Knowledge

Great Calcite Belt

Source 📝

1621:), but the relative importance of the two has not yet been assessed for coccolithophores in the Southern Ocean. Bottom-up factors directly impact phytoplankton growth, and diatoms and coccolithophores are traditionally discriminated based on their differing requirements for nutrients, turbulence, and light. Based on this, Margalef's mandala predicts a seasonal succession from diatoms to coccolithophores as light levels increase and nutrient levels decline. In situ studies assessing Southern Ocean coccolithophore biogeography have found coccolithophores under various environmental conditions, thus suggesting a wide ecological niche, but all of the mentioned studies have almost exclusively focused on bottom-up controls. 938: 866: 797: 136: 829: 991: 1629: 1573: 619: 813:(at approximately 10 Â°C) acts as the northern boundary of the GCB and is associated with a sharp increase in PIC southwards. These fronts divide distinct environmental and biogeochemical zones, making the GCB an ideal study area to examine controls on phytoplankton communities in the open ocean. A high PIC concentration observed in the GCB (1 ÎŒmol PIC L) compared to the global average (0.2 ÎŒmol PIC L) and significant quantities of detached 20: 961:), up to 3.8×10 cells mL in the Indian sector, and up to 5.4×10 cells mL in the Pacific sector of the Southern Ocean  with Emiliania huxleyi being the dominant species. However, the contribution of coccolithophores to total Southern Ocean phytoplankton biomass and NPP has not yet been assessed. Locally, elevated coccolithophore abundance in the GCB has been found to turn surface waters into a source of CO 3121: 1792: 680:) alongside the North Atlantic and North Pacific oceans. Knowledge of the impact of interacting environmental influences on phytoplankton distribution in the Southern Ocean is limited. For example, more understanding is needed of how light and iron availability or temperature and pH interact to control phytoplankton 23: 22: 27: 26: 21: 3483:
Leblanc, K.; Arístegui, J.; Armand, L.; Assmy, P.; Beker, B.; Bode, A.; Breton, E.; Cornet, V.; Gibson, J.; Gosselin, M.-P.; Kopczynska, E.; Marshall, H.; Peloquin, J.; Piontkovski, S.; Poulton, A. J.; Quéguiner, B.; Schiebel, R.; Shipe, R.; Stefels, J.; Van Leeuwe, M. A.; Varela, M.; Widdicombe, C.;
1648:
in the Southern Ocean. The greenish area south of the Polar Front shows the extension of the subpolar opal belt where sediments have a significant portion of silicous plankton frustules. Sediments near Antarctica mainly consist of glacial debris in any grain size eroded and delivered by the Antarctic
1640:
In the Southern Ocean, previous studies have shown zooplankton grazing to control total phytoplankton biomass, phytoplankton community composition, and ecosystem structure, suggesting that top-down control might also be an important driver for the relative abundance of coccolithophores and diatoms.
1624:
However, phytoplankton growth rates do not necessarily covary with biomass accumulation rates. Using satellite data from the North Atlantic, Behrenfeld stressed in 2014 the importance of simultaneously considering bottom-up and top-down factors when assessing seasonal phytoplankton biomass dynamics
945:
Calcifying coccolithophores and silicifying diatoms are globally ubiquitous phytoplankton functional groups. Diatoms are a major contributor to global phytoplankton biomass  and annual net primary production. In comparison, coccolithophores contribute less to biomass  and to global NPP.
28: 886:
to lower latitudes and depth. Of particular relevance is the competitive interaction between coccolithophores and diatoms, with the former being prevalent along the Great Calcite Belt (40–60°S), while diatoms tend to dominate the regions south of 60°S, as illustrated in the diagram on the right.
75:(CCD) is relatively shallow, meaning that calcite minerals from the shells of marine organisms dissolve at a shallower depth in the water column. This results in a higher concentration of calcium carbonate sediments in the ocean floor, which can be observed in the form of white chalky sediments. 4554:
Le Quéré, Corinne; Buitenhuis, Erik T.; Moriarty, Róisín; Alvain, Séverine; Aumont, Olivier; Bopp, Laurent; Chollet, Sophie; Enright, Clare; Franklin, Daniel J.; Geider, Richard J.; Harrison, Sandy P.; Hirst, Andrew G.; Larsen, Stuart; Legendre, Louis; Platt, Trevor; Prentice, I. Colin; Rivkin,
965:
for the atmosphere, emphasising the necessity to understand the controls on their abundance in the Southern Ocean in the context of the carbon cycle and climate change. While coccolithophores have been observed to have moved polewards in recent decades, their response to the combined effects of
869:
Coccolithophores and diatoms in the Southern Ocean. Biomass distributions for the four months from December to March. Mean top 50 metres of coccolithophore (left) and diatom (right) carbon biomass (mmol/m) using a regional high-resolution model for the Southern Ocean. Coccolithophore and diatom
957:(PIC, a proxy for coccolithophore abundance) revealed the "Great Calcite Belt", an annually reoccurring circumpolar band of elevated PIC concentrations between 40 and 60°S. In situ observations confirmed coccolithophore abundances of up to 2.4×10 cells mL in the Atlantic sector (blooms on the 93:
Scientists have further interest in the calcite sediments in the belt, which contain valuable information about past climate, ocean currents, ocean chemistry, and marine ecosystems. For example, variations in the CCD depth over time can indicate changes in the amount of carbon dioxide in the
3983:
Balch, W. M.; Drapeau, D. T.; Bowler, B. C.; Lyczskowski, E.; Booth, E. S.; Alley, D. (2011). "The contribution of coccolithophores to the optical and inorganic carbon budgets during the Southern Ocean Gas Exchange Experiment: New evidence in support of the "Great Calcite Belt" hypothesis".
1957:
Balch, W. M.; Drapeau, D. T.; Bowler, B. C.; Lyczskowski, E.; Booth, E. S.; Alley, D. (2011). "The contribution of coccolithophores to the optical and inorganic carbon budgets during the Southern Ocean Gas Exchange Experiment: New evidence in support of the "Great Calcite Belt" hypothesis".
2776:
Assmy, P.; Smetacek, V.; Montresor, M.; Klaas, C.; Henjes, J.; Strass, V. H.; Arrieta, J. M.; Bathmann, U.; Berg, G. M.; Breitbarth, E.; Cisewski, B.; Friedrichs, L.; Fuchs, N.; Herndl, G. J.; Jansen, S.; Kragefsky, S.; Latasa, M.; Peeken, I.; Rottgers, R.; Scharek, R.; Schuller, S. E.;
4237:
Iglesias-Rodriguez, M. D.; Halloran, P. R.; Rickaby, R. E. M.; Hall, I. R.; Colmenero-Hidalgo, E.; Gittins, J. R.; Green, D. R. H.; Tyrrell, T.; Gibbs, S. J.; von Dassow, P.; Rehm, E.; Armbrust, E. V.; Boessenkool, K. P. (2008). "Phytoplankton Calcification in a High-CO2 World".
25: 4193:
Beaufort, L.; Probert, I.; De Garidel-Thoron, T.; Bendif, E. M.; Ruiz-Pino, D.; Metzl, N.; Goyet, C.; Buchet, N.; Coupel, P.; Grelaud, M.; Rost, B.; Rickaby, R. E. M.; De Vargas, C. (2011). "Sensitivity of coccolithophores to carbonate chemistry and ocean acidification".
4614:
GranÄși, Edna; GranĂ©li, Wilhelm; Rabbani, Mohammed Mozzam; Daugbjerg, Niels; Fransz, George; Roudy, Janine Cuzin; Alder, Viviana A. (1993). "The influence of copepod and krill grazing on the species composition of phytoplankton communities from the Scotia Weddell sea".
785:, and light microscopy restricts accurate identification to cells > 10 ÎŒm. In the context of climate change and future ecosystem function, the distribution of biomineralizing phytoplankton is important to define when considering phytoplankton interactions with 966:
future warming and ocean acidification is still subject to debate. As their response will also crucially depend on future phytoplankton community composition and predator–prey interactions, it is essential to assess the controls on their abundance in today's climate.
4487:
Hinz, D.J.; Poulton, A.J.; NielsdĂłttir, M.C.; Steigenberger, S.; Korb, R.E.; Achterberg, E.P.; Bibby, T.S. (2012). "Comparative seasonal biogeography of mineralising nannoplankton in the Scotia Sea: Emiliania huxleyi, Fragilariopsis SPP. And Tetraparma pelagica".
2609:
Hinz, D.J.; Poulton, A.J.; NielsdĂłttir, M.C.; Steigenberger, S.; Korb, R.E.; Achterberg, E.P.; Bibby, T.S. (2012). "Comparative seasonal biogeography of mineralising nannoplankton in the Scotia Sea: Emiliania huxleyi, Fragilariopsis SPP. And Tetraparma pelagica".
3947:
Wright, Simon W.; Van Den Enden, Rick L.; Pearce, Imojen; Davidson, Andrew T.; Scott, Fiona J.; Westwood, Karen J. (2010). "Phytoplankton community structure and stocks in the Southern Ocean (30–80°E) determined by CHEMTAX analysis of HPLC pigment signatures".
675:
spring and summer in the Southern Ocean. It plays an important role in climate fluctuations, accounting for over 60% of the Southern Ocean area (30–60° S). The region between 30° and 50° S has the highest uptake of anthropogenic carbon dioxide
2982:
Signorini, Sergio R.; Garcia, Virginia M. T.; Piola, Alberto R.; Garcia, Carlos A. E.; Mata, Mauricio M.; McClain, Charles R. (2006). "Seasonal and interannual variability of calcite in the vicinity of the Patagonian shelf break (38°S–52°S)".
777:. Currently, few studies incorporate small biomineralizing phytoplankton to species level. Rather, the focus has often been on the larger and noncalcifying species in the Southern Ocean due to sample preservation issues (i.e., acidified 1898:
Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V.; Spall, S. A.; Stouffer, R. (2004). "Response of ocean ecosystems to climate warming".
4797:
Sailley, S.F.; Vogt, M.; Doney, S.C.; Aita, M.N.; Bopp, L.; Buitenhuis, E.T.; Hashioka, T.; Lima, I.; Le Quéré, C.; Yamanaka, Y. (2013). "Comparing food web structures and dynamics across a suite of global marine ecosystem models".
110:
groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic groups.
4383:
Dutkiewicz, Stephanie; Morris, J. Jeffrey; Follows, Michael J.; Scott, Jeffery; Levitan, Orly; Dyhrman, Sonya T.; Berman-Frank, Ilana (2015). "Impact of ocean acidification on the structure of future phytoplankton communities".
3543:
O'Brien, C. J.; Peloquin, J. A.; Vogt, M.; Heinle, M.; Gruber, N.; Ajani, P.; Andruleit, H.; Arístegui, J.; Beaufort, L.; Estrada, M.; Karentz, D.; KopczyƄska, E.; Lee, R.; Poulton, A. J.; Pritchard, T.; Widdicombe, C. (2013).
3018:
Painter, Stuart C.; Poulton, Alex J.; Allen, John T.; Pidcock, Rosalind; Balch, William M. (2010). "The COPAS'08 expedition to the Patagonian Shelf: Physical and environmental conditions during the 2008 coccolithophore bloom".
