Knowledge

Extinct radionuclide

Source 📝

590:
short half-lives provide high chronological resolution and the chemical mobility of various elements can date unique geological processes such as igneous fractionation and surface weathering. There are, however, hurdles to overcome when using extinct nuclides. The need for high-precision isotope ratio measurements is paramount as the extinct radionuclides contribute such a small fraction of the daughter isotopes. Compounding this problem is the increasing contribution that high-energy cosmic rays have on already minute amounts of daughter isotopes formed from the extinct nuclides. Distinguishing the source and abundance of these effects is critical to obtaining accurate ages from extinct nuclides. Additionally, more work needs to be done in determining a more precise half-life for some of these isotopes, such as Fe and Sm.
25: 589:
Despite the fact that the radioactive isotopes mentioned above are now effectively extinct, the record of their existence is found in their decay products and are very useful to geologists who wish to use them as geochronometers. Their usefulness derives from a few factors such as the fact that their
183:
Short-lived isotopes that are not generated or replenished by natural processes are not found in nature, so they are known as extinct radionuclides. Their former existence is inferred from a superabundance of their stable or nearly stable decay products.
214:
and extinct nuclides. Extinct nuclides have decayed away, but primordial nuclides still exist in their original state (undecayed). There are 251 stable primordial nuclides, and remainders of 35 primordial radionuclides that have very long half-lives.
725:
Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Schumann, D.; Kivel, N.; Günther-Leopold, I.; Weinreich, R.; Wohlmuther, M. (2009).
539:
Plutonium-244 and samarium-146 have half-lives long enough to still be present on Earth, but they have not been confirmed experimentally to be present.
636:
Dauphas, N.; Chaussidon, M. (2011). "A perspective from extinct radionuclides on a young stellar object: the Sun and its accretion disk".
784: 89: 61: 145:. Extinct radionuclides were generated by various processes in the early Solar system, and became part of the composition of 42: 68: 160:
Short-lived radioisotopes that are found in nature are continuously generated or replenished by natural processes, such as
75: 709: 108: 57: 46: 82: 689: 35: 779: 809: 804: 573:
by cosmic-ray muons and from cosmic ray spallation of stable xenon isotopes in the atmosphere.
223:
A partial list of radionuclides not found on Earth, but for which decay products are present:
799: 577:
Radioisotopes with half-lives shorter than one million years are also produced: for example,
554: 738: 655: 169: 8: 177: 742: 667: 659: 671: 645: 610: 604: 211: 165: 142: 754: 705: 138: 134: 133:
before the formation of the Solar System, about 4.6 billion years ago, but has since
726: 675: 750: 746: 697: 663: 615: 272: 599: 130: 701: 474: 411: 793: 570: 522: 482: 459: 419: 395: 387: 379: 363: 260: 252: 762: 758: 550: 546: 542:
Notable isotopes with shorter lives still being produced on Earth include:
514: 506: 490: 403: 355: 339: 292: 244: 200: 196: 126: 16:
Radionuclide formed by nucleosynthesis before formation of the Solar System
560: 467: 443: 347: 324: 268: 173: 150: 566: 530: 498: 451: 371: 316: 300: 284: 188: 161: 154: 578: 435: 308: 192: 146: 24: 581:
by cosmic ray production in the atmosphere (half-life 5730 years).
331: 650: 195:
concentrations in meteorites, in the xenon-iodine dating system),
563:
is produced in uranium ores by neutrons from other radioisotopes.
427: 204: 780:
List of isotopes found and not found in nature, with half-lives
724: 276: 618:
which includes a list of radionuclides in order by half-life
233: 191:(the first to be noted in 1960, inferred from excess 153:. All widely documented extinct radionuclides have 49:. Unsourced material may be challenged and removed. 696:. John Wiley & Sons. 2017. pp. 421–443. 635: 791: 218: 638:Annual Review of Earth and Planetary Sciences 210:The Solar System and Earth are formed from 187:Examples of extinct radionuclides include 649: 109:Learn how and when to remove this message 584: 792: 727:"New Measurement of theFe60Half-Life" 47:adding citations to reliable sources 18: 785:Discussion of extinct radionuclides 668:10.1146/annurev-earth-040610-133428 629: 13: 694:Geochronology and Thermochronology 14: 821: 773: 690:"Extinct radionuclide chronology" 141:and is no longer detectable as a 557:on dust in the upper atmosphere. 157:shorter than 100 million years. 23: 34:needs additional citations for 751:10.1103/PhysRevLett.103.072502 718: 682: 1: 622: 219:List of extinct radionuclides 7: 593: 10: 826: 702:10.1002/9781118455876.ch14 203:found in meteorites), and 180:of other radionuclides. 