Knowledge

Carbonate compensation depth

Source đź“ť

410: 87: 77: 987: 1359: 1332: 90:
Calcareous sediment can only accumulate in depths shallower than the calcium carbonate compensation depth (CCD). Below the CCD, calcareous sediments dissolve and will not accumulate. The lysocline represents the depth range in which the rate of dissolution increases
1099:
it is intermediate between the Atlantic and the Pacific at approximately 4300 meters. The variation in the depth of the CCD largely results from the length of time since the bottom water has been exposed to the surface; this is called the "age" of the
111:
of the oceans (green circles). Upon death, those tests escaping dissolution near the surface settle, along with clay materials. In seawater, a dissolution boundary is formed as a result of temperature, pressure, and depth, and is known as the
328: 1214:, which is also caused by increasing carbon dioxide concentrations in the atmosphere, will increase such dissolution and shallow the carbonate compensation depth on timescales of tens to hundreds of years. 1112:, sink from the surface waters into deeper water, deep water masses tend to accumulate dissolved carbon dioxide as they age. The oldest water masses have the highest concentrations of CO 1171:
in the ocean mixed surface layer. This effect was somewhat moderated by the deep oceans' elevated temperatures during this period. In the late Eocene the transition from a
377:, may bring the carbonate layer below the CCD; the carbonate layer may be prevented from chemically interacting with the sea water by overlying sediments such as a layer of 1011: 68:
carbonates. Aragonite is more soluble than calcite, and the aragonite compensation depth is generally shallower than both the calcite compensation depth and the CCD.
1046:
in the water. Calcium carbonate is more soluble at lower temperatures and at higher pressures. It is also more soluble if the concentration of dissolved CO
1132:
occurs. This downwelling brings young, surface water with relatively low concentrations of carbon dioxide into the deep ocean, depressing the CCD.
169: 46:. That is, solvation 'compensates' supply. Below the CCD solvation is faster, so that carbonate particles dissolve and the carbonate shells ( 1181:
investigated and experimented on the dissolution of calcium carbonate and was first to identify the carbonate compensation depth in oceans.
120:
tests are largely preserved. Below it, waters are undersaturated, because of both the increasing solubility with depth and the release of CO
135:
from above. At steady state this depth, the CCD, is similar to the snowline (the first depth where carbonate-poor sediments occur). The
497: 17: 128:
will dissolve. The sinking velocity of debris is rapid (broad pale arrows), so dissolution occurs primarily at the sediment surface.
782: 455: 1196: 955: 482: 50:) of animals are not preserved. Carbonate particles cannot accumulate in the sediments where the sea floor is below this depth. 1018: 836: 1050:
is higher. Adding a reactant to the above chemical equation pushes the equilibrium towards the right producing more products:
1481: 1315: 960: 1190: 425: 1147:
the CCD was much shallower globally than it is today; due to intense volcanic activity during this period atmospheric CO
1394:
Boudreau, Bernard P.; Middelburg, Jack J.; Luo, Yiming (2018). "The role of calcification in carbonate compensation".
1645: 1353: 369:
will dissolve before reaching this level, preventing deposition of carbonate sediment. As the sea floor spreads,
1376: 1108:
determines the relative ages of the water in these basins. Because organic material, such as fecal pellets from
1172: 885: 875: 555: 56:
is the least soluble of these carbonates, so the CCD is normally the compensation depth for calcite. The
1178: 1070: 945: 843: 549: 543: 131:
At the carbonate compensation depth, the rate of dissolution exactly matches the rate of supply of CaCO
950: 570: 1105: 925: 853: 848: 831: 676: 537: 435: 147:
Calcium carbonate is essentially insoluble in sea surface waters today. Shells of dead calcareous
1031:
The exact value of the CCD depends on the solubility of calcium carbonate which is determined by
935: 450: 755: 531: 492: 460: 1675: 1556:
Boudreau, Bernard P.; Middelburg, Jack J.; Hofmann, Andreas F.; Meysman, Filip J. R. (2010).