1683:
Anderson, Robert F.; Sachs, Julian P.; Fleisher, Martin Q.; Allen, Katherine A.; Yu, Jimin; Koutavas, Athanasios; Jaccard, Samuel L. (2019). "Deep‐Sea Oxygen Depletion and Ocean Carbon Sequestration During the Last Ice Age".
3830:
Iglesias-Rodriguez, M. Debora; Armstrong, Robert; Feely, Richard; Hood, Raleigh; Kleypas, Joan; Milliman, John D.; Sabine, Christopher; Sarmiento, Jorge (2002). "Progress made in study of ocean's calcium carbonate budget".
2359:
Balch, William M.; Bates, Nicholas R.; Lam, Phoebe J.; Twining, Benjamin S.; Rosengard, Sarah Z.; Bowler, Bruce C.; Drapeau, Dave T.; Garley, Rebecca; Lubelczyk, Laura C.; Mitchell, Catherine; Rauschenberg, Sara (2016).
721:
plankton and their export need to be acknowledged. The two dominant biomineralizing phytoplankton groups in the GCB are coccolithophores and diatoms. Coccolithophores are generally found north of the polar front, though
1641:
But the role of zooplankton grazing in current Earth system models is not well considered, and the impact of different grazing formulations on phytoplankton biogeography and diversity is subject to ongoing research.
4347:
SchlĂŒter, Lothar; Lohbeck, Kai T.; Gutowska, Magdalena A.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H. (2014). "Adaptation of a globally important coccolithophore to ocean warming and acidification".
2276:
Poulton, Alex J.; Mark Moore, C.; Seeyave, Sophie; Lucas, Mike I.; Fielding, Sophie; Ward, Peter (2007). "Phytoplankton community composition around the Crozet Plateau, with emphasis on diatoms and Phaeocystis".
2740:
Baines, Stephen B.; Twining, Benjamin S.; Brzezinski, Mark A.; Nelson, David M.; Fisher, Nicholas S. (2010). "Causes and biogeochemical implications of regional differences in silicification of marine diatoms".
804:
The Great Calcite Belt spans the major Southern Ocean circumpolar fronts: the Subantarctic front, the polar front, the Southern Antarctic Circumpolar Current front, and occasionally the southern boundary of the
3323:
Laufkötter, Charlotte; Vogt, Meike; Gruber, Nicolas; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Hauck, Judith; John, Jasmin G.; Lima, Ivan D.; Seferian, Roland; Völker, Christoph (2016).
1993:
Sabine, C. L.; Feely, R. A.; Gruber, N.; Key, R. M.; Lee, K.; Bullister, J. L.; Wanninkhof, R.; Wong, C. S.; Wallace, D. W.; Tilbrook, B.; Millero, F. J.; Peng, T. H.; Kozyr, A.; Ono, T.; Rios, A. F. (2004).
902:, lead to changes in phytoplankton community composition and consequently ecosystem structure and function. Some of these changes are already observable today  and may have cascading effects on global 2460:
Mohan, Rahul; Mergulhao, Lina P.; Guptha, M.V.S.; Rajakumar, A.; Thamban, M.; Anilkumar, N.; Sudhakar, M.; Ravindra, Rasik (2008). "Ecology of coccolithophores in the Indian sector of the Southern Ocean".
4874:
Vallina, S.M.; Ward, B.A.; Dutkiewicz, S.; Follows, M.J. (2014). "Maximal feeding with active prey-switching: A kill-the-winner functional response and its effect on global diversity and biogeography".
2496:
Holligan, P.M.; Charalampopoulou, A.; Hutson, R. (2010). "Seasonal distributions of the coccolithophore, Emiliania huxleyi, and of particulate inorganic carbon in surface waters of the Scotia Sea".
2885:
Tsuchiya, Mizuki; Talley, Lynne D.; McCartney, Michael S. (1994). "Water-mass distributions in the western South Atlantic; A section from South Georgia Island (54S) northward across the equator".
24: 4063:
Saavedra-Pellitero, Mariem; Baumann, Karl-Heinz; Flores, José-Abel; Gersonde, Rainer (2014). "Biogeographic distribution of living coccolithophores in the Pacific sector of the Southern Ocean".
2691:
Tortell, Philippe D.; Payne, Christopher D.; Li, Yingyu; Trimborn, Scarlett; Rost, Björn; Smith, Walker O.; Riesselman, Christina; Dunbar, Robert B.; Sedwick, Pete; Ditullio, Giacomo R. (2008).
684:. Hence, if model parameterizations are to improve to provide accurate predictions of biogeochemical change, a multivariate understanding of the full suite of environmental drivers is required. 1758:
Smith, Helen E. K.; Poulton, Alex J.; Garley, Rebecca; Hopkins, Jason; Lubelczyk, Laura C.; Drapeau, Dave T.; Rauschenberg, Sara; Twining, Ben S.; Bates, Nicholas R.; Balch, William M. (2017).
3858:
Swan, Chantal M.; Vogt, Meike; Gruber, Nicolas; Laufkoetter, Charlotte (2016). "A global seasonal surface ocean climatology of phytoplankton types based on CHEMTAX analysis of HPLC pigments".
3729:"Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions" 4839:
Prowe, A.E. Friederike; Pahlow, Markus; Dutkiewicz, Stephanie; Follows, Michael; Oschlies, Andreas (2012). "Top-down control of marine phytoplankton diversity in a global ecosystem model".
98:
and fish that are adapted to the unique conditions found in this part of the ocean. The Great Calcite Belt is a region of elevated summertime upper ocean calcite concentration derived from
2577:
Froneman, P.W.; McQuaid, C.D.; Perissinotto, R. (1995). "Biogeographic structure of the microphytoplankton assemblages of the south Atlantic and Southern Ocean during austral summer".
3606:
Buitenhuis, E. T.; Vogt, M.; Moriarty, R.; Bednarƥek, N.; Doney, S. C.; Leblanc, K.; Le Quéré, C.; Luo, Y.-W.; O'Brien, C.; O'Brien, T.; Peloquin, J.; Schiebel, R.; Swan, C. (2013).
1625:
and the succession of different phytoplankton types owing to the spatially and temporally varying relative importance of the physical–biogeochemical and the biological environment.
941:
Potential seasonal progression occurring in the Great Calcite Belt, allowing coccolithophores to develop after the main diatom bloom. Note phytoplankton images are not to scale.
68:
out of calcium carbonate. When these organisms die, their shells sink to the bottom of the ocean, and over time, they accumulate to form a thick layer of calcite sediment.
4101:
Beaugrand, Gregory; McQuatters-Gollop, Abigail; Edwards, Martin; Goberville, Eric (2013). "Long-term responses of North Atlantic calcifying plankton to climate change".
1855:
Sarmiento, Jorge L.; Hughes, Tertia M. C.; Stouffer, Ronald J.; Manabe, Syukuro (1998). "Simulated response of the ocean carbon cycle to anthropogenic climate warming".
4926:
Grobe, H., Diekmann, B., Hillenbrand, C.-D.(2009). The memory of the Polar Oceans, In: Hempel, G. (ed) Biology of Polar Oceans, hdl:10013/epic.33599.d001, pdf 0.4 MB.
953:. Diatoms dominate the phytoplankton community in the Southern Ocean, but coccolithophores have received increasing attention in recent years. Satellite imagery of 4738:
Hashioka, T.; Vogt, M.; Yamanaka, Y.; Le Quéré, C.; Buitenhuis, E. T.; Aita, M. N.; Alvain, S.; Bopp, L.; Hirata, T.; Lima, I.; Sailley, S.; Doney, S. C. (2013).
3383:
Sarmiento, J. L.; Gruber, N.; Brzezinski, M. A.; Dunne, J. P. (2004). "High-latitude controls of thermocline nutrients and low latitude biological productivity".
1636:
in the Southern Ocean: (1) calcareous ooze/mud, (2, 3) biosiliceous/mud, (4) coarse lithogenic sediments, (5, 6) lithogenic sand/mud
4695:
Smetacek, Victor; Assmy, Philipp; Henjes, Joachim (2004). "The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles".
2191:
Boyd, P.W.; Newton, P.P. (1999). "Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?".
2836:
Poulton, Alex J.; Painter, Stuart C.; Young, Jeremy R.; Bates, Nicholas R.; Bowler, Bruce; Drapeau, Dave; Lyczsckowski, Emily; Balch, William M. (2013).
1604: 918:, the ratio of calcifying and noncalcifying phytoplankton is crucial due to the counteracting effects of calcification and photosynthesis on seawater pCO 602: 3908:"Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: A baseline for ocean acidification impact assessment" 906:
and oceanic carbon uptake. Changes in Southern Ocean (SO) biogeography are especially critical due to the importance of the Southern Ocean in fuelling
3657:
Sarthou, Géraldine; Timmermans, Klaas R.; Blain, Stéphane; Tréguer, Paul (2005). "Growth physiology and fate of diatoms in the ocean: A review".
1335: 4021:"Calcification morphotypes of the coccolithophorid Emiliania huxleyi in the Southern Ocean: Changes in 2001 to 2006 compared to historical data" 3768:
Moore, J. Keith; Doney, Scott C.; Lindsay, Keith (2004). "Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model".
2533:"Calcification morphotypes of the coccolithophorid Emiliania huxleyi in the Southern Ocean: Changes in 2001 to 2006 compared to historical data" 832:
Four phytoplankton species identified as characterizing the significantly different community structures along the Great Calcite Belt: (a) 
2912:
Orsi, Alejandro H.; Whitworth, Thomas; Nowlin, Worth D. (1995). "On the meridional extent and fronts of the Antarctic Circumpolar Current".
4650:
De Baar, Hein J. W.; et al. (2005). "Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment".
1556: 650: 2779:"Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current" 4436:
Charalampopoulou, Anastasia; Poulton, Alex J.; Bakker, Dorothee C. E.; Lucas, Mike I.; Stinchcombe, Mark C.; Tyrrell, Toby (2016).
2140:
Charalampopoulou, Anastasia; Poulton, Alex J.; Bakker, Dorothee C. E.; Lucas, Mike I.; Stinchcombe, Mark C.; Tyrrell, Toby (2016).
1597: 94:
atmosphere and the ocean's ability to absorb it. The belt is also home to a diverse range of contemporary marine life, including
2231:"Spring development of phytoplankton biomass and composition in major water masses of the Atlantic sector of the Southern Ocean" 1617:
Coccolithophore biomass is controlled by a combination of bottom-up (physical–biogeochemical environment) and top-down factors (
714: 82:. Calcite is a form of carbon that is removed from the atmosphere and stored in the ocean, which helps to reduce the amount of 2692: 2641:
Langer, Gerald; Geisen, Markus; Baumann, Karl-Heinz; KlÀs, Jessica; Riebesell, Ulf; Thoms, Silke; Young, Jeremy R. (2006).
1760:"The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt" 765:) are generally more abundant south of the polar front. High abundances of nanoplankton (coccolithophores, small diatoms, 3434:
Frölicher, Thomas L.; Sarmiento, Jorge L.; Paynter, David J.; Dunne, John P.; Krasting, John P.; Winton, Michael (2015).
