCVD). 640: 597:Stranski–Krastanov 582: 553:(BJTs) and modern 507: 487: 453: 426: 397: 275:as heteroepitaxy. 177:Micro-pulling-down 2594:978-0-201-44494-0 2581:"Film Deposition" 2458:978-0-471-57452-1 2241:Physical Review B 2063:10.1117/12.455132 1982:sciencenordic.com 1832:(11): 1694–1714. 1557:978-0-12-385132-1 1468:10.1063/1.1337648 1449:978-3-642-32970-8 1250:organic molecules 696:hydrogen chloride 465:lattice constants 395: 233: 232: 167:Kyropoulos method 96:Seed crystal 91:Recrystallization 60:Crystal structure 2665: 2598: 2567: 2566: 2541:(30): 10726–31. 2530: 2524: 2523: 2487: 2481: 2480: 2469: 2463: 2462: 2442: 2436: 2433: 2424: 2423: 2412: 2406: 2403: 2397: 2396: 2352: 2343: 2342: 2298: 2281: 2280: 2236: 2230: 2229: 2193: 2187: 2186: 2175:10.1063/1.112947 2150: 2144: 2143: 2140:10.1063/1.356173 2115: 2109: 2108: 2106: 2104: 2081: 2075: 2074: 2039:Haegel, Nancy M. 2034: 2028: 2027: 2025: 2023: 2000: 1994: 1993: 1991: 1989: 1973: 1967: 1966: 1964: 1962: 1940:Farrow, R. F. C. 1936: 1927: 1926: 1924: 1922: 1899: 1893: 1892: 1856: 1850: 1849: 1838:10.1109/5.649646 1821: 1815: 1812: 1806: 1805: 1798: 1792: 1791: 1771: 1765: 1764: 1762: 1760: 1745: 1736: 1735: 1733: 1731: 1711:(1–6): 372–394. 1696: 1690: 1689: 1655: 1635: 1629: 1628: 1618: 1592: 1568: 1562: 1561: 1543: 1537: 1536: 1526: 1500: 1476: 1470: 1460: 1454: 1453: 1433: 1427: 1426: 1408: 1402: 1401: 1398:10.1063/1.342110 1381: 1372: 1371: 1343: 1181: 1180: 1179: 1171: 1170: 1162: 1161: 1149: 1148: 1147: 1139: 1138: 1101:and hematite is 1008: 997: 996: 995: 987: 986: 973: 972: 971: 963: 962: 812:gallium arsenide 750:metalorganic VPE 563:gallium arsenide 516: 514: 513: 508: 496: 494: 493: 488: 462: 460: 459: 454: 452: 451: 435: 433: 432: 427: 425: 424: 406: 404: 403: 398: 396: 394: 393: 384: 383: 382: 370: 369: 359: 341:lattice mismatch 322:gallium arsenide 225: 218: 211: 101:Protocrystalline 42: 28: 27: 2673: 2672: 2668: 2667: 2666: 2664: 2663: 2662: 2653:Crystallography 2633: 2632: 2616:Wayback Machine 2605: 2595: 2575: 2570: 2531: 2527: 2498:(46): 20724–8. 2488: 2484: 2473:"Shannon Radii" 2471: 2470: 2466: 2459: 2443: 2439: 2434: 2427: 2414: 2413: 2409: 2404: 2400: 2353: 2346: 2299: 2284: 2237: 2233: 2194: 2190: 2151: 2147: 2116: 2112: 2102: 2100: 2098: 2082: 2078: 2035: 2031: 2021: 2019: 2017: 2001: 1997: 1987: 1985: 1984:. ScienceNordic 1974: 1970: 1960: 1958: 1956: 1937: 1930: 1920: 1918: 1916: 1900: 1896: 1857: 1853: 1822: 1818: 1813: 1809: 1800: 1799: 1795: 1788: 1772: 1768: 1758: 1756: 1746: 1739: 1729: 1727: 1697: 1693: 1636: 1632: 1583:(2017): 14703. 