1004: 991: 940: 671: 1236:; on the sea floors below the carbonate compensation depth, the most commonly found ooze is 1610: 1510: 1403: 867: 769: 525: 430: 8: 1276: 1211: 816: 632: 487: 1614: 1514: 1407: 1579: 1533: 1498: 1419: 1321: 1266: 895: 663: 647: 642: 565: 370: 1598: 1298:
Middelburg, Jack J. (2019). "Biogeochemical Processes and Inorganic Carbon Dynamics".
1626: 1622: 1538: 1477: 1423: 1325: 1311: 1066: 826: 605: 440: 350: 160: 96: 39: 27:
Depth in the oceans below which no calcium carbonate sediment particles are preserved
1583: 1618: 1569: 1528: 1518: 1469: 1411: 1303: 1223: 1156: 792: 686: 681: 159:
increases dramatically with depth and pressure. By the time the CCD is reached all
86: 1039:
and the chemical composition of the water – in particular the amount of dissolved
1473: 1233: 920: 787: 720: 708: 637: 511: 76: 1307: 139:
is the depth interval between the saturation and carbonate compensation depths.
1503:
Proceedings of the National Academy of Sciences of the United States of America
1468:. Encyclopedia of Earth Sciences Series. Springer Netherlands. pp. 71–73. 1363: 1336: 1261: 1237: 1125: 1121: 1092: 1040: 930: 900: 880: 821: 735: 618: 613: 474: 378: 104: 47: 1415: 323:{\displaystyle {\ce {CaCO3 + CO2 + H2O <=> Ca^2+ (aq) + 2HCO_3^- (aq)}}} 1669: 1630: 1464:
Berger, Wolfgang H.; et al. (2016). "Calcite Compensation Depth (CCD)".
1136: 1077: 1523: 1451:"Warmer than a Hot Tub: Atlantic Ocean Temperatures Much Higher in the Past" 409: 1542: 1203: 1096: 713: 627: 581: 519: 401: 382: 338: 1597:
Johnson, Thomas C.; Hamilton, Edwin L.; Berger, Wolfgang H. (1977-08-01).
1335:
Modified material was copied from this source, which is available under a
1599:"Physical properties of calcareous ooze: Control by dissolution at depth" 1574: 1557: 1229: 1207: 1129: 1055: 1032: 777: 750: 745: 740: 730: 700: 586: 445: 108: 1450: 1232:
above the carbonate compensation depth, the most commonly found ooze is
1116:
and therefore the shallowest CCD. The CCD is relatively shallow in high
1558:"Ongoing transients in carbonate compensation: COMPENSATION TRANSIENTS" 1499:"Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2" 1245: 1140: 1101: 725: 374: 156: 1362:
Modified text was copied from this source, which is available under a
151:
sinking to deeper waters are practically unaltered until reaching the
1271: 1085: 1081: 362: 354: 152: 136: 65: 43: 1241: 1117: 1109: 1089: 1036: 346: 334: 148: 1377:"Ocean acidification due to increasing atmospheric carbon dioxide" 1051: 808: 591: 342: 53: 1555: 1249: 1144: 970: 38:) is the depth, in the oceans, at which the rate of supply of 1358: 1331: 1139:
the depth of the CCD has shown significant variation. In the
965: 358: 1302:. SpringerBriefs in Earth System Sciences. pp. 77–105. 1151:
concentrations were much higher. Higher concentrations of CO
216: 200: 184: 1080:
is about 4200–4500 metres except beneath the equatorial
116:. Above this horizon, waters are supersaturated and CaCO 1163:
over the ocean. This greater pressure of atmospheric CO
1364:
Creative Commons Attribution 4.0 International License
1337:
Creative Commons Attribution 4.0 International License