825:  across the Atlantic, Indian, and Pacific oceans and completing Antarctic circumnavigation via the Drake Passage. 1816:"Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data" 4289:
Riebesell, Ulf; Zondervan, Ingrid; Rost, Björn; Tortell, Philippe D.; Zeebe, Richard E.; Morel, François M. M. (2000).
3326:"Projected decreases in future marine export production: The role of the carbon flux through the upper ocean ecosystem" 1590: 705:
sp. However, since the identification of the Great Calcite Belt (GCB) as a consistent feature and the recognition of
4019:
Cubillos, JC; Wright, SW; Nash, G.; De Salas, MF; Griffiths, B.; Tilbrook, B.; Poisson, A.; Hallegraeff, GM (2007).
2531:
Cubillos, JC; Wright, SW; Nash, G.; De Salas, MF; Griffiths, B.; Tilbrook, B.; Poisson, A.; Hallegraeff, GM (2007).
817:
coccoliths (in concentrations > 20,000 coccoliths mL) both characterize the GCB. The GCB is clearly observed in
4909:
Diekmann, B. (2007). Sedimentary patterns in the late Quaternary Southern Ocean, Deep-Sea Res. II, 54, 2350-2366,
743:
marking a strong divide between different size fractions. North of the polar front, small diatom species, such as
2838:"The 2008Emiliania huxleyibloom along the Patagonian Shelf: Ecology, biogeochemistry, and cellular calcification" 4942: 2421:"A rising tide lifts all phytoplankton: Growth response of other phytoplankton taxa in diatom-dominated blooms" 1618: 643: 4555:
Richard B.; Sailley, SĂ©vrine; Sathyendranath, Shubha; Stephens, Nick; Vogt, Meike; Vallina, Sergio M. (2016).
3820:
O'Brien, C. J. (2015) "Global-scale distributions of marine haptophyte phytoplankton", PhD thesis, ETH ZĂŒrich.
1658: 1467: 1462: 1295: 1096: 806: 506: 4438:"Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean)" 2947:
Belkin, Igor M.; Gordon, Arnold L. (1996). "Southern Ocean fronts from the Greenwich meridian to Tasmania".
2315:
Boyd, Philip W. (2002). "Environmental Factors Controlling Phytoplankton Processes in the Southern Ocean1".
2142:"Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean)" 90:. Recent studies suggest the belt sequesters something between 15 and 30 million tonnes of carbon per year. 954: 937: 664: 546: 3182:
Winter, Amos; Henderiks, Jorijntje; Beaufort, Luc; Rickaby, Rosalind E. M.; Brown, Christopher W. (2014).
1290: 761: 235: 4557:"Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles" 3906:
Trull, Thomas W.; Passmore, Abraham; Davies, Diana M.; Smit, Tim; Berry, Kate; Tilbrook, Bronte (2018).
870:
biomass observations from the top 50 metres are indicated by coloured dots. (Note difference in scales.)
135: 60:
surrounding Antarctica. The calcite in the Great Calcite Belt is formed by tiny marine organisms called
4418:
Margalef, R. (1978) "Life-forms of phytoplankton as survival alternatives in an unstable environment",
1577: 1524: 949:
However, coccolithophores are the major phytoplanktonic calcifier. thereby significantly impacting the
865: 597: 329: 204: 72: 345: 2362:"Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance" 1518: 1177: 907: 636: 561: 334: 3140:"Diatom Phenology in the Southern Ocean: Mean Patterns, Trends and the Role of Climate Oscillations" 1064: 910:
at lower latitudes through the lateral export of nutrients  and in taking up anthropogenic CO
3215:
Cermeno, P.; Dutkiewicz, S.; Harris, R. P.; Follows, M.; Schofield, O.; Falkowski, P. G. (2008).
1300: 1172: 582: 551: 228: 4138:"Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2" 1489: 1314: 895: 556: 429: 4136:
Rivero-Calle, S.; Gnanadesikan, A.; Del Castillo, C. E.; Balch, W. M.; Guikema, S. D. (2015).
890:
The ocean is changing at an unprecedented rate as a consequence of increasing anthropogenic CO
3069:
Nissen, Cara; Vogt, Meike; MĂŒnnich, Matthias; Gruber, Nicolas; Haumann, F. Alexander (2018).
1052: 790: 3692:
Gregg, Watson W.; Casey, Nancy W. (2007). "Modeling coccolithophores in the global oceans".
4884: 4848: 4751: 4740:"Phytoplankton competition during the spring bloom in four plankton functional type models" 4704: 4659: 4568: 4528: 4493: 4449: 4393: 4357: 4305: 4247: 4149: 4110: 4072: 4032: 3993: 3957: 3919: 3867: 3777: 3740: 3701: 3666: 3619: 3557: 3497: 3447: 3392: 3337: 3287: 3228: 3151: 3082: 3028: 2992: 2956: 2921: 2849: 2790: 2750: 2704: 2657: 2615: 2544: 2505: 2470: 2432: 2373: 2328: 2286: 2245: 2200: 2153: 2109: 2068: 2010: 1967: 1908: 1864: 1827: 1771: 1693: 1084: 903: 778: 486: 250: 8: 3436:"Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models" 2643:"Species-specific responses of calcifying algae to changing seawater carbonate chemistry" 1006: 950: 899: 796: 786: 692: 570: 491: 409: 4888: 4852: 4755: 4708: 4663: 4572: 4532: 4497: 4453: 4397: 4361: 4309: 4251: 4153: 4114: 4076: 4036: 3997: 3961: 3923: 3871: 3781: 3744: 3705: 3670: 3623: 3561: 3501: 3451: 3396: 3341: 3291: 3232: 3155: 3086: 3032: 2996: 2960: 2925: 2853: 2794: 2754: 2708: 2661: 2619: 2548: 2509: 2474: 2436: 2377: 2290: 2249: 2204: 2157: 2113: 2098:"Mapping phytoplankton iron utilization: Insights into Southern Ocean supply mechanisms" 2072: 2014: 1971: 1912: 1868: 1831: 1775: 1697: 4821: 4779: 4720: 4632: 4596: 4329: 4271: 4219: 4175: 3803: 3585: 3525: 3465: 3416: 3365: 3305: 3251: 3216: 3110: 2867: 2813: 2778: 2722: 2673: 2401: 2332: 2034: 1934: 1880: 1727: 1539: 1529: 1380: 1263: 1256: 1167: 1016: 575: 393: 2257: 2212: 4724: 4321: 4275: 4263: 4211: 4179: 4167: 3469: 3408: 3309: 3256: 3114: 2933: 2871: 2818: 2642: 2026: 1814:
Balch, W. M.; Gordon, Howard R.; Bowler, B. C.; Drapeau, D. T.; Booth, E. S. (2005).
1731: 1719: 1663: 1544: 1454: 1123: 1057: 982: 834: 818: 810: 724: 718: 623: 516: 297: 223: 53: 4825: 4807: 4783: 4636: 4600: 4290: 3589: 3420: 3369: 2726: 2677: 2405: 2336: 1938: 4910: 4892: 4856: 4811: 4803: 4769: 4759: 4712: 4675: 4667: 4624: 4586: 4576: 4536: 4501: 4467: 4457: 4401: 4365: 4333: 4313: 4291:"Reduced calcification of marine plankton in response to increased atmospheric CO2" 4255: 4223: 4203: 4157: 4118: 4084: 4080: 4040: 4001: 3965: 3927: 3883: 3875: 3840: 3807: 3793: 3785: 3748: 3709: 3674: 3637: 3627: 3575: 3565: 3529: 3515: 3505: 3455: 3400: 3355: 3345: 3295: 3246: 3236: 3195: 3159: 3100: 3090: 3036: 3000: 2964: 2929: 2894: 2857: 2808: 2798: 2758: 2712: 2665: 2623: 2586: 2552: 2513: 2482: 2478: 2440: 2391: 2381: 2324: 2294: 2253: 2230: 2208: 2171: 2161: 2117: 2076: 2038: 2018: 1975: 1924: 1916: 1884: 1872: 1835: 1779: 1709: 1701: 1504: 1494: 1474: 1091: 1011: 958: 852: 822: 770: 745: 218: 177: 2517: 1995: 145: 4896: 4860: 3678: 2057:"Environmental control of open-ocean phytoplankton groups: Now and in the future" 1645: 1633: 1370: 1246: 1160: 1128: 927: 879: 541: 439: 398: 388: 281: 99: 61: 3546:"Global marine plankton functional type biomass distributions: Coccolithophores" 3486:"A global diatom database – abundance, biovolume and biomass in the world ocean" 672: 4914: 4591: 4505: 3969: 3888: 3713: 3580: 3360: 3275: 3125: 3105: 2627: 2590: 2298: 1796: 1512: 1375: 1362: 1216: 1189: 1184: 846: 840: 501: 481: 449: 354: 286: 196: 182: 95: 87: 83: 57: 33: 4774: 4716: 3879: 3727:
Jin, X.; Gruber, N.; Dunne, J. P.; Sarmiento, J. L.; Armstrong, R. A. (2006).
3642: 3520: 3460: 3435: 3040: 2229:
Bathmann, U.V.; Scharek, R.; Klaas, C.; Dubischar, C.D.; Smetacek, V. (1997).
2081: 2056: 4936: 2898: 1723: 1644:
The diagram on the left shows the spatial distribution of different types of
1534: 1479: 1319: 1282: 1145: 1103: 1074: 1069: 931: 883: 828: 751: 733: 688: 668: 454: 308: 240: 153: 107: 65: 48:(GCB) refers to a region of the ocean where there are high concentrations of 4764: 4739: 4581: 4556: 4462: 4437: 4259: 4162: 4137: 3632: 3607: 3570: 3545: 3510: 3485: 3350: 3325: 3241: 3200: 3183: 3095: 3070: 2803: 2166: 2141: 2022: 1784: 1759: 4325: 4267: 4215: 4171: 4100: 3412: 3260: 2822: 2030: 1549: 1226: 1221: 1203: 1021: 915: 875: 756: 710: 706: 681: 496: 444: 434: 374: 270: 245: 172: 167: 79: 3932: 3907: 2055:
Boyd, Philip W.; Strzepek, Robert; Fu, Feixue; Hutchins, David A. (2010).
4671: 4540: 4519:
Behrenfeld, Michael J. (2014). "Climate-mediated dance of the plankton".
4405: 4369: 4135: 4122: 4005: 3844: 3789: 3753: 3728: 3300: 3276:"Decreased calcification in the Southern Ocean over the satellite record" 3004: 2862: 2837: 2762: 2717: 2669: 2445: 2420: 2386: 2361: 2122: 2097: 1979: 1920: 1840: 1815: 1705: 1628: 1499: 1484: 1427: 1341: 1108: 1040: 766: 740: 701: 592: 587: 536: 476: 468: 379: 158: 4207: 3404: 3071:"Factors controlling coccolithophore biogeography in the Southern Ocean" 990: 4628: 4472: 4062: 2176: 1714: 1079: 774: 729: 302: 213: 71:
The Great Calcite Belt occurs in areas of the Southern ocean where the
4192: 4045: 4020: 3164: 3139: 2968: 2557: 2532: 755:
spp., tend to dominate numerically, whereas large diatoms with higher
78:
The Great Calcite Belt plays a significant role regulating the global
4816: 4680: 4317: 4236: 3798: 2396: 1929: 1422: 1415: 1309: 1155: 1113: 3829: 2096:
Boyd, P. W.; Arrigo, K. R.; Strzepek, R.; Van Dijken, G. L. (2012).