1569: 1565: 1558: 1544: 1540: 1477: 1473: 1461: 1457: 1450: 1434: 1430: 1423: 1409: 1405: 1382: 1375: 1344: 1337: 1333: 1266: 1239:surface science 1227: 1178: 1175: 1174: 1173: 1169: 1166: 1165: 1164: 1160: 1158: 1157: 1156: 1154: 1146: 1143: 1142: 1141: 1137: 1134: 1133: 1132: 1130: 1124: 1096: 1092: 1084: 1075: 1060: 1019: 1006: 994: 991: 990: 989: 985: 982: 981: 980: 978: 970: 967: 966: 965: 961: 958: 957: 956: 954: 944: 875: 835: 824: 796: 740: 736: 727:trichlorosilane 713: 709: 705: 685: 681: 677: 673: 632: 627: 625:Epitaxial wafer 621: 571: 502: 499: 498: 473: 470: 469: 447: 443: 441: 438: 437: 420: 416: 414: 411: 410: 389: 385: 378: 374: 365: 361: 360: 358: 350: 347: 346: 310:gallium nitride 281: 254:comes from the 229: 192:Verneuil method 81:Crystallization 32:Crystallization 24: 17: 12: 11: 5: 2671: 2661: 2660: 2655: 2650: 2645: 2631: 2630: 2624: 2619: 2604: 2603:External links 2601: 2600: 2599: 2593: 2574: 2571: 2569: 2568: 2525: 2482: 2464: 2457: 2437: 2425: 2407: 2398: 2344: 2282: 2231: 2188: 2145: 2110: 2096: 2076: 2029: 2015: 1995: 1968: 1954: 1928: 1914: 1894: 1851: 1816: 1807: 1793: 1787:978-0471924784 1786: 1766: 1750:"Growth Modes" 1737: 1691: 1630: 1563: 1556: 1538: 1491:(6499): 6499. 1471: 1455: 1448: 1428: 1421: 1403: 1373: 1334: 1332: 1329: 1328: 1327: 1325:Zhores Alferov 1322: 1317: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1277: 1272: 1270:Heterojunction 1265: 1262: 1231:nanotechnology 1226: 1223: 1176: 1167: 1159: 1144: 1135: 1123: 1120: 1094: 1090: 1082: 1074: 1071: 1058: 1018: 1015: 992: 983: 968: 959: 943: 940: 874: 871: 834: 829: 823: 820: 795: 792: 742: 741: 738: 734: 723:dichlorosilane 715: 714: 711: 707: 703: 687: 686: 683: 679: 675: 671: 631: 628: 620: 617: 570: 567: 532:Pendeo-epitaxy 526:Heterotopotaxy 506: 486: 483: 480: 477: 450: 446: 423: 419: 392: 388: 381: 377: 373: 368: 364: 357: 354: 280: 277: 231: 230: 228: 227: 220: 213: 205: 202: 201: 200: 199: 194: 189: 187:Skull crucible 184: 179: 174: 169: 164: 159: 154: 149: 144: 139: 134: 129: 124: 116: 115: 111: 110: 109: 108: 103: 98: 93: 88: 83: 75: 74: 70: 69: 68: 67: 62: 57: 49: 48: 44: 43: 35: 34: 15: 9: 6: 4: 3: 2: 2670: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2640: 2638: 2628: 2627:CrystalXE.com 2625: 2623: 2620: 2617: 2613: 2610: 2607: 2606: 2596: 2590: 2586: 2582: 2577: 2576: 2564: 2560: 2556: 2552: 2548: 2544: 2540: 2536: 2529: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2486: 2478: 2474: 2468: 2460: 2454: 2450: 2449: 2441: 2432: 2430: 2421: 2417: 2411: 2402: 2394: 2390: 2386: 2382: 2378: 2374: 2370: 2366: 2362: 2358: 2351: 2349: 2340: 2336: 2332: 2328: 2324: 2320: 2316: 2312: 2308: 2304: 2297: 2295: 2293: 2291: 2289: 2287: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2250: 2246: 2242: 2235: 2227: 2223: 2219: 2215: 2211: 2207: 2203: 2199: 2192: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2149: 2141: 2137: 2133: 2129: 2125: 2121: 2114: 2099: 2097:9789401003537 2093: 2089: 2088: 2080: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2033: 2018: 2016:9789401136228 2012: 2008: 2007: 1999: 1983: 1979: 1972: 1957: 1955:9781468491456 1951: 1947: 