243: 1596: 1393: 172: 322: 1497:Sulpis, Olivier; et al. (October 29, 2018). 1084:zone, where the CCD is about 5000 m. In the 388: 373:of the plate, which has the effect of increasing 251: 250: 233: 232: 1667: 1293: 1291: 1095:the CCD is at approximately 5000 m. In the 1356:, page 273–297, Rebus Community. Updated 2020. 361:. If the exposed sea bed is below the CCD tiny 385:clay deposited on top of the carbonate layer. 1288: 1012: 155:, the point about 3.5 km deep past which the 1240:. While calcareous ooze mostly consists of 1206:are causing the CCD to rise, with zones of 349:can consist of calcareous sediments called 1297: 1019: 1005: 163:has dissolved according to this equation: 142: 1573: 1532: 1522: 1184: 292: 85: 75: 1342: 956:Territorialisation of carbon governance 226: 14: 1668: 1659:– via Roger Williams University. 1496: 1463: 1369: 961:Total Carbon Column Observing Network 81:Carbonate compensation concept  1643: 1244:, siliceous ooze mostly consists of 1217: 1191:Effects of climate change on oceans 1076:At the present time the CCD in the 124:from organic matter decay, and CaCO 24: 1466:Encyclopedia of Marine Geosciences 95:As shown in the diagram, biogenic 25: 1687: 1453:. Physorg.com. February 17, 2006. 1436:Thurman, Harold., Alan Trujillo. 1061:, and consuming more reactants CO 353:, which is essentially a type of 1357: 1330: 986: 985: 408: 64:) is the compensation depth for 1637: 1590: 1197:atmospheric concentration of CO 1175:coincided with a deepened CCD. 1173:greenhouse to an icehouse Earth 1167:leads to increased dissolved CO 1549: 1490: 1457: 1443: 1430: 1387: 921:Climate reconstruction proxies 389:Variations in value of the CCD 337:particles can be found in the 315: 309: 282: 276: 253: 228: 13: 1: 1300:Marine Carbon Biogeochemistry 1282: 1650:Introduction to Oceanography 1646:"12.6 Sediment Distribution" 1623:10.1016/0025-3227(77)90071-8 1562:Global Biogeochemical Cycles 1474:10.1007/978-94-007-6238-1_47 1350:Introduction to Oceanography 891:Carbonate compensation depth 556:Particulate inorganic carbon 58:aragonite compensation depth 32:carbonate compensation depth 7: 1354:Chapter 12: Ocean Sediments 1308:10.1007/978-3-030-10822-9_5 1255: 71: 10: 1692: 1644:Webb, Paul (August 2023). 1221: 1188: 1120:with the exception of the 946:Carbon capture and storage 550:Particulate organic carbon 544:Dissolved inorganic carbon 18:Calcite compensation depth 1438:Introductory Oceanography 1416:10.1038/s41561-018-0259-5 951:Carbon cycle re-balancing 345:is above the CCD, bottom 1106:Thermohaline circulation 1071:Le Chatelier's principle 926:Carbon-to-nitrogen ratio 886:Carbonate–silicate cycle 854:Carbon dioxide clathrate 849:Clathrate gun hypothesis 677:Net ecosystem production 538:Dissolved organic carbon 333:Calcareous plankton and 1524:10.1073/pnas.1804250115 936:Deep Carbon Observatory 396:Part of a series on the 143:Solubility of carbonate 1210:first being affected. 