36:. The belt appears during the southern hemisphere summer as a light 4486: 3217:"The role of nutricline depth in regulating the ocean carbon cycle" 2608: 1410: 1400: 1135: 1118: 318: 127: 4435: 2139: 1876: 3946: 3124:
Material was copied from this source, which is available under a
1795:
Material was copied from this source, which is available under a
1405: 1330: 1251: 1140: 1026: 782: 49: 4553: 3605: 1434: 696: 313: 275: 103: 3433: 3382: 3214: 3181: 2495: 4613: 4346: 4288: 3982: 3656: 3542: 3184:"Poleward expansion of the coccolithophore Emiliania huxleyi" 3120: 2739: 2459: 2275: 2228: 1956: 1854: 1791: 1150: 4873: 4838: 4737: 4382: 2095: 3482: 3138:
Soppa, Mariana; Völker, Christoph; Bracher, Astrid (2016).
2775: 2576: 1268: 1207: 37: 4490:
Deep-Sea Research Part II: Topical Studies in Oceanography
4018: 3950:
Deep-Sea Research Part II: Topical Studies in Oceanography
3694:
Deep-Sea Research Part II: Topical Studies in Oceanography
3322: 3017: 2981: 2612:
Deep-Sea Research Part II: Topical Studies in Oceanography
2530: 2279:
Deep-Sea Research Part II: Topical Studies in Oceanography
2238:
Deep-Sea Research Part II: Topical Studies in Oceanography
1682: 3857: 3608:"MAREDAT: Towards a world atlas of MARine Ecosystem DATa" 1897: 1757: 4058: 4056: 2835: 1813: 3905: 3860:
Deep Sea Research Part I: Oceanographic Research Papers
3726: 3068: 2914:
Deep Sea Research Part I: Oceanographic Research Papers
2884: 2640: 2193:
Deep Sea Research Part I: Oceanographic Research Papers
2135: 2133: 4649: 3126:
Creative Commons Attribution 4.0 International License
2777:
Steigenberger, S.; Webb, A.; Wolf-Gladrow, D. (2013).
2690: 2054: 1797:
Creative Commons Attribution 4.0 International License
667:(PIC) feature occurring alongside seasonally elevated 4053: 860: 663:
The Great Calcite Belt can be defined as an elevated
4796: 2358: 2130: 1992: 969: 4694: 3274:Freeman, Natalie M.; Lovenduski, Nicole S. (2015). 2911: 878:of Southern Ocean phytoplankton controls the local 3601: 3599: 3137: 687:The Southern Ocean has often been considered as a 3767: 3273: 894:emissions and related climate change. Changes in 739:Diatoms are present throughout the GCB, with the 4934: 4096: 4094: 2693:"CO2sensitivity of Southern Ocean phytoplankton" 1692:(3). American Geophysical Union (AGU): 301–317. 926:exchange with the atmosphere, and the differing 3596: 3221:Proceedings of the National Academy of Sciences 2783:Proceedings of the National Academy of Sciences 2572: 2570: 2568: 2224: 2222: 930:of calcite and silicic acid shells for organic 728:has been observed as far south as 58° S in the 2271: 2269: 2267: 86:in the atmosphere and mitigate the effects of 32:Yearly cycle of the Great Calcite Belt in the 4091: 3177: 3175: 3064: 3062: 3060: 3058: 3056: 3054: 3052: 3050: 2418: 1598: 644: 3901: 3899: 3833:Eos, Transactions American Geophysical Union 2946: 2565: 2354: 2352: 2350: 2348: 2346: 2219: 56:. The belt extends over a large area of the 2829: 2604: 2602: 2600: 2310: 2308: 2264: 1952: 1950: 1948: 1809: 1807: 1805: 1753: 1751: 1749: 1747: 1745: 1743: 1741: 1676: 4518: 3691: 3172: 3047: 2190: 2050: 2048: 1605: 1591: 651: 637: 4815: 4773: 4763: 4679: 4590: 4580: 4471: 4461: 4161: 4044: 3931: 3896: 3887: 3797: 3752: 3641: 3631: 3579: 3569: 3519: 3509: 3459: 3359: 3349: 3299: 3250: 3240: 3199: 3163: 3104: 3094: 2861: 2812: 2802: 2716: 2556: 2444: 2395: 2385: 2343: 2175: 2165: 2121: 2080: 1928: 1839: 1783: 1713: 102:, despite the region being known for its 16:High-calcite region of the Southern Ocean 2597: 2305: 1996:"The Oceanic Sink for Anthropogenic CO2" 1945: 1802: 1738: 1627: 936: 864: 827: 795: 691:-dominated (20–200 ÎŒm) system with 18: 2949:Journal of Geophysical Research: Oceans 2102:Journal of Geophysical Research: Oceans 2045: 106:predominance. The overlap of two major 4935: 2419:Barber, R. T.; Hiscock, M. R. (2006). 2329:10.1046/j.1529-8817.2002.t01-1-01203.x 800:Ecological zones of the Southern Ocean 717:(HNLC) waters, the dynamics of small 2650:Geochemistry, Geophysics, Geosystems 2314: 13: 861:Coccolithophores versus the diatom 736:, and at 65°S south of Australia. 14: 4954: 970:Top-down and bottom-up approaches 769:) have also been observed on the 3119: 1790: 1572: 1571: 989: 898:and nutrient supply, as well as 618: 617: 134: 4920: 4903: 4867: 4832: 4808:10.1016/j.ecolmodel.2013.04.006 4790: 4731: 4688: 4652:Journal of Geophysical Research 4643: 4607: 4547: 4512: 4480: 4429: 4412: 4376: 4340: 4282: 4230: 4186: 4129: 4012: 3986:Journal of Geophysical Research 3976: 3940: 3851: 3823: 3814: 3761: 3720: 3685: 3650: 3536: 3476: 3427: 3376: 3316: 3267: 3208: 3131: 3011: 2975: 2940: 2905: 2878: 2769: 2733: 2684: 2634: 2524: 2489: 2453: 2412: 2184: 1960:Journal of Geophysical Research 1820:Journal of Geophysical Research 1336:microbial calcite precipitation 4085:10.1016/j.marmicro.2014.03.003 4025:Marine Ecology Progress Series 2537:Marine Ecology Progress Series 2483:10.1016/j.marmicro.2007.08.005 2089: 1986: 1891: 1848: 922:, which ultimately controls CO 715:high-nutrient, low-chlorophyll 1: 2518:10.1016/j.jmarsys.2010.05.007 2258:10.1016/S0967-0645(96)00063-X 2213:10.1016/S0967-0637(98)00066-1 1669: 1659:Great Atlantic Sargassum Belt 1296:marine biogenic calcification 807:Antarctic Circumpolar Current 713:(2–20 ÎŒm) importance in 507:Great Atlantic Sargassum Belt 4897:10.1016/j.pocean.2013.08.001 4861:10.1016/j.pocean.2011.11.016 3770:Global Biogeochemical Cycles 3733:Global Biogeochemical Cycles 3679:10.1016/j.seares.2004.01.007 3280:Geophysical Research Letters 3188:Journal of Plankton Research 2985:Geophysical Research Letters 2934:10.1016/0967-0637(95)00021-W 2842:Global Biogeochemical Cycles 2743:Global Biogeochemical Cycles 2697:Geophysical Research Letters 2579:Journal of Plankton Research 2425:Global Biogeochemical Cycles 2366:Global Biogeochemical Cycles 1901:Global Biogeochemical Cycles 1686:Global Biogeochemical Cycles 955:particulate inorganic carbon 665:particulate inorganic carbon 7: 1652: 1525:Biomineralising polychaetes 1291:amorphous calcium carbonate 977:Part of a series related to 762:Fragilariopsis kerguelensis 236:Photosynthetic picoplankton 114: 10: 4959: 4915:10.1016/j.dsr2.2007.07.025 4506:10.1016/j.dsr2.2011.09.002 3970:10.1016/j.dsr2.2009.06.015 3714:10.1016/j.dsr2.2006.12.007 3021:Continental Shelf Research 2887:Journal of Marine Research 2628:10.1016/j.dsr2.2011.09.002 2299:10.1016/j.dsr2.2007.06.005 2061:Limnology and Oceanography 1619:predator–prey interactions 1557:Burgess Shale preservation 821:  spanning from the 205:Heterotrophic picoplankton 73:calcite compensation depth 4717:10.1017/S0954102004002317 3880:10.1016/j.dsr.2015.12.002 3612:Earth System Science Data 3550:Earth System Science Data 3490:Earth System Science Data 3461:10.1175/JCLI-D-14-00117.1 3041:10.1016/j.csr.2010.08.013 2498:Journal of Marine Systems 2082:10.4319/lo.2010.55.3.1353 1519:Cupriavidus metallidurans 841:Fragilariopsis pseudonana 562:Marine primary production 4877:Progress in Oceanography 4841:Progress in Oceanography 4065:Marine Micropaleontology 2899:10.1357/0022240943076759 2591:10.1093/plankt/17.9.1791 2463:Marine Micropaleontology 1240:Teeth, scales, tusks etc 4765:10.5194/bg-10-6833-2013 4582:10.5194/bg-13-4111-2016 4463:10.5194/bg-13-5917-2016 4260:10.1126/science.1154122 4163:10.1126/science.aaa8026 3659:Journal of Sea Research 3633:10.5194/essd-5-227-2013 3571:10.5194/essd-5-259-2013 3511:10.5194/essd-4-149-2012 3351:10.5194/bg-13-4023-2016 3242:10.1073/pnas.0811302106 3096:10.5194/bg-15-6997-2018 