1946: 1941: 1935: 1933: 1917: 1915:9780470319499 1911: 1907: 1906: 1898: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1855: 1847: 1843: 1839: 1835: 1831: 1827: 1820: 1811: 1803: 1797: 1789: 1783: 1779: 1778: 1770: 1755: 1751: 1744: 1742: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1695: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1654: 1649: 1645: 1641: 1634: 1626: 1622: 1617: 1612: 1608: 1604: 1600: 1596: 1591: 1586: 1582: 1578: 1574: 1567: 1559: 1553: 1549: 1542: 1534: 1530: 1525: 1520: 1516: 1512: 1508: 1504: 1499: 1494: 1490: 1486: 1482: 1475: 1469: 1465: 1459: 1451: 1445: 1441: 1440: 1432: 1424: 1418: 1414: 1407: 1399: 1395: 1391: 1387: 1380: 1378: 1369: 1365: 1361: 1357: 1353: 1349: 1342: 1340: 1335: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1275:Island growth 1273: 1271: 1268: 1267: 1261: 1259: 1256:surfaces via 1255: 1251: 1248: 1244: 1240: 1236: 1232: 1222: 1220: 1216: 1212: 1208: 1204: 1199: 1194: 1192: 1188: 1185: 1153: 1129: 1119: 1116: 1112: 1108: 1104: 1100: 1088: 1080: 1070: 1068: 1064: 1056: 1052: 1048: 1040: 1036: 1031: 1023: 1014: 1012: 1005: 1001: 977: 953: 949: 939: 937: 933: 932:silver iodide 928: 926: 922: 918: 917:semiconductor 913: 909: 907: 902: 900: 896: 892: 884: 879: 870: 868: 867:out-diffusion 864: 860: 856: 852: 848: 844: 840: 833: 828: 819: 817: 813: 809: 805: 800: 791: 789: 788:chemisorption 785: 780: 778: 774: 770: 766: 762: 758: 753: 751: 747: 732: 731: 730: 728: 724: 720: 701: 700: 699: 697: 693: 669: 668: 667: 665: 661: 657: 653: 649: 645: 636: 626: 616: 612: 608: 605: 601: 599: 598: 593: 592: 587: 579: 575: 566: 564: 560: 556: 552: 548: 543: 540: 536: 533: 529: 527: 523: 521: 504: 481: 478: 475: 466: 448: 444: 421: 417: 407: 390: 386: 379: 375: 371: 366: 362: 355: 352: 344: 342: 337: 335: 331: 327: 323: 320:(AlGaInP) on 319: 315: 311: 307: 302: 301:Heteroepitaxy 298: 296: 292: 290: 285: 276: 273: 267: 265: 261: 257: 253: 248: 245: 241: 237: 226: 221: 219: 214: 212: 207: 206: 203: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 150: 148: 145: 143: 140: 138: 135: 133: 130: 128: 125: 123: 120: 119: 117: 112: 107: 104: 102: 99: 97: 94: 92: 89: 87: 84: 82: 79: 78: 76: 71: 66: 63: 61: 58: 56: 53: 52: 50: 45: 41: 36: 33: 29: 26: 22: 2584: 2573:Bibliography 2538: 2534: 2528: 2495: 2491: 2485: 2476: 2467: 2447: 2440: 2419: 2410: 2401: 2360: 2356: 2306: 2302: 2244: 2240: 2234: 2201: 2197: 2191: 2158: 2154: 2148: 2123: 2119: 2113: 2101:. Retrieved 2086: 2079: 2046: 2042: 2032: 2020:. Retrieved 2005: 1998: 1986:. Retrieved 1981: 1971: 1959:. Retrieved 1944: 1919:. Retrieved 1904: 1897: 1864: 1860: 1854: 1829: 1825: 1819: 1810: 1796: 1776: 1769: 1757:. Retrieved 1753: 1728:. Retrieved 1708: 1704: 1694: 1643: 1639: 1633: 1580: 1576: 1566: 1547: 1541: 1488: 1484: 1474: 1458: 1438: 1431: 1412: 1406: 1389: 1385: 1351: 1347: 1228: 1225:Applications 