731:Physical Review Letters 58:"Extinct radionuclide" 555:cosmic ray spallation 199:(inferred from extra 585:Use in geochronology 170:background radiation 123:extinct radionuclide 43:improve this article 743:2009PhRvL.103g2502R 660:2011AREPS..39..351D 212:primordial nuclides 178:spontaneous fission 166:cosmogenic nuclides 129:that was formed by 611:Radiometric dating 607:, the dual concept 605:Radiogenic nuclide 143:primordial nuclide 137:to virtually zero 569:is produced from 537: 536: 119: 118: 111: 93: 817: 767: 766: 722: 716: 715: 686: 680: 679: 653: 633: 616:List of nuclides 553:are produced by 273:fission products 226: 225: 114: 107: 103: 100: 94: 92: 51: 27: 19: 825: 824: 820: 819: 818: 816: 815: 814: 790: 789: 776: 771: 770: 723: 719: 712: 688: 687: 683: 634: 630: 625: 600:Presolar grains 596: 587: 221: 131:nucleosynthesis 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 823: 813: 812: 807: 802: 788: 787: 782: 775: 774:External links 772: 769: 768: 717: 710: 681: 627: 626: 624: 621: 620: 619: 613: 608: 602: 595: 592: 586: 583: 575: 574: 564: 558: 535: 534: 528: 525: 519: 518: 512: 509: 503: 502: 496: 493: 487: 486: 480: 477: 475:Gadolinium-150 471: 470: 465: 462: 456: 455: 449: 446: 440: 439: 433: 430: 424: 423: 417: 414: 412:Dysprosium-154 408: 407: 401: 398: 392: 391: 385: 382: 376: 375: 369: 366: 360: 359: 353: 350: 344: 343: 337: 334: 328: 327: 322: 319: 313: 312: 306: 303: 297: 296: 290: 287: 281: 280: 266: 263: 257: 256: 250: 247: 241: 240: 237: 230: 220: 217: 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 822: 811: 810:Radioactivity 808: 806: 805:Geochronology 803: 801: 798: 797: 795: 786: 783: 781: 778: 777: 764: 760: 756: 752: 748: 744: 740: 737:(7): 072502. 736: 732: 728: 721: 713: 711:9781118455876 707: 703: 699: 695: 691: 685: 677: 673: 669: 665: 661: 657: 652: 647: 643: 639: 632: 628: 617: 614: 612: 609: 606: 603: 601: 598: 597: 591: 582: 580: 572: 571:tellurium-130 568: 565: 562: 559: 556: 552: 548: 545: 544: 543: 540: 532: 529: 526: 524: 523:Lanthanum-137 521: 520: 516: 513: 510: 508: 505: 504: 500: 497: 494: 492: 489: 488: 484: 483:Neodymium-142 481: 478: 476: 473: 472: 469: 466: 463: 461: 460:Neptunium-237 458: 457: 453: 450: 447: 445: 442: 441: 437: 434: 431: 429: 426: 425: 421: 420:Neodymium-142 418: 415: 413: 410: 409: 405: 402: 399: 397: 396:Technetium-98 394: 393: 389: 388:Molybdenum-97 386: 383: 381: 380:Technetium-97 378: 377: 373: 370: 367: 365: 364:Palladium-107 362: 361: 357: 354: 351: 349: 346: 345: 341: 338: 335: 333: 330: 329: 326: 323: 320: 318: 315: 314: 310: 307: 304: 302: 299: 298: 294: 291: 288: 286: 283: 282: 278: 274: 270: 267: 264: 262: 261:Plutonium-244 259: 258: 254: 253:Neodymium-142 251: 248: 246: 243: 242: 238: 235: 231: 228: 227: 224: 216: 213: 208: 206: 202: 198: 194: 190: 185: 181: 179: 175: 171: 167: 163: 158: 156: 152: 148: 144: 140: 136: 132: 128: 124: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 800:Geochemistry 763:ResearchGate 761:– via 734: 730: 720: 693: 684: 641: 637: 631: 588: 576: 551:beryllium-10 547:Manganese-53 541: 538: 515:Magnesium-26 507:Aluminium-26 491:Zirconium-93 404:Ruthenium-98 356:Tungsten-182 340:Thallium-205 293:Zirconium-92 275:(especially 245:Samarium-146 222: 209: 201:magnesium-26 197:aluminium-26 186: 182: 159: 151:protoplanets 127:radionuclide 122: 120: 105: 99:January 2012 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 644:: 351–386. 561:Uranium-236 468:Bismuth-209 444:Caesium-135 348:Hafnium-182 325:Uranium-235 269:Thorium-232 174:decay chain 162:cosmic rays 794:Categories 623:References 567:Iodine-129 531:Barium-137 499:Niobium-93 452:Barium-135 372:Silver-107 317:Curium-247 301:Iodine-129 285:Niobium-92 232:Halflife ( 189:iodine-129 155:half-lives 147:meteorites 69:newspapers 651:1105.5172 579:carbon-14 533:(stable) 517:(stable) 501:(stable) 485:(stable) 454:(stable) 438:(stable) 436:Nickel-60 422:(stable) 406:(stable) 390:(stable) 374:(stable) 358:(stable) 342:(stable) 311:(stable) 309:Xenon-129 295:(stable) 255:(stable) 239:Daughter 193:xenon-129 172:, or the 139:abundance 759:19792637 676:37117614 594:See also 332:Lead-205 229:Isotope 739:Bibcode 656:Bibcode 428:Iron-60 205:iron-60 135:decayed 83:scholar 757:  708:  674:  511:0.717 479:1.798 464:2.144 85:  78:  71:  64:  56:  672:S2CID 646:arXiv 527:0.06 495:1.53 448:2.33 432:2.62 416:3.01 384:4.21 368:6.53 352:8.91 336:15.3 321:15.6 305:15.7 289:34.7 277:xenon 265:80.8 249:92.0 125:is a 90:JSTOR 76:books 755:PMID 706:ISBN 549:and 400:4.2 149:and 62:news 747:doi 735:103 698:doi 664:doi 234:Myr 176:or 168:), 121:An 45:by 796:: 753:. 745:. 733:. 729:. 704:. 692:. 670:. 662:. 654:. 642:39 640:. 279:) 271:, 236:) 207:. 765:. 749:: 741:: 714:. 700:: 678:. 666:: 658:: 648:: 164:( 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Extinct radionuclide"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
radionuclide
nucleosynthesis
decayed
abundance
primordial nuclide
meteorites
protoplanets
half-lives
cosmic rays
cosmogenic nuclides
background radiation
decay chain
spontaneous fission
iodine-129
xenon-129
aluminium-26
magnesium-26
iron-60
primordial nuclides

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.