2804:10.1073/pnas.1309345110 2167:10.5194/bg-13-5917-2016 2023:10.1126/science.1097403 1785:10.5194/bg-14-4905-2017 1301:calcareous nannofossils 1097:Choanoflagellate lorica 583:Paradox of the plankton 552:Diel vertical migration 1637: 1490:Magnetotactic bacteria 1315:oolitic aragonite sand 1173:scaly-foot snail shell 942: 896:density stratification 871: 857: 801: 430:Gelatinous zooplankton 41: 4943:Chemical oceanography 4521:Nature Climate Change 4386:Nature Climate Change 4350:Nature Climate Change 4103:Nature Climate Change 3933:10.5194/bg-15-31-2018 3201:10.1093/plankt/fbt110 1631: 940: 904:biogeochemical cycles 868: 831: 799: 791:ocean biogeochemistry 709:(< 2 ÎŒm) and 31: 4800:Ecological Modelling 4672:10.1029/2004JC002601 4541:10.1038/nclimate2349 4406:10.1038/nclimate2722 4370:10.1038/nclimate2379 4123:10.1038/nclimate1753 4006:10.1029/2011JC006941 3845:10.1029/2002EO000267 3790:10.1029/2004GB002220 3754:10.1029/2005GB002532 3301:10.1002/2014GL062769 3005:10.1029/2006GL026592 2863:10.1002/2013GB004641 2763:10.1029/2010GB003856 2718:10.1029/2007GL032583 2670:10.1029/2005GC001227 2446:10.1029/2006GB002726 2387:10.1002/2016GB005414 2317:Journal of Phycology 2285:(18–20): 2085–2105. 2123:10.1029/2011JC007726 1980:10.1029/2011JC006941 1921:10.1029/2003GB002134 1841:10.1029/2004JC002560 1706:10.1029/2018gb006049 759:requirements (e.g., 693:phytoplankton blooms 487:Cyanobacterial bloom 251:Marine microplankton 64:, which build their 52:, a mineral form of 4889:2014PrOce.120...93V 4853:2012PrOce.101....1P 4756:2013BGeo...10.6833H 4709:2004AntSc..16..541S 4664:2005JGRC..110.9S16D 4592:20.500.11850/119006 4573:2016BGeo...13.4111L 4533:2014NatCC...4..880B 4498:2012DSRII..59...57H 4454:2016BGeo...13.5917C 4398:2015NatCC...5.1002D 4362:2014NatCC...4.1024S 4310:2000Natur.407..364R 4252:2008Sci...320..336I 4208:10.1038/nature10295 4154:2015Sci...350.1533R 4148:(6267): 1533–1537. 4115:2013NatCC...3..263B 4077:2014MarMP.109....1S 4037:2007MEPS..348...47C 3998:2011JGRC..116.0F06B 3962:2010DSRII..57..758W 3924:2018BGeo...15...31T 3889:20.500.11850/208709 3872:2016DSRI..109..137S 3782:2004GBioC..18.4028M 3745:2006GBioC..20.2015J 3706:2007DSRII..54..447G 3671:2005JSR....53...25S 3624:2013ESSD....5..227B 3581:20.500.11850/163366 3562:2013ESSD....5..259O 3502:2012ESSD....4..149L 3484:Yallop, M. (2012). 3452:2015JCli...28..862F 3405:10.1038/nature02127 3397:2004Natur.427...56S 3361:20.500.11850/118663 3342:2016BGeo...13.4023L 3292:2015GeoRL..42.1834F 3233:2008PNAS..10520344C 3227:(51): 20344–20349. 3156:2016RemS....8..420S 3106:20.500.11850/304764 3087:2018BGeo...15.6997N 3033:2010CSR....30.1907P 2997:2006GeoRL..3316610S 2961:1996JGR...101.3675B 2926:1995DSRI...42..641O 2854:2013GBioC..27.1023P 2795:2013PNAS..11020633A 2789:(51): 20633–20638. 2755:2010GBioC..24.4031B 2709:2008GeoRL..35.4605T 2662:2006GGG.....7.9006L 2620:2012DSRII..59...57H 2549:2007MEPS..348...47C 2510:2010JMS....82..195H 2475:2008MarMP..67...30M 2437:2006GBioC..20.4S03B 2378:2016GBioC..30.1124B 2291:2007DSRII..54.2085P 2250:1997DSRII..44...51B 2205:1999DSRI...46...63B 2158:2016BGeo...13.5917C 2114:2012JGRC..117.6009B 2073:2010LimOc..55.1353B 2015:2004Sci...305..367S 1972:2011JGRC..116.0F06B 1913:2004GBioC..18.3003S 1869:1998Natur.393..245S 1832:2005JGRC..110.7001B 1776:2017BGeo...14.4905S 1698:2019GBioC..33..301A 1217:Vertebrate skeleton 1007:Mineralized tissues 951:global carbon cycle 900:ocean acidification 847:Fragilariopsis nana 787:carbonate chemistry 773:  and in the 695:dominated by large 571:Ocean fertilization 492:Harmful algal bloom 410:Freshwater plankton 122:Part of a series on 4802:. 261–262: 43–57. 4775:20.500.11850/60387 4629:10.1007/BF00238930 3643:20.500.11850/60385 3521:20.500.12210/72907 3440:Journal of Climate 1638: 1381:diatomaceous earth 1347:Great Calcite Belt 1264:Scale microfossils 1257:otolithic membrane 1168:small shelly fauna 1141:echinoderm stereom 1017:Biocrystallization 943: 908:primary production 882:and the export of 872: 858: 802: 732:, at 61° S across 512:Great Calcite Belt 46:Great Calcite Belt 42: 4750:(11): 6833–6850. 4697:Antarctic Science 4567:(14): 4111–4133. 4448:(21): 5917–5935. 4392:(11): 1002–1006. 4356:(11): 1024–1030. 4304:(6802): 364–367. 4246:(5874): 336–340. 4046:10.3354/meps07058 3956:(9–10): 758–778. 3336:(13): 4023–4047. 3165:10.3390/rs8050420 3081:(22): 6997–7024. 3027:(18): 1907–1923. 2969:10.1029/95JC02750 2955:(C2): 3675–3696. 2558:10.3354/meps07058 2152:(21): 5917–5935. 2009:(5682): 367–371. 1863:(6682): 245–249. 1770:(21): 4905–4925. 1664:Milky seas effect 1615: 1614: 1545:permineralization 1530:Mineral nutrients 1455:Mineral evolution 1124:foraminifera test 983:Biomineralization 928:ballasting effect 835:Emiliania huxleyi 819:satellite imagery 811:subtropical front 725:Emiliania huxleyi 719:(bio)mineralizing 661: 660: 517:Milky seas effect 224:Nanophytoplankton 54:calcium carbonate 29: 4950: 4927: 4924: 4918: 4907: 4901: 4900: 4871: 4865: 4864: 4836: 4830: 4829: 4819: 4794: 4788: 4787: 4777: 4767: 4735: 4729: 4728: 4692: 4686: 4685: 4683: 4647: 4641: 4640: 4611: 4605: 4604: 4594: 4584: 4551: 4545: 4544: 4516: 4510: 4509: 4492:. 59–60: 57–66. 4484: 4478: 4477: 4475: 4465: 4433: 4427: 4416: 4410: 4409: 4380: 4374: 4373: 4344: 4338: 4337: 4318:10.1038/35030078 4295: 4286: 4280: 4279: 4234: 4228: 4227: 4190: 4184: 4183: 4165: 4133: 4127: 4126: 4098: 4089: 4088: 4060: 4051: 4050: 4048: 4016: 4010: 4009: 3980: 3974: 3973: 3944: 3938: 3937: 3935: 3903: 3894: 3893: 3891: 3855: 3849: 3848: 3827: 3821: 3818: 3812: 3811: 3801: 3765: 3759: 3758: 3756: 3724: 3718: 3717: 3700:(5–7): 447–477. 3689: 3683: 3682: 3654: 3648: 3647: 3645: 3635: 3603: 3594: 3593: 3583: 3573: 3540: 3534: 3533: 3523: 3513: 3480: 3474: 3473: 3463: 3431: 3425: 3424: 3380: 3374: 3373: 3363: 3353: 3320: 3314: 3313: 3303: 3286:(6): 1834–1840. 3271: 3265: 3264: 3254: 3244: 3212: 3206: 3205: 3203: 3179: 3170: 3169: 3167: 3135: 3129: 3123: 3118: 3108: 3098: 3066: 3045: 3044: 3015: 3009: 3008: 2979: 2973: 2972: 2944: 2938: 2937: 2909: 2903: 2902: 2882: 2876: 2875: 2865: 2848:(4): 1023–1033. 2833: 2827: 2826: 2816: 2806: 2773: 2767: 2766: 2737: 2731: 2730: 2720: 2688: 2682: 2681: 2647: 2638: 2632: 2631: 2614:. 59–60: 57–66. 2606: 2595: 2594: 2585:(9): 1791–1802. 2574: 2563: 2562: 2560: 2528: 2522: 2521: 2493: 2487: 2486: 2457: 2451: 2450: 2448: 2416: 2410: 2409: 2399: 2389: 2372:(8): 1124–1144. 2356: 2341: 2340: 2312: 2303: 2302: 2273: 2262: 2261: 2235: 2226: 2217: 2216: 2188: 2182: 2181: 2179: 2169: 2137: 2128: 2127: 2125: 2093: 2087: 2086: 2084: 2067:(3): 1353–1376. 2052: 2043: 2042: 2000: 1990: 1984: 1983: 1954: 1943: 1942: 1932: 1895: 1889: 1888: 1852: 1846: 1845: 1843: 1811: 1800: 1794: 1789: 1787: 1755: 1736: 1735: 1717: 1680: 1646:marine sediments 1634:marine sediments 1607: 1600: 1593: 1580: 1575: 1574: 1495:Magnetoreception 1475:Ballast minerals 1070:Cephalopod shell 1065:Brachiopod shell 1012:Remineralisation 993: 974: 973: 959:Patagonian Shelf 853:Pseudo-nitzschia 823:Patagonian Shelf 779:Lugol’s solution 771:Patagonian Shelf 746:Pseudo-nitzschia 653: 646: 639: 626: 621: 620: 282:coccolithophores 219:Microzooplankton 178:Bacterioplankton 138: 119: 118: 100:coccolithophores 62:coccolithophores 30: 4958: 4957: 4953: 4952: 4951: 4949: 4948: 4947: 4933: 4932: 4931: 4930: 4925: 4921: 4908: 4904: 4872: 4868: 4837: 4833: 4795: 4791: 4736: 4732: 4693: 4689: 4648: 4644: 4612: 4608: 4552: 4548: 4527:(10): 880–887. 4517: 4513: 4485: 4481: 4434: 4430: 4417: 4413: 4381: 4377: 4345: 4341: 4293: 4287: 4283: 4235: 4231: 4202:(7358): 80–83. 