1185:Climate change impacts 756:Continental shelf pump 532:Total inorganic carbon 498:Satellite measurements 341:above the CCD. If the 324: 92: 83: 1155:resulted in a higher 941:Global Carbon Project 672:Ecosystem respiration 325: 89: 79: 1575:10.1029/2009GB003654 770:Carbon sequestration 526:Total organic carbon 170: 107:are produced in the 42:matches the rate of 1615:1977MGeol..24..259J 1515:2018PNAS..11511700S 1509:(46): 11700–11705. 1408:2018NatGe..11..894B 1277:Ocean acidification 1212:Ocean acidification 1202:from combustion of 817:Atmospheric methane 783:Soil carbon storage 633:Reverse Krebs cycle 488:Ocean acidification 307: 239: 218: 202: 186: 1348:Webb, Paul (2019) 1267:Great Calcite Belt 896:Great Calcite Belt 844:Aerobic production 664:Carbon respiration 606:Metabolic pathways 566:Primary production 371:thermal subsidence 320: 293: 258: 206: 190: 174: 114:saturation horizon 93: 84: 40:calcium carbonates 1483:978-94-007-6238-1 1396:Nature Geoscience 1381:The Royal Society 1317:978-3-030-10821-2 1067:calcium carbonate 1029: 1028: 827:Methane emissions 483:In the atmosphere 314: 296: 281: 265: 260: 221: 209: 193: 177: 161:calcium carbonate 97:calcium carbonate 16:(Redirected from 1683: 1661: 1660: 1658: 1656: 1641: 1635: 1634: 1594: 1588: 1587: 1577: 1553: 1547: 1546: 1536: 1526: 1494: 1488: 1487: 1461: 1455: 1454: 1447: 1441: 1434: 1428: 1427: 1391: 1385: 1384: 1373: 1367: 1361: 1346: 1340: 1334: 1329: 1295: 1224:Pelagic sediment 1218:Sedimentary ooze 1157:partial pressure 1021: 1014: 1007: 994: 989: 988: 793:pelagic sediment 687:Soil respiration 682:Photorespiration 412: 393: 392: 329: 327: 326: 321: 319: 318: 312: 306: 301: 294: 285: 279: 274: 273: 263: 261: 259: 257: 256: 249: 241: 240: 238: 231: 223: 219: 217: 214: 207: 201: 198: 191: 185: 182: 175: 21: 1691: 1690: 1686: 1685: 1684: 1682: 1681: 1680: 1666: 1665: 1664: 1654: 1652: 1642: 1638: 1595: 1591: 1554: 1550: 1495: 1491: 1484: 1462: 1458: 1449: 1448: 1444: 1435: 1431: 1402:(12): 894–900. 1392: 1388: 1375: 1374: 1370: 1347: 1343: 1318: 1296: 1289: 1285: 1258: 1234:calcareous ooze 1226: 1220: 1200: 1193: 1187: 1170: 1166: 1162: 1154: 1150: 1143:through to the 1137:geological past 1124:and regions of 1115: 1064: 1059: 1049: 1044: 1025: 984: 977: 976: 975: 915: 907: 906: 905: 870: 860: 859: 858: 811: 801: 800: 799: 788:Marine sediment 772: 762: 761: 760: 721:Solubility pump 709:Biological pump 703: 693: 692: 691: 666: 656: 655: 654: 638:Carbon fixation 623: 608: 598: 597: 596: 577: 561: 514: 512:Forms of carbon 504: 503: 502: 477: 467: 466: 465: 420: 391: 368: 351:calcareous ooze 308: 302: 297: 275: 266: 262: 252: 245: 244: 242: 234: 227: 225: 224: 222: 215: 210: 199: 194: 183: 178: 173: 171: 168: 167: 145: 134: 127: 123: 119: 102: 82: 74: 28: 23: 22: 15: 12: 11: 5: 1689: 1679: 1678: 1663: 1662: 1636: 1609:(4): 259–277. 1603:Marine Geology 1589: 1548: 1489: 1482: 1456: 1442: 1440:.2004.p151-152 1429: 1386: 1368: 1341: 1316: 1286: 1284: 1281: 1280: 1279: 1274: 1269: 1264: 1262:Carbonate pump 1257: 1254: 1238:siliceous ooze 1219: 1216: 1198: 1186: 1183: 1168: 1164: 1160: 1152: 1148: 1126:Southern Ocean 1122:North Atlantic 1113: 1093:Atlantic Ocean 1062: 1057: 1047: 1042: 1027: 1026: 1024: 1023: 1016: 1009: 1001: 998: 997: 996: 995: 979: 978: 974: 973: 968: 963: 958: 953: 948: 943: 938: 933: 931:Deep biosphere 928: 923: 917: 916: 