1195: 1125: 1097:. Rutile is 1076: 1069:, both ZnS. 1044: 945: 929: 914: 910: 903: 888: 866: 858: 836: 825: 801: 797: 794:Liquid-phase 781: 754: 743: 716: 688: 651: 641: 613: 609: 606: 602: 596: 590: 586:Volmer–Weber 585: 583: 577: 544: 538: 537: 531: 530: 525: 524: 408: 345: 340: 338: 300: 299: 295:Homotopotaxy 294: 293: 283: 282: 272:Miller index 268: 263: 259: 251: 249: 239: 235: 234: 197:Zone melting 141: 47:Fundamentals 25: 2609:epitaxy.net 2126:(6): 2809. 2049:: 200–209. 1646:(32): 1–6. 1041:, Argentina 1035:pseudomorph 1004:space group 822:Solid-phase 748:(HVPE) and 746:hydride VPE 630:Vapor-phase 284:Homoepitaxy 244:crystalline 147:Flux method 2637:Categories 1653:1706.01655 1590:1703.03145 1498:1503.02806 1422:8755022987 1331:References 1113:) and the 1099:tetragonal 1063:sphalerite 1057:, both FeS 976:microcline 859:autodoping 816:centrifuge 765:evaporated 759:growth is 623:See also: 65:Nucleation 2451:. Wiley. 2393:128758902 2385:0035-7529 2339:219714821 2331:0035-7529 2277:238671328 2269:2469-9950 2226:237642245 2218:2643-6728 2183:0003-6951 2103:3 October 2071:137003113 2022:3 October 1988:3 October 1961:3 October 1921:3 October 1889:0022-0248 1846:0018-9219 1640:Nanoscale 1368:228995039 1310:Thin film 1243:monolayer 1152:magnetite 1055:marcasite 1033:Hematite 1011:unit cell 1000:triclinic 936:hexagonal 847:phosphine 808:germanium 737:→ Si + 2H 594:(FM) and 569:Mechanism 505:ε 485:% 476:ε 372:− 353:ε 312:(GaN) on 250:The term 21:Epistaxis 2612:Archived 2563:22751288 2520:21952443 1686:11602229 1678:28580985 1625:28276532 1533:25757864 1280:Nano-RAM 1264:See also 1247:adsorbed 1128:hematite 1103:trigonal 1087:hematite 1067:wurtzite 1039:La Rioja 895:lattices 885:, Brazil 873:Minerals 851:diborane 664:hydrogen 644:chemical 578:Figure 1 561:such as 463:are the 330:graphene 314:sapphire 238:(prefix 73:Concepts 2543:Bibcode 2500:Bibcode 2365:Bibcode 2311:Bibcode 2249:Bibcode 2163:Bibcode 2128:Bibcode 2051:Bibcode 1869:Bibcode 1713:Bibcode 1658:Bibcode 1616:5347129 1595:Bibcode 1524:4382696 1503:Bibcode 1233:and in 1198:cations 1196:If the 1002:, with 863:diffuse 855:Dopants 804:silicon 710:↔ 2SiCl 692:etching 652:silicon 619:Methods 547:silicon 520:bandgap 336:(hBN). 326:iridium 252:epitaxy 236:Epitaxy 142:Epitaxy 55:Crystal 2591:  2561:  2518:  2455:  2391:  2383:  2337:  2329:  2275:  2267:  2224:  2216:  2181:  2094:  2069:  2013:  1952:  1912:  1887:  1844:  1784:  1684:  1676:  1623:  1613:  1554:  1531:  1521:  1446:  1419:  1366:  1203:charge 1187:anions 1184:oxygen 1079:rutile 1061:, and 1051:pyrite 955:NaAlSi 952:albite 921:doping 843:arsine 832:Doping 810:, and 769:vacuum 725:, and 719:silane 682:+ 4HCl 662:) and 600:(SK). 