4191: 4187: 4134: 4130: 4099: 4092: 4061: 4054: 4017: 4013: 3981: 3977: 3945: 3941: 3904: 3897: 3856: 3852: 3839:(34): 365–375. 3828: 3824: 3819: 3815: 3766: 3762: 3725: 3721: 3690: 3686: 3655: 3651: 3604: 3597: 3541: 3537: 3481: 3477: 3432: 3428: 3391:(6969): 56–60. 3381: 3377: 3321: 3317: 3272: 3268: 3213: 3209: 3180: 3173: 3136: 3132: 3067: 3048: 3016: 3012: 2980: 2976: 2945: 2941: 2910: 2906: 2883: 2879: 2834: 2830: 2774: 2770: 2738: 2734: 2689: 2685: 2645: 2639: 2635: 2607: 2598: 2575: 2566: 2529: 2525: 2494: 2490: 2458: 2454: 2417: 2413: 2357: 2344: 2313: 2306: 2274: 2265: 2233: 2227: 2220: 2189: 2185: 2138: 2131: 2094: 2090: 2053: 2046: 1998: 1991: 1987: 1955: 1946: 1896: 1892: 1853: 1849: 1812: 1803: 1756: 1739: 1681: 1677: 1672: 1655: 1611: 1570: 1563: 1562: 1561: 1449: 1441: 1440: 1439: 1395: 1387: 1386: 1385: 1371:biogenic silica 1365: 1355: 1354: 1353: 1338: 1326: 1305: 1285: 1275: 1274: 1273: 1241: 1233: 1232: 1231: 1211: 1196: 1195: 1194: 1161:gastropod shell 1129:testate amoebae 1119:diatom frustule 1044: 1033: 1032: 1031: 1001: 972: 964: 925: 921: 913: 893: 880:biogeochemistry 863: 850:, and (d)  679: 657: 616: 609: 608: 607: 566: 542:CLAW hypothesis 531: 523: 522: 521: 471: 461: 460: 459: 440:Ichthyoplankton 424: 416: 415: 414: 405: 389:Marine plankton 384: 369: 361: 360: 359: 350: 341: 325: 305: 293: 287:dinoflagellates 278: 265: 257: 256: 255: 209: 199: 189: 188: 187: 163: 148: 117: 96:deep-sea corals 19: 17: 12: 11: 5: 4956: 4946: 4945: 4929: 4928: 4919: 4902: 4866: 4831: 4789: 4744:Biogeosciences 4730: 4703:(4): 541–558. 4687: 4642: 4623:(3): 201–213. 4606: 4561:Biogeosciences 4546: 4511: 4479: 4442:Biogeosciences 4428: 4411: 4375: 4339: 4281: 4229: 4185: 4128: 4109:(3): 263–267. 4090: 4052: 4011: 3975: 3939: 3912:Biogeosciences 3895: 3850: 3822: 3813: 3760: 3719: 3684: 3665:(1–2): 25–42. 3649: 3618:(2): 227–239. 3595: 3556:(2): 259–276. 3535: 3496:(1): 149–165. 3475: 3446:(2): 862–886. 3426: 3375: 3330:Biogeosciences 3315: 3266: 3207: 3194:(2): 316–325. 3171: 3144:Remote Sensing 3130: 3075:Biogeosciences 3046: 3010: 2991:(16): L16610. 2974: 2939: 2920:(5): 641–673. 2904: 2877: 2828: 2768: 2732: 2683: 2633: 2596: 2564: 2523: 2504:(4): 195–205. 2488: 2469:(1–2): 30–45. 2452: 2411: 2342: 2323:(5): 844–861. 2304: 2263: 2244:(1–2): 51–67. 2218: 2183: 2146:Biogeosciences 2129: 2088: 2044: 1985: 1966:(C4): C00F06. 1944: 1890: 1847: 1826:(C7): C07001. 1801: 1764:Biogeosciences 1737: 1674: 1673: 1671: 1668: 1667: 1666: 1661: 1654: 1651: 1613: 1612: 1610: 1609: 1602: 1595: 1587: 1584: 1583: 1582: 1581: 1565: 1564: 1560: 1559: 1554: 1553: 1552: 1547: 1537: 1532: 1527: 1522: 1515: 1510: 1502: 1497: 1492: 1487: 1482: 1477: 1472: 1471: 1470: 1468:immobilization 1465: 1463:mineralization 1457: 1451: 1450: 1447: 1446: 1443: 1442: 1438: 1437: 1432: 1431: 1430: 1420: 1419: 1418: 1413: 1403: 1397: 1396: 1393: 1392: 1389: 1388: 1384: 1383: 1378: 1376:siliceous ooze 1373: 1367: 1366: 1363:Silicification 1361: 1360: 1357: 1356: 1352: 1351: 1350: 1349: 1344: 1339: 1327: 1325: 1324: 1323: 1322: 1317: 1306: 1304: 1303: 1298: 1293: 1287: 1286: 1281: 1280: 1277: 1276: 1272: 1271: 1266: 1261: 1260: 1259: 1249: 1243: 1242: 1239: 1238: 1235: 1234: 1230: 1229: 1224: 1219: 1213: 1212: 1202: 1201: 1198: 1197: 1193: 1192: 1187: 1185:Sponge spicule 1182: 1181: 1180: 1178:estuary shells 1175: 1170: 1165: 1164: 1163: 1158: 1153: 1143: 1133: 1132: 1131: 1126: 1121: 1116: 1111: 1101: 1100: 1099: 1089: 1088: 1087: 1082: 1077: 1067: 1062: 1061: 1060: 1055: 1046: 1045: 1039: 1038: 1035: 1034: 1030: 1029: 1024: 1019: 1014: 1009: 1003: 1002: 999: 998: 995: 994: 986: 985: 979: 978: 971: 968: 962: 923: 919: 911: 891: 884:macronutrients 862: 859: 677: 659: 658: 656: 655: 648: 641: 633: 630: 629: 628: 627: 611: 610: 606: 605: 600: 595: 590: 585: 580: 579: 578: 567: 565: 564: 559: 554: 549: 544: 539: 533: 532: 530:Related topics 529: 528: 525: 524: 520: 519: 514: 509: 504: 502:Eutrophication 499: 494: 489: 484: 482:Critical depth 479: 473: 472: 467: 466: 463: 462: 458: 457: 452: 450:Pseudoplankton 447: 442: 437: 432: 426: 425: 422: 421: 418: 417: 413: 412: 406: 404: 403: 402: 401: 396: 385: 383: 382: 377: 371: 370: 367: 366: 363: 362: 358: 357: 351: 349: 348: 342: 340: 339: 338: 337: 326: 324: 323: 322: 321: 316: 311: 309:foraminiferans 306: 294: 292: 291: 290: 289: 284: 279: 267: 266: 263: 262: 259: 258: 254: 253: 248: 243: 238: 233: 232: 231: 221: 216: 210: 208: 207: 201: 200: 195: 194: 191: 190: 186: 185: 180: 175: 170: 164: 162: 161: 156: 150: 149: 144: 143: 140: 139: 131: 130: 124: 123: 116: 113: 88:climate change 84:carbon dioxide 58:Southern Ocean 34:Southern Ocean 15: 9: 6: 4: 3: 2: 4955: 4944: 4941: 4940: 4938: 4923: 4916: 4912: 4906: 4898: 4894: 4890: 4886: 4882: 4878: 4870: 4862: 4858: 4854: 4850: 4846: 4842: 4835: 4827: 4823: 4818: 4813: 4809: 4805: 4801: 4793: 4785: 4781: 4776: 4771: 4766: 4761: 4757: 4753: 4749: 4745: 4741: 4734: 4726: 4722: 4718: 4714: 4710: 4706: 4702: 4698: 4691: 4682: 4677: 4673: 4669: 4665: 4661: 4657: 4653: 4646: 4638: 4634: 4630: 4626: 4622: 4618: 4617:Polar Biology 4610: 4602: 4598: 4593: 4588: 4583: 4578: 4574: 4570: 4566: 4562: 4558: 4550: 4542: 4538: 4534: 4530: 4526: 4522: 4515: 4507: 4503: 4499: 4495: 4491: 4483: 4474: 4469: 4464: 4459: 4455: 4451: 4447: 4443: 4439: 4432: 4425: 4421: 4420:Oceanol. Acta 4415: 4407: 4403: 4399: 4395: 4391: 4387: 4379: 4371: 4367: 4363: 4359: 4355: 4351: 4343: 4335: 4331: 4327: 4323: 4319: 4315: 4311: 4307: 4303: 4299: 4292: 4285: 4277: 4273: 4269: 4265: 4261: 4257: 4253: 4249: 4245: 4241: 4233: 4225: 4221: 4217: 4213: 4209: 4205: 4201: 4197: 4189: 4181: 4177: 4173: 4169: 4164: 4159: 4155: 4151: 4147: 4143: 4139: 4132: 4124: 4120: 4116: 4112: 4108: 4104: 4097: 4095: 4086: 4082: 4078: 4074: 4070: 4066: 4059: 4057: 4047: 4042: 4038: 4034: 4030: 4026: 4022: 4015: 4007: 4003: 3999: 3995: 3991: 3987: 3979: 3971: 3967: 3963: 3959: 3955: 3951: 3943: 3934: 3929: 3925: 3921: 3917: 3913: 3909: 3902: 3900: 3890: 3885: 3881: 3877: 3873: 3869: 3865: 3861: 3854: 3846: 3842: 3838: 3834: 3826: 3817: 3809: 3805: 3800: 3795: 3791: 3787: 3783: 3779: 3775: 3771: 3764: 3755: 3750: 3746: 3742: 3738: 3734: 3730: 3723: 3715: 3711: 3707: 3703: 3699: 3695: 3688: 3680: 3676: 3672: 3668: 3664: 3660: 3653: 3644: 3639: 3634: 3629: 3625: 3621: 3617: 3613: 3609: 3602: 3600: 3591: 3587: 3582: 3577: 3572: 3567: 3563: 3559: 3555: 3551: 3547: 3539: 3531: 3527: 3522: 3517: 3512: 3507: 3503: 3499: 3495: 3491: 3487: 3479: 3471: 3467: 3462: 3457: 3453: 3449: 3445: 3441: 3437: 3430: 3422: 3418: 3414: 3410: 3406: 3402: 3398: 3394: 3390: 3386: 3379: 3371: 3367: 3362: 3357: 3352: 3347: 3343: 3339: 3335: 3331: 3327: 3319: 3311: 3307: 3302: 3297: 3293: 3289: 3285: 3281: 3277: 3270: 3262: 3258: 3253: 3248: 3243: 3238: 3234: 3230: 3226: 3222: 3218: 3211: 3202: 3197: 3193: 3189: 3185: 3178: 3176: 3166: 3161: 3157: 3153: 3149: 3145: 3141: 3134: 3127: 3122: 3116: 3112: 3107: 3102: 3097: 3092: 3088: 3084: 3080: 3076: 3072: 3065: 3063: 3061: 3059: 3057: 3055: 3053: 3051: 3042: 3038: 3034: 3030: 3026: 3022: 3014: 3006: 3002: 2998: 2994: 2990: 2986: 2978: 2970: 2966: 2962: 2958: 2954: 2950: 2943: 2935: 2931: 2927: 2923: 2919: 2915: 2908: 2900: 2896: 2892: 2888: 2881: 2873: 2869: 2864: 2859: 2855: 2851: 2847: 2843: 2839: 2832: 2824: 2820: 2815: 2810: 2805: 2800: 2796: 2792: 2788: 2784: 2780: 2772: 2764: 2760: 2756: 2752: 2748: 2744: 2736: 2728: 2724: 2719: 2714: 2710: 2706: 2703:(4): L04605. 