913: 912: 909: 908: 904: 903: 901:Redfield ratio 898: 893: 888: 883: 881:Nutrient cycle 878: 872: 871: 868:Biogeochemical 866: 865: 862: 861: 857: 856: 851: 846: 841: 840: 839: 834: 824: 822:Methanogenesis 819: 813: 812: 807: 806: 803: 802: 798: 797: 796: 795: 785: 780: 774: 773: 768: 767: 764: 763: 759: 758: 753: 748: 743: 738: 736:Microbial loop 733: 728: 723: 718: 717: 716: 705: 704: 699: 698: 695: 694: 690: 689: 684: 679: 674: 668: 667: 662: 661: 658: 657: 653: 652: 651: 650: 645: 635: 630: 624: 622: 621: 619:Chemosynthesis 616: 614:Photosynthesis 610: 609: 604: 603: 600: 599: 595: 594: 589: 584: 578: 576: 575: 574: 573: 562: 560: 559: 553: 547: 541: 535: 529: 523: 516: 515: 510: 509: 506: 505: 501: 500: 495: 490: 485: 479: 478: 475:Carbon dioxide 473: 472: 469: 468: 464: 463: 458: 453: 448: 443: 438: 433: 428: 422: 421: 418: 417: 414: 413: 405: 404: 398: 397: 390: 387: 379:siliceous ooze 366: 331: 330: 317: 311: 305: 300: 291: 288: 284: 278: 272: 269: 255: 248: 237: 230: 213: 205: 197: 189: 181: 144: 141: 132: 125: 121: 117: 100: 80: 73: 70: 26: 9: 6: 4: 3: 2: 1688: 1677: 1674: 1673: 1671: 1651: 1647: 1640: 1632: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1593: 1585: 1581: 1576: 1571: 1567: 1563: 1559: 1552: 1544: 1540: 1535: 1530: 1525: 1520: 1516: 1512: 1508: 1504: 1500: 1493: 1485: 1479: 1475: 1471: 1467: 1460: 1452: 1446: 1439: 1433: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1390: 1382: 1378: 1372: 1365: 1360: 1355: 1351: 1345: 1338: 1333: 1327: 1323: 1319: 1313: 1309: 1305: 1301: 1294: 1292: 1287: 1278: 1275: 1273: 1270: 1268: 1265: 1263: 1260: 1259: 1253: 1251: 1247: 1243: 1239: 1235: 1231: 1225: 1215: 1213: 1209: 1205: 1201: 1192: 1182: 1180: 1176: 1174: 1158: 1146: 1142: 1138: 1133: 1131: 1127: 1123: 1119: 1111: 1107: 1103: 1098: 1094: 1091: 1087: 1083: 1079: 1078:Pacific Ocean 1074: 1072: 1069:according to 1068: 1060: 1053: 1045: 1038: 1034: 1022: 1017: 1015: 1010: 1008: 1003: 1002: 1000: 999: 993: 983: 982: 981: 980: 972: 969: 967: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 937: 934: 932: 929: 927: 924: 922: 919: 918: 911: 910: 902: 899: 897: 894: 892: 889: 887: 884: 882: 879: 877: 876:Marine cycles 874: 873: 869: 864: 863: 855: 852: 850: 847: 845: 842: 838: 835: 833: 830: 829: 828: 825: 823: 820: 818: 815: 814: 810: 805: 804: 794: 791: 790: 789: 786: 784: 781: 779: 776: 775: 771: 766: 765: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 715: 712: 711: 710: 707: 706: 702: 697: 696: 688: 685: 683: 680: 678: 675: 673: 670: 669: 665: 660: 659: 649: 646: 644: 641: 640: 639: 636: 634: 631: 629: 626: 625: 620: 617: 615: 612: 611: 607: 602: 601: 593: 590: 588: 585: 583: 580: 579: 572: 569: 568: 567: 564: 563: 557: 554: 551: 548: 545: 542: 539: 536: 533: 530: 527: 524: 521: 518: 517: 513: 508: 507: 499: 496: 494: 491: 489: 486: 484: 481: 480: 476: 471: 470: 462: 459: 457: 456:Boreal forest 454: 452: 449: 447: 444: 442: 439: 437: 434: 432: 429: 427: 424: 423: 416: 415: 411: 407: 406: 403: 400: 399: 395: 394: 386: 384: 380: 376: 372: 364: 360: 356: 352: 348: 344: 340: 336: 303: 298: 289: 286: 270: 267: 246: 235: 211: 203: 195: 187: 179: 166: 165: 164: 162: 158: 154: 150: 140: 138: 129: 115: 110: 106: 98: 91:dramatically. 