588:(VW), 409:Where 328:, and 289:doping 258:roots 122:Boules 2389:S2CID 2335:S2CID 2273:S2CID 2222:S2CID 2067:S2CID 1759:3 May 1730:3 May 1682:S2CID 1648:arXiv 1585:arXiv 1493:arXiv 1364:S2CID 1219:(111) 1215:(001) 1211:(111) 1191:(111) 1115:(001) 1107:(100) 979:KAlSi 899:atoms 883:Bahia 849:, or 839:doped 436:and 279:Types 264:taxis 256:Greek 2589:ISBN 2559:PMID 2516:PMID 2453:ISBN 2381:ISSN 2327:ISSN 2265:ISSN 2214:ISSN 2179:ISSN 2105:2017 2092:ISBN 2047:4486 2024:2017 2011:ISBN 1990:2017 1963:2017 1950:ISBN 1923:2017 1910:ISBN 1885:ISSN 1842:ISSN 1782:ISBN 1761:2022 1732:2022 1674:PMID 1621:PMID 1552:ISBN 1529:PMID 1444:ISBN 1417:ISBN 1111:axis 1065:and 1053:and 771:(10 712:2(g) 706:+ Si 704:4(g) 702:SiCl 678:↔ Si 676:2(g) 674:+ 2H 672:4(g) 670:SiCl 658:(or 479:< 240:epi- 2551:doi 2508:doi 2373:doi 2319:doi 2257:doi 2245:104 2206:doi 2171:doi 2136:doi 2059:doi 1877:doi 1834:doi 1721:doi 1709:110 1666:doi 1611:PMC 1603:doi 1519:PMC 1511:doi 1464:doi 1394:doi 1356:doi 1252:on 1150:on 1085:on 1081:TiO 974:on 869:). 733:SiH 708:(s) 684:(g) 680:(s) 646:or 343:Ԑ: 332:on 260:epi 2639:: 2583:. 2557:. 2549:. 2539:14 2537:. 2514:. 2506:. 2496:13 2494:. 2475:. 2428:^ 2418:. 2387:. 2379:. 2371:. 2361:85 2359:. 2347:^ 2333:. 2325:. 2317:. 2307:81 2305:. 2285:^ 2271:. 2263:. 2255:. 2243:. 2220:. 2212:. 2200:. 2177:. 2169:. 2159:65 2157:. 2134:. 2124:75 2122:. 2065:. 2057:. 2045:. 1980:. 1931:^ 1883:. 1875:. 1865:95 1863:. 1840:. 1830:85 1828:. 1752:. 1740:^ 1719:. 1707:. 1703:. 1680:. 1672:. 1664:. 1656:. 1642:. 1619:. 1609:. 1601:. 1593:. 1579:. 1575:. 1527:. 1517:. 1509:. 1501:. 1487:. 1483:. 1390:64 1388:. 1376:^ 1362:. 1350:. 1338:^ 1260:. 1221:. 1163:Fe 1155:Fe 1131:Fe 1089:Fe 901:. 853:. 845:, 806:, 790:. 773:Pa 721:, 316:, 308:, 2597:. 2565:. 2553:: 2545:: 2522:. 2510:: 2502:: 2479:. 2461:. 2422:. 2395:. 2375:: 2367:: 2341:. 2321:: 2313:: 2279:. 2259:: 2251:: 2228:. 2208:: 2202:2 2185:. 2173:: 2165:: 2142:. 2138:: 2130:: 2107:. 2073:. 2061:: 2053:: 2026:. 1992:. 1965:. 1925:. 1891:. 1879:: 1871:: 1848:. 1836:: 1804:. 1790:. 1763:. 1734:. 1723:: 1715:: 1688:. 1668:: 1660:: 1650:: 1644:9 1627:. 1605:: 1597:: 1587:: 1581:8 1560:. 1535:. 1513:: 1505:: 1495:: 1489:6 1466:: 1452:. 1425:. 1400:. 1396:: 1370:. 1358:: 1352:3 1177:4 1172:O 1168:2 1145:3 1140:O 1136:2 1095:3 1093:O 1091:2 1083:2 1059:2 1007:1 993:8 988:O 984:3 969:8 964:O 960:3 739:2 735:4 690:( 482:9 449:s 445:a 422:f 418:a 391:f 387:a 380:s 376:a 367:f 363:a 356:= 224:e 217:t 210:v 23:.

Index

Epistaxis
Crystallization

Crystal
Crystal structure
Nucleation
Crystallization
Crystal growth
Recrystallization
Seed crystal
Protocrystalline
Single crystal
Boules
Bridgman–Stockbarger method
Van Arkel–de Boer process
Czochralski method
Epitaxy
Flux method
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Kyropoulos method
Laser-heated pedestal growth
Micro-pulling-down
Shaping processes in crystal growth
Skull crucible
Verneuil method
Zone melting
v
t

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