2702: 2698: 2694: 2687: 2679: 2675: 2671: 2667: 2663: 2659: 2655: 2651: 2644: 2637: 2629: 2625: 2621: 2617: 2613: 2605: 2603: 2601: 2592: 2588: 2584: 2580: 2573: 2571: 2569: 2559: 2554: 2550: 2546: 2542: 2538: 2534: 2527: 2519: 2515: 2511: 2507: 2503: 2499: 2492: 2484: 2480: 2476: 2472: 2468: 2464: 2456: 2447: 2442: 2438: 2434: 2430: 2426: 2422: 2415: 2407: 2403: 2398: 2393: 2388: 2383: 2379: 2375: 2371: 2367: 2363: 2355: 2353: 2351: 2349: 2347: 2338: 2334: 2330: 2326: 2322: 2318: 2311: 2309: 2300: 2296: 2292: 2288: 2284: 2280: 2272: 2270: 2268: 2259: 2255: 2251: 2247: 2243: 2239: 2232: 2225: 2223: 2214: 2210: 2206: 2202: 2198: 2194: 2187: 2178: 2173: 2168: 2163: 2159: 2155: 2151: 2147: 2143: 2136: 2134: 2124: 2119: 2115: 2111: 2107: 2103: 2099: 2092: 2083: 2078: 2074: 2070: 2066: 2062: 2058: 2051: 2049: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 1997: 1989: 1981: 1977: 1973: 1969: 1965: 1961: 1953: 1951: 1949: 1940: 1936: 1931: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1894: 1886: 1882: 1878: 1877:10.1038/30455 1874: 1870: 1866: 1862: 1858: 1851: 1842: 1837: 1833: 1829: 1825: 1821: 1817: 1810: 1808: 1806: 1798: 1793: 1786: 1781: 1777: 1773: 1769: 1765: 1761: 1754: 1752: 1750: 1748: 1746: 1744: 1742: 1733: 1729: 1725: 1721: 1716: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1679: 1675: 1665: 1662: 1660: 1657: 1656: 1650: 1647: 1642: 1635: 1630: 1626: 1622: 1620: 1608: 1603: 1601: 1596: 1594: 1589: 1588: 1586: 1585: 1579: 1569: 1568: 1567: 1566: 1558: 1555: 1551: 1548: 1546: 1543: 1542: 1541: 1540:Fossilization 1538: 1536: 1535:Microbial mat 1533: 1531: 1528: 1526: 1523: 1521: 1520: 1516: 1514: 1511: 1509: 1507: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1480:Magnetofossil 1478: 1476: 1473: 1469: 1466: 1464: 1461: 1460: 1458: 1456: 1453: 1452: 1445: 1444: 1436: 1433: 1429: 1426: 1425: 1424: 1421: 1417: 1414: 1412: 1409: 1408: 1407: 1404: 1402: 1399: 1398: 1391: 1390: 1382: 1379: 1377: 1374: 1372: 1369: 1368: 1364: 1359: 1358: 1348: 1345: 1343: 1340: 1337: 1334: 1333: 1332: 1329: 1328: 1321: 1320:aragonite sea 1318: 1316: 1313: 1312: 1311: 1308: 1307: 1302: 1299: 1297: 1294: 1292: 1289: 1288: 1284: 1283:Calcification 1279: 1278: 1270: 1267: 1265: 1262: 1258: 1255: 1254: 1253: 1250: 1248: 1245: 1244: 1237: 1236: 1228: 1225: 1223: 1220: 1218: 1215: 1214: 1209: 1205: 1204:Endoskeletons 1200: 1199: 1191: 1188: 1186: 1183: 1179: 1176: 1174: 1171: 1169: 1166: 1162: 1159: 1157: 1154: 1152: 1149: 1148: 1147: 1146:mollusc shell 1144: 1142: 1139: 1138: 1137: 1134: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1112: 1110: 1107: 1106: 1105: 1104:Protist shell 1102: 1098: 1095: 1094: 1093: 1090: 1086: 1083: 1081: 1078: 1076: 1075:cirrate shell 1073: 1072: 1071: 1068: 1066: 1063: 1059: 1056: 1054: 1051: 1050: 1048: 1047: 1042: 1037: 1036: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1004: 997: 996: 992: 988: 987: 984: 981: 980: 976: 975: 967: 960: 956: 952: 947: 939: 935: 933: 932:carbon export 929: 917: 909: 905: 901: 897: 888: 885: 881: 877: 867: 855: 854: 849: 848: 843: 842: 837: 836: 830: 826: 824: 820: 816: 812: 808: 798: 794: 792: 788: 784: 780: 776: 772: 768: 764: 763: 758: 754: 753: 752:Thalassiosira 748: 747: 742: 737: 735: 734:Drake Passage 731: 727: 726: 720: 716: 712: 708: 704: 703: 698: 694: 690: 689:microplankton 685: 683: 674: 670: 669:chlorophyll a 666: 654: 649: 647: 642: 640: 635: 634: 632: 631: 625: 615: 614: 613: 612: 604: 601: 599: 596: 594: 591: 589: 586: 584: 581: 577: 574: 573: 572: 569: 568: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 534: 527: 526: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 474: 470: 465: 464: 456: 455:Tychoplankton 453: 451: 448: 446: 443: 441: 438: 436: 433: 431: 428: 427: 420: 419: 411: 408: 407: 400: 397: 395: 392: 391: 390: 387: 386: 381: 378: 376: 373: 372: 365: 364: 356: 353: 352: 347: 344: 343: 336: 335:cyanobacteria 333: 332: 331: 328: 327: 320: 317: 315: 312: 310: 307: 304: 301: 300: 299: 296: 295: 288: 285: 283: 280: 277: 274: 273: 272: 269: 268: 261: 260: 252: 249: 247: 244: 242: 241:Picoeukaryote 239: 237: 234: 230: 227: 226: 225: 222: 220: 217: 215: 212: 211: 206: 203: 202: 198: 193: 192: 184: 183:Virioplankton 181: 179: 176: 174: 171: 169: 166: 165: 160: 157: 155: 154:Phytoplankton 152: 151: 147: 142: 141: 137: 133: 132: 129: 126: 125: 121: 120: 112: 109: 108:phytoplankton 105: 101: 97: 91: 89: 85: 81: 76: 74: 69: 67: 63: 59: 55: 51: 47: 39: 35: 4922: 4905: 4880: 4876: 4869: 4844: 4840: 4834: 4799: 4792: 4747: 4743: 4733: 4700: 4696: 4690: 4655: 4651: 4645: 4620: 4616: 4609: 4564: 4560: 4549: 4524: 4520: 4514: 4489: 4482: 4445: 4441: 4431: 4423: 4419: 4414: 4389: 4385: 4378: 4353: 4349: 4342: 4301: 4297: 4284: 4243: 4239: 4232: 4199: 4195: 4188: 4145: 4141: 4131: 4106: 4102: 4068: 4064: 4028: 4024: 4014: 3989: 3985: 3978: 3953: 3949: 3942: 3918:(1): 31–49. 3915: 3911: 3863: 3859: 3853: 3836: 3832: 3825: 3816: 3773: 3769: 3763: 3736: 3732: 3722: 3697: 3693: 3687: 3662: 3658: 3652: 3615: 3611: 3553: 3549: 3538: 3493: 3489: 3478: 3443: 3439: 3429: 3388: 3384: 3378: 3333: 3329: 3318: 3283: 3279: 3269: 3224: 3220: 3210: 3191: 3187: 3147: 3143: 3133: 3078: 3074: 3024: 3020: 3013: 2988: 2984: 2977: 2952: 2948: 2942: 2917: 2913: 2907: 2890: 2886: 2880: 2845: 2841: 2831: 2786: 2782: 2771: 2746: 2742: 2735: 2700: 2696: 2686: 2653: 2649: 2636: 2611: 2582: 2578: 2540: 2536: 2526: 2501: 2497: 2491: 2466: 2462: 2455: 2428: 2424: 2414: 2369: 2365: 2320: 2316: 2282: 2278: 2241: 2237: 2199:(1): 63–91. 2196: 2192: 2186: 2149: 2145: 2105: 2101: 2091: 2064: 2060: 2006: 2002: 1988: 1963: 1959: 1904: 1900: 1893: 1860: 1856: 1850: 1823: 1819: 1767: 1763: 1689: 1685: 1678: 1643: 1639: 1623: 1616: 1550:petrifaction 1517: 1505: 1500:Microfossils 1346: 1247:Limpet teeth 1227:Ossification 1222:Bone mineral 1156:chiton shell 1041:Exoskeletons 1022:Biointerface 948: 944: 916:carbon cycle 889: 876:biogeography 873: 851: 845: 839: 833: 814: 803: 767:chrysophytes 760: 757:silicic acid 750: 744: 738: 723: 711:nanoplankton 707:picoplankton 700: 686: 682:biogeography 662: 511: 497:Spring bloom 445:Meroplankton 435:Holoplankton 375:Aeroplankton 303:radiolarians 246:Picoplankton 173:Mycoplankton 168:Mixoplankton 146:Trophic mode 92: 80:carbon cycle 77: 70: 45: 43: 4847:(1): 1–13. 4473:11427/34237 3866:: 137–156. 2177:11427/34237 2108:(C6): n/a. 1715:1885/196693 1485:Magnetosome 1428:phosphorite 1394:Other forms 1342:calcite sea 1109:coccosphere 1053:exoskeleton 844:, (c)  838:, (b)  741:polar front 702:Phaeocystis 598:Thin layers 593:Planktology 588:Planktivore 537:Algaculture 477:Algal bloom 423:Other types 394:prokaryotes 380:Geoplankton 264:By taxonomy 159:Zooplankton 4883:: 93–109. 4426:: 493–509. 3776:(4): n/a. 3739:(2): n/a. 3150:(5): 420. 2749:(4): n/a. 2656:(9): n/a. 2431:(4): n/a. 1907:(3): n/a. 1670:References 1080:cuttlebone 1049:Arthropod 914:. For the 815:E. huxleyi 781:dissolves 775:Scotia Sea 730:Scotia Sea 368:By habitat 298:Protozoans 229:calcareous 214:Microalgae 4817:1912/7238 4725:131176101 4681:1912/3541 4276:206511068 4180:206635970 4031:: 47–54. 3799:1912/3396 3470:140665037 3310:131003925 3115:203137081 2893:: 55–81. 2872:129706569 2543:: 47–54. 2397:1912/8609 1930:1912/3392 1732:134926685 1724:0886-6236 1632:Types of 1506:engrailed 1423:Phosphate 1416:oil shale 1310:Aragonite 1114:coccolith 749:spp. and 4937:Category 4826:85212727 4784:54551044 4637:41258984 4601:35239520 4326:11014189 4268:18420926 4216:21814280 4172:26612836 4071:: 1–20. 