88: 78: 69: 67: 63: 59: 55: 51: 49: 45: 41: 37: 33: 19: 1676:Oceanography 1653:. Retrieved 1649: 1639: 1606: 1602: 1592: 1565: 1561: 1551: 1506: 1502: 1492: 1465: 1459: 1445: 1437: 1432: 1399: 1395: 1389: 1380: 1371: 1349: 1344: 1299: 1227: 1204:fossil fuels 1194: 1177: 1134: 1097:Indian Ocean 1075: 1030: 890: 714:Martin curve 701:Carbon pumps 628:Calvin cycle 582:Black carbon 520:Total carbon 461:Geochemistry 402:Carbon cycle 339:water column 332: 146: 130: 113: 94: 61: 57: 52: 35: 31: 29: 1208:downwelling 1195:Increasing 1179:John Murray 1130:downwelling 1033:temperature 778:Carbon sink 741:Viral shunt 731:Marine snow 587:Blue carbon 441:Deep carbon 436:Atmospheric 426:Terrestrial 109:photic zone 1568:(4): n/a. 1283:References 1246:Radiolaria 1230:sea floors 1222:See also: 1189:See also: 1141:Cretaceous 1102:water mass 751:Whale pump 746:Jelly pump 726:Lipid pump 451:Permafrost 419:By regions 157:solubility 66:aragonitic 1631:0025-3227 1424:135284130 1326:104368944 1272:Lysocline 1118:latitudes 1086:temperate 1082:upwelling 355:limestone 347:sediments 304:− 254:⇀ 247:− 236:− 229:↽ 153:lysocline 137:lysocline 44:solvation 1670:Category 1584:53062358 1543:30373837 1256:See also 1242:Rhizaria 1110:copepods 1090:tropical 1037:pressure 992:Category 335:sediment 149:plankton 72:Overview 1611:Bibcode 1534:6243283 1511:Bibcode 1404:Bibcode 1250:diatoms 1228:On the 1135:In the 837:Wetland 809:Methane 592:Kerogen 493:Removal 383:abyssal 365:of CaCO 343:sea bed 54:Calcite 1655:3 July 1629:  1582:  1541:  1531:  1480:  1422:  1324:  1314:  1145:Eocene 1128:where 990:  971:CO2SYS 832:Arctic 571:marine 431:Marine 363:shells 1580:S2CID 1420:S2CID 1322:S2CID 1159:of CO 966:C4MIP 914:Other 558:(PIC) 552:(POC) 546:(DIC) 540:(DOC) 534:(TIC) 528:(TOC) 375:depth 359:chalk 105:tests 99:(CaCO 48:tests 1657:2024 1627:ISSN 1539:PMID 1478:ISBN 1312:ISBN 1248:and 1088:and 1065:and 1054:and 522:(TC) 446:Soil 176:CaCO 30:The 1619:doi 1570:doi 1529:PMC 1519:doi 1507:115 1470:doi 1412:doi 1304:doi 1056:HCO 381:or 357:or 295:HCO 62:ACD 36:CCD 1672:: 1648:. 1625:. 1617:. 1607:24 1605:. 1601:. 1578:. 1566:24 1564:. 1560:. 1537:. 1527:. 1517:. 1505:. 1501:. 1476:. 1418:. 1410:. 1400:11 1398:. 1379:. 1352:, 1320:. 1310:. 1290:^ 1252:. 1104:. 1073:. 1052:Ca 1041:CO 1035:, 648:C4 643:C3 313:aq 280:aq 264:Ca 192:CO 103:) 1633:. 1621:: 1613:: 1586:. 1572:: 1545:. 1521:: 1513:: 1486:. 1472:: 1426:. 1414:: 1406:: 1383:. 1366:. 1339:. 1328:. 1306:: 1199:2 1169:2 1165:2 1161:2 1153:2 1149:2 1114:2 1063:2 1058:3 1048:2 1043:2 1020:e 1013:t 1006:v 367:3 316:) 310:( 299:3 290:2 287:+ 283:) 277:( 271:+ 268:2 220:O 212:2 208:H 204:+ 196:2 188:+ 180:3 133:3 126:3 122:2 118:3 101:3 60:( 34:( 20:)

Index

Calcite compensation depth
calcium carbonates
solvation
tests
Calcite
aragonitic


calcium carbonate
tests
photic zone
lysocline
plankton
lysocline
solubility
calcium carbonate
sediment
water column
sea bed
sediments
calcareous ooze
limestone
chalk
shells
thermal subsidence
depth
siliceous ooze
abyssal
Carbon cycle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