3590:55146651 3421:52798128 3413:14702082 3370:20577901 3261:19075222 2823:24248337 2727:35741347 2678:14774230 2406:22536090 2337:53448178 2031:15256665 1939:15482539 1653:See also 1578:Category 1459:In soil 1411:alginite 1401:Bone bed 1136:Seashell 1043:(shells) 624:Category 399:protists 330:Bacteria 319:ciliates 128:Plankton 115:Overview 4885:Bibcode 4849:Bibcode 4752:Bibcode 4705:Bibcode 4660:Bibcode 4569:Bibcode 4529:Bibcode 4494:Bibcode 4450:Bibcode 4394:Bibcode 4358:Bibcode 4334:4426501 4306:Bibcode 4248:Bibcode 4240:Science 4224:4417285 4150:Bibcode 4142:Science 4111:Bibcode 4073:Bibcode 4033:Bibcode 3994:Bibcode 3958:Bibcode 3920:Bibcode 3868:Bibcode 3808:3575218 3778:Bibcode 3741:Bibcode 3702:Bibcode 3667:Bibcode 3620:Bibcode 3558:Bibcode 3530:3515924 3498:Bibcode 3448:Bibcode 3393:Bibcode 3338:Bibcode 3288:Bibcode 3252:2603260 3229:Bibcode 3152:Bibcode 3083:Bibcode 3029:Bibcode 2993:Bibcode 2957:Bibcode 2922:Bibcode 2850:Bibcode 2814:3870680 2791:Bibcode 2751:Bibcode 2705:Bibcode 2658:Bibcode 2616:Bibcode 2545:Bibcode 2506:Bibcode 2471:Bibcode 2433:Bibcode 2374:Bibcode 2287:Bibcode 2246:Bibcode 2201:Bibcode 2154:Bibcode 2110:Bibcode 2069:Bibcode 2039:5607281 2011:Bibcode 2003:Science 1968:Bibcode 1909:Bibcode 1885:4317429 1865:Bibcode 1828:Bibcode 1772:Bibcode 1694:Bibcode 1448:Related 1406:Kerogen 1331:Calcite 1252:Otolith 1085:gladius 1058:cuticle 1027:Biofilm 1000:General 783:calcite 697:diatoms 673:austral 557:f-ratio 355:Viruses 346:Archaea 314:amoebae 276:diatoms 197:By size 50:calcite 40:stripe. 4824:  4782:  4723:  4658:(C9). 4635:  4599:  4332:  4324:  4298:Nature 4274:  4266:  4222:  4214:  4196:Nature 4178:  4170:  3992:(C4). 3806:  3588:  3528:  3468:  3419:  3411:  3385:Nature 3368:  3308:  3259:  3249:  3113:  2870:  2821:  2811:  2725:  2676:  2404:  2335:  2037:  2029:  1937:  1883:  1857:Nature 1730:  1722:  1576:  1435:Pyrena 1092:Lorica 809:. The 789:, and 622:  603:NAAMES 469:Blooms 104:diatom 66:shells 4822:S2CID 4780:S2CID 4721:S2CID 4633:S2CID 4597:S2CID 4330:S2CID 4294:(PDF) 4272:S2CID 4220:S2CID 4176:S2CID 3804:S2CID 3586:S2CID 3526:S2CID 3466:S2CID 3417:S2CID 3366:S2CID 3306:S2CID 3111:S2CID 2868:S2CID 2723:S2CID 2674:S2CID 2646:(PDF) 2402:S2CID 2333:S2CID 2234:(PDF) 2035:S2CID 1999:(PDF) 1935:S2CID 1881:S2CID 1728:S2CID 1649:Ice. 1513:Druse 1208:bones 1151:nacre 271:Algae 4322:PMID 4264:PMID 4212:PMID 4168:PMID 3409:PMID 3257:PMID 2819:PMID 2027:PMID 1720:ISSN 1508:gene 1269:Tusk 1190:Test 874:The 856:spp. 699:and 576:iron 44:The 38:teal 4911:doi 4893:doi 4881:120 4857:doi 4845:101 4812:hdl 4804:doi 4770:hdl 4760:doi 4713:doi 4676:hdl 4668:doi 4656:110 4625:doi 4587:hdl 4577:doi 4537:doi 4502:doi 4468:hdl 4458:doi 4402:doi 4366:doi 4314:doi 4302:407 4256:doi 4244:320 4204:doi 4200:476 4158:doi 4146:350 4119:doi 4081:doi 4069:109 4041:doi 4029:348 4002:doi 3990:116 3966:doi 3928:doi 3884:hdl 3876:doi 3864:109 3841:doi 3794:hdl 3786:doi 3749:doi 3710:doi 3675:doi 3638:hdl 3628:doi 3576:hdl 3566:doi 3516:hdl 3506:doi 3456:doi 3401:doi 3389:427 3356:hdl 3346:doi 3296:doi 3247:PMC 3237:doi 3225:105 3196:doi 3160:doi 3101:hdl 3091:doi 3037:doi 3001:doi 2965:doi 2953:101 2930:doi 2895:doi 2858:doi 2809:PMC 2799:doi 2787:110 2759:doi 2713:doi 2666:doi 2624:doi 2587:doi 2553:doi 2541:348 2514:doi 2479:doi 2441:doi 2392:hdl 2382:doi 2325:doi 2295:doi 2254:doi 2209:doi 2172:hdl 2162:doi 2118:doi 2106:117 2077:doi 2019:doi 2007:305 1976:doi 1964:116 1925:hdl 1917:doi 1873:doi 1861:393 1836:doi 1824:110 1780:doi 1710:hdl 1702:doi 676:(CO 671:in 547:CPR 4939:: 4891:. 4879:. 4855:. 4843:. 4820:. 4810:. 4778:. 4768:. 4758:. 4748:10 4746:. 4742:. 4719:. 4711:. 4701:16 4699:. 4674:. 4666:. 4654:. 4631:. 4621:13 4619:. 4595:. 4585:. 4575:. 4565:13 4563:. 4559:. 4535:. 4523:. 4500:. 4466:. 4456:. 4446:13 4444:. 4440:. 4422:, 4400:. 4388:. 4364:. 4352:. 4328:. 4320:. 4312:. 4300:. 4296:. 4270:. 4262:. 4254:. 4242:. 4218:. 4210:. 4198:. 4174:. 4166:. 4156:. 4144:. 4140:. 4117:. 4105:. 4093:^ 4079:. 4067:. 4055:^ 4039:. 4027:. 4023:. 4000:. 3988:. 3964:. 3954:57 3952:. 3926:. 3916:15 3914:. 3910:. 3898:^ 3882:. 3874:. 3862:. 3837:83 3835:. 3802:. 3792:. 3784:. 3774:18 3772:. 3747:. 3737:20 3735:. 3731:. 3708:. 3698:54 3696:. 3673:. 3663:53 3661:. 3636:. 3626:. 3614:. 3610:. 3598:^ 3584:. 3574:. 3564:. 3552:. 3548:. 3524:. 3514:. 3504:. 3492:. 3488:. 3464:. 3454:. 3444:28 3442:. 3438:. 3415:. 3407:. 3399:. 3387:. 3364:. 3354:. 3344:. 3334:13 3332:. 3328:. 3304:. 3294:. 3284:42 3282:. 3278:. 3255:. 3245:. 3235:. 3223:. 3219:. 3192:36 3190:. 3186:. 3174:^ 3158:. 3146:. 3142:. 3109:. 3099:. 3089:. 3079:15 3077:. 3073:. 3049:^ 3035:. 3025:30 3023:. 2999:. 2989:33 2987:. 2963:. 2951:. 2928:. 2918:42 2916:. 2891:52 2889:. 2866:. 2856:. 2846:27 2844:. 2840:. 2817:. 2807:. 2797:. 2785:. 2781:. 2757:. 2747:24 2745:. 2721:. 2711:. 2701:35 2699:. 2695:. 2672:. 2664:. 2652:. 2648:. 2622:. 2599:^ 2583:17 2581:. 2567:^ 2551:. 2539:. 2535:. 2512:. 2502:82 2500:. 2477:. 2467:67 2465:. 2439:. 2429:20 2427:. 2423:. 2400:. 2390:. 2380:. 2370:30 2368:. 2364:. 2345:^ 2331:. 2321:38 2319:. 2307:^ 2293:. 2283:54 2281:. 2266:^ 2252:. 2242:44 2240:. 2236:. 2221:^ 2207:. 2197:46 2195:. 2170:. 2160:. 2150:13 2148:. 2144:. 2132:^ 2116:. 2104:. 2100:. 2075:. 2065:55 2063:. 2059:. 2047:^ 2033:. 2025:. 2017:. 2005:. 2001:. 1974:. 1962:. 1947:^ 1933:. 1923:. 1915:. 1905:18 1903:. 1879:. 1871:. 1859:. 1834:. 1822:. 1818:. 1804:^ 1778:. 1768:14 1766:. 1762:. 1740:^ 1726:. 1718:. 1708:. 1700:. 1690:33 1688:. 934:. 793:. 4917:. 4913:: 4899:. 4895:: 4887:: 4863:. 4859:: 4851:: 4828:. 4814:: 4806:: 4786:. 4772:: 4762:: 4754:: 4727:. 4715:: 4707:: 4684:. 4678:: 4670:: 4662:: 4639:. 4627:: 4603:. 4589:: 4579:: 4571:: 4543:. 4539:: 4531:: 4525:4 4508:. 4504:: 4496:: 4476:. 4470:: 4460:: 4452:: 4424:1 4408:. 4404:: 4396:: 4390:5 4372:. 4368:: 4360:: 4354:4 4336:. 4316:: 4308:: 4278:. 4258:: 4250:: 4226:. 4206:: 4182:. 4160:: 4152:: 4125:. 4121:: 4113:: 4107:3 4087:. 4083:: 4075:: 4049:. 4043:: 4035:: 4008:. 4004:: 3996:: 3972:. 3968:: 3960:: 3936:. 3930:: 3922:: 3892:. 3886:: 3878:: 3870:: 3847:. 3843:: 3810:. 3796:: 3788:: 3780:: 3757:. 3751:: 3743:: 3716:. 3712:: 3704:: 3681:. 3677:: 3669:: 3646:. 3640:: 3630:: 3622:: 3616:5 3592:. 3578:: 3568:: 3560:: 3554:5 3532:. 3518:: 3508:: 3500:: 3494:4 3472:. 3458:: 3450:: 3423:. 3403:: 3395:: 3372:. 3358:: 3348:: 3340:: 3312:. 3298:: 3290:: 3263:. 3239:: 3231:: 3204:. 3198:: 3168:. 3162:: 3154:: 3148:8 3128:. 3117:. 3103:: 3093:: 3085:: 3043:. 3039:: 3031:: 3007:. 3003:: 2995:: 2971:. 2967:: 2959:: 2936:. 2932:: 2924:: 2901:. 2897:: 2874:. 2860:: 2852:: 2825:. 2801:: 2793:: 2765:. 2761:: 2753:: 2729:. 2715:: 2707:: 2680:. 2668:: 2660:: 2654:7 2630:. 2626:: 2618:: 2593:. 2589:: 2561:. 2555:: 2547:: 2520:. 2516:: 2508:: 2485:. 2481:: 2473:: 2449:. 2443:: 2435:: 2408:. 2394:: 2384:: 2376:: 2339:. 2327:: 2301:. 2297:: 2289:: 2260:. 2256:: 2248:: 2215:. 2211:: 2203:: 2180:. 2174:: 2164:: 2156:: 2126:. 2120:: 2112:: 2085:. 2079:: 2071:: 2041:. 2021:: 2013:: 1982:. 1978:: 1970:: 1941:. 1927:: 1919:: 1911:: 1887:. 1875:: 1867:: 1844:. 1838:: 1830:: 1799:. 1788:. 1782:: 1774:: 1734:. 1712:: 1704:: 1696:: 1606:e 1599:t 1592:v 1210:) 1206:( 963:2 924:2 920:2 912:2 892:2 678:2 652:e 645:t 638:v

Index

Southern Ocean
teal
calcite
calcium carbonate
Southern Ocean
coccolithophores
shells
calcite compensation depth
carbon cycle
carbon dioxide
climate change
deep-sea corals
coccolithophores
diatom
phytoplankton
Plankton
Phytoplankton
Trophic mode
Phytoplankton
Zooplankton
Mixoplankton
Mycoplankton
Bacterioplankton
Virioplankton
By size
Heterotrophic picoplankton
Microalgae
Microzooplankton
Nanophytoplankton
calcareous

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